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Abstract 
The Multiple-Square-Root Minimization Problem (MSR) has an objective 
function that consists of a sum of a linear term and at least two square root 
terms. The Lagrangian sub-problem for the LMRP is a typical MSR problem 
and there are other MSR problems in real life. A simple example is that we 
add other concave costs besides the safety stock cost to the LMRP, such as the 
labor cost and even minimize the negation of the revenue. We tested a sort of 
heuristic involved, similar to the method to solve the problem of the LMRP 
vibrational days, and we explore the heuristic is probably the most optimal 
condition. The accuracy of this approach is declining at a slow rate, because 
the number of square roots is increasing, and when the number is not too 
large, it stays at a higher level. 
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1. Introduction 

The Multiple-Square-Root Minimization Problem (MSR) has an objective func-
tion that consists of a sum of a linear term and at least two square root terms. 
The Lagrangian sub-problem for the LMRP (Location Model with Risk Pooling) 
is a typical MSR problem, and there are other MSR problems in real life. A sim-
ple example is that we add other concave costs besides the safety stock cost to the 
LMRP, such as the labor cost and even minimize the negation of the revenue. 
Our focus is on the two-square-root problem in which this assumption does not 
hold. We address this problem along two directions. The first is to relax the as-
sumption in the LMRP’s Lagrangian method and the second one is to add a 
condition for the parameters that make the sorting method always optimal.  

They proposed an efficient algorithm for the continuous relaxation of this 
sub-problem. The Maximum Expected Covering Location Problem (MEXCLP) 
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is introduced by Daskin [1] [2]. In 2002 [3] introduced the LMRP (Location 
Model with Risk Pooling). The original motivation of the model was a study of a 
Chicago-area blood bank system. Compared with the UFLP model, the LMRP 
takes cycle stock and safety stock into account. Ozsen [4] considered the inter-
dependence between capacity and inventory management in the LMRP. The La-
grangian sub-problem is also a non-linear integer program. A couple of special 
cases of the Multiple-Square-Root Minimization problem are presented by Shen 
et al. [5]. So there are two more non-linear terms in the objective function. Then 
we proposed a Lagrangian method to solve this model for a special case in which 
the ratio of the demand variance to the demand mean is identical for all retailers. 
Then in 2003, Shen et al. [6] presented a different algorithm for solving the 
LMRP. They reformulated the model into a set covering problem and applied a 
column generation algorithm to solve it. The computational results show that 
this algorithm is fast, but still slower than the Lagrangian method. They also 
discussed the influence of changing the key parameters. The MEXCLP chooses 
locations of facilities that can sometimes be unavailable and Daskin artfully rep-
laces the none-linear term in the objective function by a sum of linear terms. 
That linearizes the model and makes it easier to solve. In our thesis, we apply 
this method to the LMRP problem. They listed problems like which all had at 
least two concave (square root) terms in the objective function. Shu developed 
an efficient algorithm to solve this kind of problem in [7] through a corres-
ponding concave minimization problem defined on a polyhedron. Snyder, Das- 
kin and Teo [8] presented a stochastic version of the LMRP problem, and they 
developed a Lagrangian method for this problem. 

In our thesis, we try to find under what condition the sorting algorithm for 
the LMRP Lagrangian sub-problem can be applied to the general two square 
root pricing problem. 

2. The Location Model 
2.1. The Location Model with Risk Pooling 

The LMRP model is an extension of the UFLP that considers uncertain demand. 
Besides the fixed cost of opening locations and the variable transportation cost, 
it also includes the cost of cycle stock and safety stock. As a result, the LMRP is 
structured much like the UFLP model, with two extra non-linear terms in the 
objective function. Despite its concave objective function, the LMRP problem 
can be solved by Lagrangian relaxation quite efficiently, just like the UFLP, as-
suming that the ratio of the customer demand rate and the standard deviation of 
daily demand are constant. We use the following notations: 

Parameters: 
I  set of retailers, indexed by i, 
J  set of candidate DC sites, indexed by j,  

iu  mean daily demand of retailer i, for each i I∈  
2
iσ  variance of daily demand of retailer i, for each i I∈ , 
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 jf  fixed (daliy) demand of locating a DC at candidate site j, for each  j J∈ ,  

jK  fixed cost for DC j to place an order from the supplier, including fixed 
components of both ordering and transportation costs, for each  j J∈ , 

ijd  cost per unit to ship between retailer i and candiddate DC site j, for each 
 i I∈  and  j J∈ , 
θ  a constant parameter that captures the safety stock costs at candidate sites. 
Decision Variables: 

1 if we locate at candidate site
0 if notj

j
X 

= 


 

1 if demands at retailer are assigned to a DC at candidate site
0 if notij

i j
Y 

= 


 

Then the model is formulated as follows. 

