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Abstract 
We consider tilings of deficient rectangles by the set 4T  of ribbon L-tetro- 
minoes. A tiling exists if and only if the rectangle is a square of odd side. The 
missing cell has to be on the main NW-SE diagonal, in an odd position if 
the square is ( ) ( )4 1 4 1m m+ × +  and in an even position if the square is 

( ) ( )4 3 4 3m m+ × + . The majority of the tiles in a tiling follow the rectangular 
pattern, that is, are paired and each pair tiles a 2 4×  rectangle. The tiles in an 
irregular position together with the missing cell form a NW-SE diagonal 
crack. The crack is located in a thin region symmetric about the diagonal, 
made out of a sequence of 3 3×  squares that overlap over one of the corner 
cells. The crack divides the square in two parts of equal area. The number of 
tilings of a ( ) ( )4 1 4 1m m+ × +  deficient square by 4T  is equal to the number 
of tilings by dominoes of a 2 2m m×  square. The number of tilings of a 
( ) ( )4 3 4 3m m+ × +  deficient square by 4T  is twice the number of tilings by 

dominoes of a ( ) ( )2 1 2 1m m+ × +  deficient square, with the missing cell 
placed on the main diagonal. In both cases the counting is realized by an ex-
plicit function which is a bijection in the first case and a double cover in the 
second. If an extra 2 2×  tile is added to 4T , we call the new tile set 4T + . A 

tiling of a deficient rectangle by 4T +  exists if and only if the rectangle is a 
square of odd side. The missing cell has to be on the main NW-SE diagonal, in 
an odd position if the square is ( ) ( )4 1 4 1m m+ × +  and in an even position if 

the square is ( ) ( )4 3 4 3m m+ × + . The majority of the tiles in a tiling follow 
the rectangular pattern, that is, are either paired tetrominoes and each pair 
tiles a 2 4×  rectangle, or are 2 2×  squares. The tiles in an irregular posi-
tion together with the missing cell form a NW-SE diagonal crack. The crack is 
located in a thin region symmetric about the diagonal, made out of a sequence 
of 3 3×  squares that overlap over one of the corner cells. The number of til-
ings of a ( ) ( )4 1 4 1m m+ × +  deficient square by 4T +  is greater than the 
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number of tilings by dominoes and monomers of a 2 2m m×  square. The 
number of tilings of a ( ) ( )4 3 4 3m m+ × +  deficient square by 4T +  is greater 
than twice the number of tilings by dominoes and monomers of a 
( ) ( )2 1 2 1m m+ × +  deficient square, with the missing cell placed on the main 

diagonal. We also consider tilings by 4T  and 4T +  of other significant defi-
cient regions. In particular we show that a deficient first quadrant, a deficient 
half strip, a deficient strip or a deficient bent strip cannot be tiled by 4T + . 

Therefore 4T  and 4T +  give examples of tile sets that tile deficient rectangles 
but do not tile any deficient first quadrant, any deficient half strip, any defi-
cient bent strip or any deficient strip. 
 

Keywords 
Tiling, Deficient Rectangles, Ribbon Tetromino 

 

1. Introduction 

We study tilings of deficient rectangles placed in a square lattice by tile sets con-
sisting of polyominoes. A 1 1×  square in the lattice is called a cell or monomer. 
We call a rectangle deficient if a cell is missing. Similarly one can define deficient 
quadrants, deficient half strips, or deficient plane. Our tile sets consist either on-
ly of ribbon L-tetrominoes ( 4T ) or of ribbon L-tetrominoes and a 2 2×  square 
( 4T + ). See Figure 1. A tiling of a region is a covering without overlappings. Only 
translations of the tiles are allowed in a tiling. A 2 2×  square is said to be 
2-square if it has the coordinates of all vertices even. 

The tile sets 4T  and 4T +  were introduced in [1] [2], motivated by a problem 
in recreational mathematics. It is shown in [1] [2] that the tile sets have several 
remarkable properties. Many of them are consequences of the fact that any tiling 
of the first quadrant by 4T  or 4T +  follows the rectangular pattern, that is, the 
tiling reduces to a tiling by 2 4×  rectangles, in which every rectangle is tiled by 
two tiles from 4T , and 2 2×  squares. This in turn, is a consequence of the fact 
that in any covering without overlaps of a region in the first quadrant bounded 
by a step 2 staircase and the coordinate axes, the 2-squares are all covered by 
2 4×  rectangles, covered by two tiles from 4T , and 2-squares. A bit unex-
pected, these results have applications to tilings of deficient regions. They also 
provide a natural mechanism for producing tilings with cracks. 

Our main results are the following. 
 

   
                 (a)                                         (b) 

Figure 1. Tile sets. (a) The tile set 4T ; (b) The tile set 4T + . 
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Theorem 1. Assume that a deficient rectangle is tiled by 4T . Then the fol-
lowing are true: 

1. The rectangle is a square of odd side ( ) ( )2 1 2 1 , 1n n n+ × + ≥ . 
2. The missing cell is on the main NW-SE diagonal, in an odd position for a 

( ) ( )4 1 4 1m m+ × +  square and in an even position for a ( ) ( )4 3 4 3m m+ × +  
square. For all 1m ≥ , all such deficient squares can be tiled by 4T . 

3. Most of the tiles (all but n or 1n + ) in a tiling follow the rectangular pat-
tern, that is, are paired and each pair tiles a 2 4×  rectangle. 

4. (Existence of the crack) The n or 1n +  tiles in an irregular position to-
gether with the missing cell form a NW-SE diagonal crack starting in the upper 
left corner of the square and ending in the lower right corner. 

5. (Location of the crack) The crack is located in a thin region symmetric 
about the diagonal, made out of a sequence of 3 3×  squares that overlap over 
one of the corner cells. 

6. (Symmetry of the crack) The crack divides the square in two parts of equal 
area. 

7. The number of possible cracks (counted twice if they allow for two different 
tilings) in a fixed deficient square is equal to 2

m
mC  for a ( ) ( )4 1 4 1m m+ × +  

square and 22 m
mC  for a ( ) ( )4 3 4 3m m+ × +  square. 

8. The number of tilings of a ( ) ( )4 1 4 1 , 1,m m m+ × + ≥  deficient square by 

4T  is equal to the number of tilings by dominoes of a 2 2m m×  square. 
9. The number of tilings of a ( ) ( )4 3 4 3 , 1,m m m+ × + ≥  deficient square by 

4T  is twice the number of tilings by dominoes of a ( ) ( )2 1 2 1m m+ × +  defi-
cient square, with the missing cell placed on the main diagonal. 

10. The counting is realized by a bijection in 8. and a double cover in 9.. They 
takes a tiling by 4T  into a tiling by dominoes: for a tiling of the deficient square 
by 4T , eliminate the crack, replace the pairs of tiles that cover 2 4×  rectangles 
by 2 4×  rectangles, reassemble the remaining two region in a square and then 
do a 1/2-homothety. 

11. (Propagation of the crack) The crack and the tiling of a ( ) ( )2 1 2 1n n+ × +  
deficient square can be extended (imbedded) into a crack (tiling) of a 
( ) ( )2 5 2 5n n+ × +  deficient square. 

The tilings in Figure 2 illustrate the statement of the theorem. The number of 
tilings in 8. is independent of the position of the missing cell on the diagonal and 
can be computed using Kasteleyn formula [3]. The number of tilings in 9. de-
pends on the position of the missing cell on the diagonal. For example, if 2m =  
the numbers of tilings by 4T  of a 11 11×  deficient square are, in this order, 
384, 224, 392, 224, 384. These are twice the numbers of tilings by dominoes of a 
5 5×  deficient square with the missing cell placed on the diagonal. 

Theorem 2. Assume that a deficient rectangle is tiled by 4T + . Then the fol-
lowing are true: 

1. The rectangle is a square of odd side ( ) ( )2 1 2 1 , 1n n n+ × + ≥ . 
2. The missing cell is on the main NW-SE diagonal, in an odd position if the 

square is ( ) ( )4 1 4 1m m+ × +  and in an even position if the square is  
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                   (a)                                         (b) 

Figure 2. Tiling deficient squares. (a) 11 × 11 defcient square; (b) 13 × 13 defcient square. 
 

( ) ( )4 3 4 3m m+ × + . For all 1m ≥ , all such positions give deficient squares that 
have tilings by 4T + . 