2Minimize j j ij ij j i ij i ij
j J i I i I i I

f X d Y K u Y Yθ σ
∈ ∈ ∈ ∈

 
+ + + 

 
∑ ∑ ∑ ∑  

subject to 1,ij
j J

Y i I
∈

= ∀ ∈∑  

, ,ij jY X i I j J≤ ∀ ∈ ∀ ∈  

{ }0,1 ,jX j J∈ ∀ ∈  

{ }0,1 , , .ijY i I j J∈ ∀ ∈ ∀ ∈  

2.2. Linearization of LMRP 

To make the objective function linear, we introduce a new parameter jkγ  to 
represent the cost of safety and cycle stock cost that k retailers are assigned to 
DC j, that is 

2
jk jK ku kγ θ σ= +  

Also we introduce a new decision variable 

1, if exactly retailers are assigned to DC ,
0, if notjk

k j
Z 

= 


 

To associate jkZ  with its meaning using linear constraints, we add the con-
straints 

 
0

,   
I

jk ij
k i I

kZ Y j J
= ∈

= ∀ ∈∑ ∑  

0
1,

I

jk
k

Z j J
=

= ∀ ∈∑  

The second constraint says that only one of the  jkZ  can be equal to 1 for 
each j and the first constraint makes sure that the 1 appears when iji Ik Y

∈
=∑  

which is just how we define the meaning of  jkZ . 
So the linear model is: 
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Minimize j j ij ij jk jk
j J i I k J

f X d Y Zγ
∈ ∈ ∈

 
+ + 

 
∑ ∑ ∑  

subject to 1,ij
j J

Y i I
∈

= ∀ ∈∑  

 , ,ij jY X i I j J≤ ∀ ∈ ∀ ∈  

0
  ,   

I

jk ij
k i I

kZ Y j J
= ∈

= ∀ ∈∑ ∑  

0
1,

I

jk
k

Z j J
=

= ∀ ∈∑
 

{ }0,1 ,jX j J∈ ∀ ∈  

{ }0,1 , ,ijY i I j J∈ ∀ ∈ ∀ ∈  

{ }0,1 , , 0, ,jkZ j J k I∈ ∀ ∈ ∀ = 
 

From these two formulations, we can see although the second method is linear, 
it has many more constraints than the original formulation. On the other hand, 
it can be solved by an off the shelf MIP solver and does not require Lagrangian 
relaxation as in the original LMRP. So it’s hard to say which computation time 
would be shorter only by looking at the models. We will test randomly generated 
examples and compare the solution time of the two methods in Chapter 4. 

2.3. The Lagrangian Relaxation Method for the LMRP 

Similar to the UFLP, we solve the LMRP by relaxing the assignment constraints 
Equation (3.2) to obtain the following Lagrangian sub-problem: 

( )

2

2

Minimize 1

Minimize

j j ij ij j i ij i ij I ij
j J i I i I i I i I j J

j j ij i ij j i ij i ij i
j J i I i I i I i I

f X d Y K u Y Y Y

f X d Y K u Y Y

θ σ λ

λ θ σ λ

∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ ∈

  
+ + + + −  

   
 

= + − + + + 
 

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
 

subject to , ,ij jY X i I j J∈ ∀ ∈ ∀ ∈  

{ }0,1 ,jX j J∈ ∀ ∈  

{ }0,1 , ,ijY i I j J∈ ∀ ∈ ∀ ∈  

Although the sub-problem is a concave integer minimization problem, it can 
be solved relatively efficiently, using a sorting method developed by Mark S. 
Daskin, Collette R. Coullard, and Zuo-Jun Max Shen in 2003. The algorithm re-
lies on the assumption that the ratio of the demand variance to the demand 
mean is a constant for all retailers. That is, for all i I∈ , 2 0i iuσ γ= ≤ . Then 
we can collapse two square root terms into one and apply the sorting algorithm 
to solve the resulting sub-problem.  

The optimal objective function value of the Lagrangian sub-problem gives 
us a lower bound of the original problem; then we need an upper bound. There 
are many ways to find a feasible solution to get the upper bound; in this paper, 
we use a simple algorithm to generate the solution from the sub-problem re-
sult.  