3. Most of the tiles (all but n  or 1n + ) in the tiling follow the rectangular 
pattern, that is, the tetrominoes are paired with each pair tiling a 2 4×  rectan-
gle. 

4. (Existence of the crack) The n  or 1n +  tiles in an irregular position to-
gether with the missing cell form a NW-SE diagonal crack. The crack starts in 
the upper left corner of the square and ends in the lower right corner. 

5. (Location of the crack) The crack is located in a thin region symmetric 
about the diagonal, made out of a sequence of 3 3×  squares that overlap over 
one of the corner cells. 

6. The number of possible cracks (counted twice if they allow for two different 
tilings) in a fixed deficient square is 22 m  if the square is ( ) ( )4 1 4 1m m+ × +  
and 2 12 m+  if the square is ( ) ( )4 3 4 3m m+ × + . 

7. The number of tilings of a ( ) ( )4 1 4 1 , 1,m m m+ × + ≥  deficient square by 

4T +  is equal to ( ) 2
1 2m k

kkN m N
=

= ∑ , where kN  is the number of tilings by do 

minoes and monomers of a 2 2m m×  square that has the diagonal covered by 
k  monomers and 2m k−  dominoes. 

8. The number of tilings of a ( ) ( )4 3 4 3 , 1,m m m+ × + ≥  deficient square by 

4T +  is ( )2N m . 
9. The countings are realized by surjective functions that take a tiling by 4T +  

into a tiling by dominoes and monomers: for a tiling of the deficient square by 

4T + , eliminate the crack, replace the pairs of tiles that cover 2 4×  rectangles by 
2 4×  rectangles, reassemble the remaining two region in a square and then do a 
1/2-homothety. If the image of a tiling by 4T +  has exactly k  monomers on the 
main diagonal, then the cardinality of the preimage of that image is 2k . 

10. (Propagation of the crack) The crack and the tiling of a ( ) ( )2 1 2 1n n+ × +  
square can be extended into a crack (tiling) of a ( ) ( )2 5 2 5n n+ × +  square. 

Our results about the existence and the properties of tilings with cracks can be 
easily extended to more irregular regions, and even to regions with extra holes. 
The idea of the proof is to complete these regions to a full deficient square and 
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then apply the results in Theorems 1 and 2. Some typical examples are shown in 
Figure 3. Tilings of deficient rectangles by L-tetrominoes, with all 8 symmetries 
allowed, are described in [4]. In contrast to what happens here, the obstructions 
to tilings in that case are mostly coloring invariants. 

Other deficient regions of interest are quadrants, half strips or strips, bent 
strips, half planes or the plane, or a larger copy of the L-tetromino. All of these 
regions are considered in Golomb tiling hierarchy [5]. 

Theorem 3. a) No deficient first quadrant can be tiled by 4T + . Every deficient 
second quadrant can be tiled by 4T . Moreover, no first quadrant missing a 
square of odd size can be tiled by 4T + . 

b) No deficient half strip can be tiled by 4T + . 
c) No deficient strip can be tiled by 4T + . 
d) No deficient bent strip can be tiled by 4T + . 
e) Every deficient half space can be tiled by 4T . 
f) Every deficient plane can be tiled by 4T . 
g) No deficient larger copy of an L-tetromino can be tiled by 4T + . 
Combining the results in Theorems 1, 2 and 3, we observe that 4T  and 4T +  

provide examples of tile sets that tile deficient squares of arbitrary large size, but 
do not tile a deficient first quadrant. This is in contrast with what happens for 
other tile sets. For example, it is known that the T-tetromino, with all symme-
tries allowed, does not tile deficient rectangles [6] [7], but it is easy to show that 
tiles deficient first quadrants. Theorems 2 and 3 show that the tiling hierarchy 
established by Golomb in [5] for tiling regions without holes fails for deficient 
regions and for tile sets allowing only for translations. 

Some caution is needed in investigating a tiling hierarchy for deficient re-
gions. For example, if the tile set consists of a single deficient rectangle then 
clearly it tiles a deficient rectangle (itself) but does not tile any infinite deficient 
region. The tile sets 4T  and 4T +  have the feature that the tiles do not have any 
holes. A finite tile set consisting of tiles without holes that tiles a deficient rec-
tangle but does not tile any infinite region in the list above is shown Figure 4. 
We allow only for translations of the tiles. We observe that the tile sets 4T  and 
 

   
                   (a)                                       (b) 

Figure 3. Tiling irregular regions. 
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Figure 4. A tile set that tiles deficient rectangles but does not tile a deficient plane. 