X. Zhang et al. 
 

931 

3. Model Introduction 
3.1. LMRP Model 

In the LMRP model, the Lagrangian sub-problem can be written as 

( ) 2Minimize j j ij i ij j i ij i ij i
j J i I i I i I i I

f X d Y K Y Yλ µ σ λ
∈ ∈ ∈ ∈ ∈

 
+ − + +Θ + 

 
∑ ∑ ∑ ∑ ∑  

subject to  
, ,ij jY X i I j J≤ ∀ ∈ ∀ ∈  

{ }0,1 ,jX j J∈ ∀ ∈  

{ }0,1 , , .ijY i I j J∈ ∀ ∈ ∀ ∈  

To solve this sub-problem, we can divide the objective function into three 
parts. The X part contains j jj J f X

∈∑ , the Y part contain  

( ){ }2
ij i ij j i ij i iji I i I i Id Y K Y Yλ µ σ

∈ ∈ ∈
− + +Θ∑ ∑ ∑  and the λ  part contains  

ii I λ∈∑ . Since the λ  part has no decision variables, it can be ignored for the 
optimization. To minimize the objective function, we decide the value for jX  
as follows: for each j, if jf  plus the minimum value of the Y part for that j is 
negative, we set jX  to 1 and set ijY  to achieve the minimum value; else, we 
set jX  and ijY  to 0. Therefore the problem reduces to finding the minimum 
value for the Y part. For given j J∈ , let 1 2,i ij i i j ib d c Kλ µ= − = , 2 2 2

i ic σ= Θ  and  

i ijy Y= . Then the Y part minimization problem can be abstracted into 
1 2Minimize i i i i i i

i I i I i I
b y c y c y

∈ ∈ ∈

+ +∑ ∑ ∑  

In “A joint location-inventory model”, an efficient sorting method was intro-
duced to solve this problem under the condition that 1 2

i ic c  = constant for all i. 
This allows the two square-root terms to be combined into one, which is re-
quires for the algorithms in “A joint location-inventory model”. From the origi-
nal notation, this condition means that the ratio of the demand variance to the 
demand mean is a constant for all retailers. This is approximately true for many 
realistic cases. However, in some cases demand variance can be influenced by 
factors other than the demand mean and that will violate the condition. One 
example is selling wine; the demand mean is mostly related to the population 
that drinks the wine while the demand variance can be influenced by the climate. 
People tend to buy more when the grapes are good because of good climate, so 
places with stable climate tend to have a lower demand variance. 

As we mentioned in the last paragraph, the method in “A joint location-in- 
ventory model” works under the condition that 1 2

i ic c  = constant, let's say λ , 
for all i. Now the y part can be rewritten as follows: 

( )

1 2

2 2

21 .

i i i i i i
i I i I i I

i i i i i i
i I i I i I

i i i i
i I i I

b y c y c y

b y c y c y

b y c y

γ

γ

∈ ∈ ∈

∈ ∈ ∈

∈ ∈

+ +

= + +

= + +

∑ ∑ ∑

∑ ∑ ∑

∑ ∑
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We get rid of one of the square root terms in this way. So the minimization 
problem of the Y terms can be written as: 

(P) Minimize  

i i i i
i I i I

b y c y
∈ ∈

+∑ ∑                      (2.1) 

subject to  

{ }0,1 ,iy i I∈ ∀ ∈                      (2.2) 

where 2
i ic c=   

Mark S. Daskin, Collette R. Coullard, and Zuo-Jun Max Shen proved that (P) 
can be solved efficiently by a sorting method, in ( )logI IΟ  time. The sorting 
method works as follows: 

Let { }| 0iI i I b− = ∈ <  and { }1 | 0iI i I b− −= ∈ >  
1. Set 0iy =  for all i I −∈  
2. Set 1iy =  for all i I −∈  such that 0ic = . 
3. Sort the elements in 1I

−  in increasing order of i ib c . 
4. For each { } 10r I −∈ ∪ ,compute 

1 1

r r

r i i
i i

S b c
= =

= +∑ ∑  

(If 0r = , then 0rS = .) 
5. Choose the r that minimizes rS  and set 1iy =  for 1, , .i r=   
The proof for this sorting method only uses the concave property of the 

square root function and the process also works if we replace the square root 
terms with any concave function terms. 

Without the condition that 1 2
i ic c  = constant, we cannot combine the two 

square root terms into one in the Y part. So the sorting method provided by does 
not work in these cases. Our focus is on identifying conditions under which the 
problem can be solved by Mark S. Daskin, Collette R. Coullard, and Zuo-Jun 
Max Shen the sorting method for problems with two or more square root terms. 

3.2. Model Formulation 

The general form of the multiple square root (MSR) minimization problem is as 
follows: 

(PP) minimize  

1 2

1
min

m
m t

i i i i i i i i i i i i
i I i I i I i I i I t i I

b y c y c y c y b y c y
∈ ∈ ∈ ∈ ∈ = ∈

+ + + + = +∑ ∑ ∑ ∑ ∑ ∑ ∑  

subject to 

{ }0,1iy ∈                          (2.3) 

Throughout the analysis below, we assume that 0t
ic >  for all i I∈  and

{ }1, ,t m∈ 
. In the case of the LMRP, this assumption holds as long as all of the 

demand variances are positive. If the assumption does not hold, one can ap-
proximate it by setting t

ic ε= , for small ε , if it equals 0. Furthermore, we will 
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assume that 1t
ic ≥  for all i I∈  and { }1, ,t m∈ 

. This assumption is not re-
strictive, since if 0 1t

ic< <  we can multiply the objective function by some con-
stant M without changing the optimal solution; t

ic  then becomes 2 t
iM c . For 

large enough M, all coefficients are greater than or equal to 1.  
Let { }| 0iI i I b− = ∈ ≤ . Obviously, if i I −∉  than * 0iy =  in any optimal so-

lution *y . Assume without loss of generality that the elements of I −  are sorted 
such that 

1 2

1 21 1 1

n
m m mt t t

nt t t

bb b
c c c

= = =

≤ ≤ ≤
∑ ∑ ∑

  

where n I −= . 
Consider the two square root problem, i.e., m = 2. As shown in “A joint loca-

tion-inventory model”, if 
1

2
i

i

c
c

 = constant for all i, then the sorting method dis- 

cussed above works. On the other hand, we know that without this constraint, 
the sorting method does not hold in general. The question we are interested in is 
whether the sorting method is guaranteed to work if the 1 2

i ic c  ratios are “close 
enough”. 

Suppose that ( )1 1
t
i

i
i

c c
c

α= + , { }2, ,t m∈ 
 and i I∀ ∈  with [ ],iα α α∈  

for some constants , , ,i cα α α . Our aim is to identify values for α  and α , 
which guarantee that the sorting method works. 

3.3. Model Analysis 

In this section, we modify the proof of the correctness of the sorting method in-
troduced by Mark S. Daskin, Collette R. Coullard, and Zuo-Jun Max Shen to the 
MSR problem and discuss the bottleneck of the proof. 

We assume without loss of generality that the elements of { }| 0iI i I b− −= ∈ <  
are indexed and sorted such that 

1 2

1 21 1 1

n
m m mt t t

nt t t

bb b
c c c

= = =

≤ ≤ ≤
∑ ∑ ∑

                 (2.4) 

Conjecture 2.1 There exists an optimal solution *y  to (PP) such that the 
following property holds: if * 1ky =  for some 1k I −∈ , then * 1ly =  for all  

{ }1, , 1l k∈ −
. 

Start of Proof: Let *y  be an optimal solution to (PP). Assume (for a contra-
diction) that * 1ky =  but * 0ly =  for some { }1, , 1l k∈ −

. Assume that *y  is 
the optimal solution with the greatest number of components set to 1. We will 
find a new optimal solution with one more 

Component set to one, thus contradicting our assumption. 
Let  

*

1, if

, otherwise,i
i

i l
y

y
=′ = 
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*

0, if

, otherwise.i
i

i k
y

y
=′′= 


 

Let *; ;z z z′ ′′  be the objective values corresponding to *; ;y y y′ ′′ , respectively. 

Let { }{ }*\ , | 1iR i I k l y−= ∈ = , and let t t
ii RC c

∈
=∑ . Clearly, 

*

1

m
t t t t t

l k l k
t

z z b C c c C c
=

 ′ − = + + + − +  ∑            (2.5) 

*

1

m
t t t

k k
t

z z b C c C
=

 ′′− = + + −  ∑               (2.6) 

Then from Equation (2.5), we have: 

( )* 1

1 1 1

m t t t t t
k l ktt

m m mt t t
l l lt t t

C c c C cbz z
c c c

=

= = =

+ + − +′ −
= +

∑
∑ ∑ ∑

        (2.7) 

Also, from Equation (2.6), we have: 

( )* 1

1 1 1

m t t t
ktk

m m mt t t
k k kt t t

C c Cbz z
c c c

=

= = =

+ −′′−
= +

∑
∑ ∑ ∑

 

Since  
*z z′ ≤  and *z z′′ ≤                      (2.8) 

and  
*

1

0m t
lt

z z
c

=

′ −
>

∑
                       (2.9) 

*

1

0m t
kt

z z
c

=

′′−
<

∑
                      (2.10) 

if we can identify a condition such that  
* *

1 1
m mt t

l kt t

z z z z
c c

= =

′ ′′− −
≤

∑ ∑
                    (2.11) 

Then conjecture 2.1 would be proved. 
From the convexity of the square root function, we have 

t t t t t t t t
k l k k

t t
l k

C c c C c C c C
c c

+ + − + + −
≤            (2.12) 

It is sufficient to find a condition that makes 

( ) ( )1 1

1 1

m mt t t t t t t t
k l k kt t

m mt t
l kt t

C c c C c C c C

c c
= =

= =

+ + − + + −
≤

∑ ∑
∑ ∑

       (2.13) 

An instance that satisfies inequality (2.13) must satisfy (2.11). Since  

1 1

l k
m mt t

l kt t

b b
c c

= =

≤
∑ ∑

 by the way I −  is sorted. 
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Here comes the bottleneck, since inequality (2.13) doesn’t hold for all cases. In 
Section 2.4 we give a sufficient condition that ensures inequality (2.13) holds, 
and in Section 2.5 we try an alternate approach. 

3.4. A sufficient Condition 

As we assumed in Section 5.2, ( ) { }1 1 , 1, ,
t
i

i
i

c c t m
c

α= + ∈   and i I∀ ∈  with  

[ ],iα α α∈ . So we change the format of inequality (5.13) and associate it with 
our assumption. 

First note that 

( )( )

( ) ( )

t t t t t
k l k

t t t t t t t t t t
k l k k l k

t t t t t
k l k

t t t t t
k l k

t t t t t
k l k

t
l

t t t t t
k l k

C c c C c

C c c C c C c c C c

C c c C c

C c c C c

C c c C c

c

C c c C c

+ + − +

+ + − + + + + +
=

+ + + +

+ + − +
=

+ + + +

=
+ + + +

    (2.14) 

Given the assumption, we have: 

( ) 11t
l lc c cα≤ +  

( )1 1 1 11t t t t t t
k l k k l kC c c C c c C c c C cα+ + + + ≥ − + + + +  

Since all the terms are greater than zero, we have: 

( )

( )
1

1 1 1 1 1

1

1

t
ll

t t t t t
k l k k l k

c cc

C c c C c c C c c C c

α

α

+
≤

+ + + + − + + + +
 (2.15) 

Simplifying the right hand side term, we have: 

( )

( )
( )

( )( )
( )

( )

1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

1

1 1 1 1 1

1

1

1
1

1
1

1
1

l

k l k

l k l k

k l k k l k

l k l k

l

k l k

c c

c C c c C c

c C c c C c
c

C c c C c C c c C c

c C c c C c
c

c

c C c c C c

α

α

α
α

α
α
α
α

+

− + + + +

+ + − ++
=

− + + + + + + − +

+ + − ++
=

−

+
= + + − +

−

 (2.16) 

Combining (5.14), (5.15) and (5.16), we have: 

( )1 1 1 1 11
1

t t t t t
k l k k l kC c c C c c C c c C cα

α
+

+ + − + ≤ + + − +
−

 

This holds for any { }1, ,t m∈ 
. Summing over t, we get : 
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( ) ( )1 1 1 1 1

1

1
1

m
t t t t t

k l k k l k
t

C c c C c m c C c c C cα
α=

+
+ + − + ≤ + + − +

−
∑   (2.17) 

Given the assumption, we also have: 

( ) 1

1
1

m
t
l l

t
c mc cα

=

≥ −∑                    (2.18) 

Since all the terms are positive. 

( )

( )
( )

( )( )
( )

1

1

1 1 1 1 1

1

1 1 1 1 1

3 1

1
1

1

1

1

m t t t t t
k l kt

m t
lt

k l k

l

k l k

l

C c c C c

c

m c C c c C c

mc c

C c c C c

c c

α
α

α

α

α

=

=

+ + − +

+
+ + − +

−
≤

−

+ + + − +
=

−

∑
∑

           (2.19) 

Similarly we have 

( )( )

( ) ( )

t t t
k

t t t t t t
k k

t t t
k

t t t
k

t t t
k

t
k

t t t
k

C c C

C c C C c C

C c C

C c C

C c C

c

C c C

+ −

+ − + +
=

+ +

+ −
=

+ +

=
+ +

            (2.20) 

Given the assumption, we have: 

( ) 11t
k kc c cα≥ −  

( )1 1 11t t t
k kC c C c C c Cα+ + ≤ + + +  

Since all the terms are greater than zero, we have: 

( )

( )
1

1 1 1

1

1

t
kk

t t t
k k

c cc

C c C c C c C

α

α

−
≥

+ + + + +
         (2.21) 

Simplifying the right hand side term, we have: 

( )

( )
( )

( )( )
( )

( )

1

1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1

1

1 1 1

1

1

1
1

1
1

1
1

k

k

k k

k k

k k

k

k

c c

c C c C

c C c C
c

C c C C c C

c C c C
c

c

c C c C

α

α

α
α

α
α
α
α

−

+ + +

+ −−
=

+ + + + −

+ −−
=

−
−

= + −
+

       (2.22) 
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Combining (2.20), (2.21) and (2.22), we have: 

( )1 1 11
1

t t t
k kC c C c C c Cα

α
−

+ − ≥ + −
+

 

This holds for any { }1, ,t m∈  . Summing over t, we get: 

( ) ( )1 1 1

1

1
1

m
t t t

k k
t

C c C m c C c Cα
α=

−
+ − ≥ + −

+
∑       (2.23) 

Given the assumption, we also have: 

( ) 1

1
1

m
t
k k

t
c mc cα

=

≤ +∑                     (2.24) 

since all the terms are positive, inequality (2.23) and (2.24) imply 

( )

( )
( )

( )( )
( )

1

1

1 1 1

1

1 1 1

3 1

1
1

1

1

1

m t t t
kt

m t
kt

k

k

k

k

C c C

c

m c C c C

mc c

C c C

c c

α
α

α

α

α

=

=

+ −

−
+ −

+≥
+

− + −
=

+

∑
∑

              (2.25) 

From inequalities (2.19) and (2.25), we can see that if we have 

( )( )
( )

( )( )
( )

1 1 1 1 1 1 1 1

3 31 1

1 1

1 1

k l k k

l k

C c c C c C c C

c c c c

α α

α α

+ + + − + − + −
≤

− +
  (2.26) 

then inequality (2.13) will hold. In other word, Conjecture (5.1) holds if we im-
pose (5.16) as an additional condition. 

Inequality (2.26) can be reformulated as 

( )
( )

( )( )
( )

( )( )
( )

( )

( )

1 1 1

5 1

5 1 1 1 1 1

1

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

1

1 1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

1

1

k

k

k l k

l

k k

k k

k l k k l k

l k l k

k

k k k l k

l k

l k l k

C c C
c

C c c C c
c

C c C C c C

c C c C

C c c C c C c c C c

c C c c C c

c

c C c C C c c C c
c C c C

c C c c C c

α

α

+ −
+

≤
+ + − +−

+ − + +

+ +
=

+ + − + + + + +

+ + + +

+ + + + + +
= =

+ +
+ + + +

 (2.27) 

For the right hand side of inequality (2.27), needing the minimum value of
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1 1 1 1 1

1 1 1

k l k

k

C c c C c

C c C

+ + + +

+ +
. 

Over all k, l, call it *R , is easy to accomplish through a simple iterative pro-
cedure. 

For every 1, ,t m∈   
Step 1: Let { }

1 1
arg min t

i
i k

l c
≤ ≤ −

= . 

Step 2: Let 
1 1 1 1 1

1 1 12
arg min k l k

i n
k

C c c C c
k

C c C≤ ≤

 + + + + =  
+ +  

. 

For the left hand side of inequality (2.17), the value is decided by 
1
1

α
α

+
−

 and  

the smallest value of this fraction can also be determined from the dataset easily. 
Given our assumption in Section 2.2, the smallest value of ( )1c α+  should be 
the largest ratio of 1

ic  and t
ic , for all i I∈  and  2, ,t m∈  ; call it γ . Also, 

the largest value of ( )1c α+  should be the smallest ratio of 1
ic  and t

ic , for all 
i I∈  and  2, ,t m∈  ; call it 



γ .So  

( )
( )
11

1 1
c r
c r

αα
α α

++
= ≥

− −
 

As a result, in a given dataset, if we have 
2.5

Rγ
γ

 
≤ 

 
 then inequality (2.27)  

holds for all k, l, and so inequality (2.13) holds. In this case conjecture (2.1) 
holds, and the sorting method can be applied to the data set. 

The following theorem summaries our analysis: 

Theorem 2.4.1. If a data set has the property that 
2.5

Rγ
γ

 
≤ 

 
, then there ex- 

ists an optimal solution y to (PP) such that the following property holds: if 
* 1ky =  for some 1k I −∈ , then * 1ly =  for all { }1, , 1l k∈ −

. 
If the condition in Theorem (5.4.1) holds, then the sorting method can be ap-

plied. 

3.5. An Alternate Analytical Approach 

There is another direction for needing the condition. Continuing the logic from 
the Section 2.3, let’s start from the simplest case, the two square root case. 

First we subtract the left hand side from the right hand side of inequality 
(2.13); 

( )( ) ( )( )
( )( )

1 1 1 2 2 2 1 1 2 2 1 1 2 2 1 2

1 2 1 2

1 1 1 2 2 2 1 1 2 2 1 2 1 1 2 2 1 2 1 2

1 2 1 2

k l k l k k k k

l l k k

k l k l k k k k k k l l

l l k k

C c c C c c C c C c C c C c C C
c c c c

C c c C c c C c C c c c C c C c C C c c

c c c c

+ + + + + − + − + + + + − −
−

+ +

+ + + + + − + − + + − + + + − − +
=

+ +

 

The denominator is larger than zero as ck and cl are larger than zero. For the 
numerator, we need to compare. 
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We need to compare  

( )( ) ( )( )1 1 1 2 2 2 1 2 1 2 1 2
k l k l k k l lC c c C c c c c C C c c+ + + + + + + + +  

and  

( )( )1 1 2 2 1 2 1 2
k k k k l lC c C c c c c c+ + + + + + . 

From here we can see that if we do not add a condition on the relation be-
tween 1 2

k kc c+  and 1 2
l lc c+ . 

The difference between the previous terms can be either positive or negative. 
So we first add the simple condition that 1 1

m mt t
l kt tc c

= =
=∑ ∑ . 

So the problem changes to comparing  
1 1 1 2 2 2 1 2

k l k lC c c C c c C C+ + + + + + +  

and 

( )1 1 2 22 k kC c C c+ + +  

As these terms are all positive, we can square them without changing their 
magnitude relation. 

The left hand side becomes 

( )
( ) ( ) ( )
( ) ( )

1 1 1 2 2 2 1 2 1 1 1 2 2 2

1 2 1 1 1 1 2 2 2 2

1 1 1 2 2 2 2 1

2k l k l k l k l

k l k l

k l k l

C c c C c c C C C c c C c c

C C C c c C C c c C

C c c C C c c C

+ + + + + + + + + + + +

+ + + + + + +

+ + + + + +

 

The right hand side becomes 

( )( )1 1 2 2 1 1 2 24 2k k k kC c C c C c C c+ + + + + +  

which can be written as the same pattern as the left hand side, 

( )
( ) ( ) ( )
( ) ( )

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 1 1 2 2 2 2

1 1 2 2 1 1 2 2

2k k k k k k

k k k k k k

k k k k

C c C c C c C c C c C c

C c C c C c C c C c C c

C c C c C c C c

+ + + + + + + + + +

+ + + + + + + + +

+ + + + + +

 

The difference between these two sides is 

( ) ( )
( ) ( )
( ) ( ) ( )

1 1 1 2 2 2 1 2

1 1 1 1 2 2 2 2

1 1 1 2 2 2 2 1 1 1 2 24 .

k l k l

k l k l

k l k l k k

C c c C c c C C

C c c C C c c C

C c c C C c c C C c C c

+ + + + +

+ + + + + +

+ + + + + + − + +

 

This term’s value is near 0 but can be positive or negative for different data 
sets. We tried to add some conditions to make this term always negative, but no 
sufficient condition was found. 

However, if we only impose the simple condition that, the sorting method of-
ten finds the optimal solution, and when it does not, the error is usually small. 
This will be shown in the next section. 
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3.6. A Lower Bound Based on the Sufficient Condition 

As we discussed in Theorem 2.4.1, if a data set has the property that 
2.5

*r R
r

 
≤ 

 
,  

then there exists an optimal solution *y  to (PP) such that the following prop-
erty holds: if * 1ky =  for some 1k I −∈ , then * 1ly =  for all { }1, , 1l k∈ −

.  

From the Theorem we can see that in a data set, the will of 
2.5

* rR
r

−
 
 
 

 will de- 

cide whether this data set holds the property. Let's name this number as R. So 
when 1R ≥ , the property holds and the sorting method can be applied to this 
data set. In this section, we discuss a method to get a lower bound through the 
sorting method when 0 1R< <  and the gap between the lower bound and op-
timal solution. 

Conjecture 2.2: There exists a lower bound  

( ){ }1 min 1, , 1lb i
Rz z b i k

R
− ′= + ∈ − 

 


 to (PP) such that z′  is the objective 

value of a feasible solution y′  that the following property holds: if 1
ky =′  for 

some 1k I −∈ , then 1ly ′=  for all { }1, , 1l k∈ −
.  

Start of Proof: Let *y  be an optimal solution to (PP) and *z  is its objective 
value. Assume (for a contradiction) that * 1ky =  but * 0ly =  for some  

{ }1, , 1l k∈ −
 and *

lbz z< . We will find a feasible solution y′  with the fol-
lowing property: if 1

ky =′  for some 1k I −∈ , then 1
ty =′  for all { }1, , 1l k∈ −

 
that breaks the inequality, thus contradicting our assumption.  

*

1

m
t t t t t

l k l k
t

z z b C c c C c
=

 ′ − = + + + − +  ∑  

as 0 1R< <  we have 
From the Assumption, 

( ) ( ){ }
( )
( )

*

*

*

*

1 min 1, , 1

1

1 0.

lb

i

l

l

z z

Rz Rz R b i k

Rz Rz R b

Rz Rz R b

<

′< + − ∈ −

′< + −

′ − + − >



           (2.29) 

From Equation (2.28) we have 

( )*
1

1 1 1

1
m t t t t t

k l ktl l
m m mt t t

l l lt t t

C c c C cRz Rz R b b R
c c c

=

= = =

 + + − +′ − + −   = +
∑

∑ ∑ ∑
 (2.30) 

Also, we have Equation (2.8) 

( )* 1

1 1 1

m t t t
ktk

m m mt t t
k k kt t t

C c Cbz z
c c c

=

= = =

+ −′′−
= +

∑
∑ ∑ ∑

           (2.31) 

Based on the way we sort the data, 

1 1

l k
m mt t

l kt t

b b
c c

= =

≤
∑ ∑

                    (2.32) 

According to Inequalities (2.19), (2.25), and (2.26), we can imply that, 
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( )1 1

1 1

m mt t t t t t t t
k l k kt t

m mt t
l kt t

C c c C c C c C
R

c c
= =

= =

 + + − + + −   ≤
∑ ∑

∑ ∑
   (2.33) 

Combining Inequalities (2.32) and (2.33) we have, 

( )1 1

1 1 1 1

m mt t t t t t t t
k l k kt tl k

m m m mt t t t
l l k kt t t t

C c c C c C c Cb bR
c c c c

= =

= = = =

 + + − + + −  + ≤ +
∑ ∑

∑ ∑ ∑ ∑
 

So  

( )* *

1 1

1 l
m mt t

l kt t

Rz Rz R b z z
c c

= =

′ − + − ′′−
≤

∑ ∑
              (2.34) 

From Inequality (2.29), 

( )*

1

1
0l

m t
lt

Rz Rz R b

c
=

′ − + −
>

∑
                 (2.35) 

Clearly, 
*

1

0m t
kt

z z
c

=

′′−
≤

∑
                      (2.36) 

There exists a contradiction in inequalities (2.34), (2.35) and (2.36). As a re-
sult, Conjecture 2.2 is proved. 

3.7. Test on Random Samples 

We generate the parameters in our random samples using uniformly distributed 
random numbers. ib  was generated from [ ]10,0−

 and all k
ic  were gener-

ated from [ ]U 0;1  and we choose 10I =  and 2,3,4m = . There are 600 in-
stances in total. We get the optimal value of the sample instances by enumerat-
ing each of the feasible solutions and choosing the ones with the smallest objec-
tive value. Then we apply the sorting method to the same instance and compare 
the result with the enumeration method. Both methods were implemented in 
MATLAB. 

We can see that in most of the two square root cases, 94 out of 100, the sorting 
methoded the optimal solution. In these samples, 42 instances satisfy the suffi-
cient condition (2.17) and for each of these instances, the sorting method finds 
the optimal solution, as predicted by Theorem (5.4.1). In the three square root 
cases, the sorting method works in 73 out of 100 data sets and 15 of them meet 
condition (2.17). When there are four square root terms, the sorting method 
works in 56 out of 100 data sets, and there are only 6 cases that meet condition 
(2.17). The results are shown in Table 1. This shows that the sufficient condition 
is correct, but not many data sets satisfy it. However, this condition allows slight 
changes in the ratio of the multiple-square-root parameters, which is typical of 
realistic data sets. For further research, relaxing the condition so that it applies to 
more realistic data sets can be a direction. 

For the alternate analytical approach in Section 2.5; the accuracy rates are 
shown in Table 2. We can see that as the complexity of the problem goes up  
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Table 1. Satisfaction rate for the sufficient condition. 

Number of 
square root terms 

Satisfaction rate 
Average error 

for all instances 
Average error 

for failed instances 

2 0.42 0.9856 0.7314 

3 0.15 0.9347 0.6026 

4 0.06 0.8653 0.6892 

 
Table 2. Accuracy rate for the alternate analytical approach. 

Number of 
Square root terms 

Accuracy rate 
Average error 

for all instances 
Average error 

for failed instances 

2 0.93 0.9875 0.8514 

3 0.87 0.9493 0.7483 

4 0.62 0.8853 0.7048 

 
with more square roots, the accuracy rate goes down. However, the rates are ac-
ceptable when the number of square roots is not large. For future research, we 
will search for additional sufficient conditions to guarantee the optimality of the 
sorting method. 

4. Conclusions and Future Research 

As for the MSR problem, we discuss a sufficient condition that guarantees the 
sorting method works, and an alternate analytical approach that makes the sort-
ing method often needs the optimal solution while the average error is low. 

For future research, we would like to determine the conditions under which 
the linearization method will have a shorter solution time than the Lagrangian 
method does. Searching for relatively relaxed sufficient conditions to guarantee 
that the sorting method works for the MSR problem is also a direction. 
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