 

4T +  have the extra feature that tile full rectangles. It is easy to see that a tile set 
that tiles a deficient rectangle and a rectangle, also tiles any deficient plane. One 
may consider the following problem. 

Problem. Find a finite set of polyominoes that tiles rectangles, tiles deficient 
rectangles, but does not tile any deficient quadrant, deficient strip, deficient half 
strip, deficient bent strip or deficient half plane. 

As we do not allow for all symmetries in our tile sets, it is also interesting to 
observe that the results in Theorem 3, b), c), d), e), g) are true for all orientations 
of the regions. 

One may interpret tiling deficient regions in several ways. Given a region, we 
can consider all instances of deficient regions, almost all, a certain ratio, some or 
other variation. In Theorem 3 we consider all instances for both positive and 
negative results. In Theorems 1 and 2 only some instances of deficient squares 
are relevant, and the ratio of good cells versus the number of cells in the square 
converges to zero as the squares become larger and larger. For what the meaning 
of with probability p, may be and some results in this direction, one can consult 
[8] and the references cited there. 

The results in this note can be generalized to tilings of deficient rectangles and 
other regions by the sets of ribbon L n-ominoes, n even. These tile sets are in-
troduced in [9]. Probably similar results may also be derived for more general 
tile sets appearing from dissection of rectangles that follow the rectangular pat-
tern. These tile sets are described in [10] and [11]. 

2. Proof of Theorem 1 

It follows from [1] that any tiling by 4T  of a region in the first quadrant 
bounded by the coordinate axes and a staircase of even origin and step 2 has to 
follow the rectangular pattern. For simplicity we will call such a region staircase. 
Inside any ( ) ( )4 1 4 1p q+ × +  or ( ) ( )4 3 4 3p q+ × +  rectangle we can fit two 
maximal regions as above. See Figure 5. Assume that the missing cell is not 
placed on the diagonal adjacent to one of the staircase regions or inside that re-
gion. This forces the appearance of the gray staircase in Figure 5 which ends in 
the cell * that cannot be tiled. We conclude that the deficient rectangle has to be 
a square and the missing cell has to be placed on the diagonal. 

Assume now that we have a deficient square. See Figure 6. It follows from [1] 
that all 2 2×  marked squares are tiled following the rectangular pattern. We  
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Figure 5. A general rectangle. 

 

 
Figure 6. The central region. 

 
study now the tiling of the remaining central region consisting of a sequence of 
3 3×  squares centered about the main diagonal. We observe first that some of 
the central region has to be covered by 2 2×  squares that are parts of 2 4×  
rectangles originating in the region covered by the staircases. We will refer to 
them as 2-squares as well. Indeed, doing a chessboard coloring (say black, white) 
of the 2-squares in the staircase region, we need to have the same number of 
black and white squares. This is due to the fact that any 2 4×  rectangle is cov-
ered by a black and a white 2-square. If the deficient square is  
( ) ( )4 1 4 1m m+ × +  then we have a deficiency of m  2-squares for each of the 
staircases and if the deficient square is ( ) ( )4 3 4 3m m+ × +  then we have a defi-
ciency of m  2-squares for each of the staircases. In the first case this forces all 
3 3×  squares in the central region to contain a 2-square and in the second case 
forces all but one of the 3 3×  squares in the central region to contain a 
2-square. The 2-squares are distributed evenly between the two staircases. The 
way in which we partition them in two equal parts, as we see below, can be arbi-
trary. 

We study now the region left uncovered in the central region after the addi-
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tion of the 2-squares. The possible tilings of a 3 3×  square are shown in Figure 
7. In cases a) through d) the cell labeled * has to be covered by the missing cell in 
the deficient square or by a cell that is part of a tile in 4T  originating in a dif-
ferent 3 3×  square. In cases e) and f) the central cell in 3 3×  square has to be  
the missing cell. If the deficient square is of type ( ) ( )4 1 4 1m m+ × +  then the  

3 3×  squares are covered by the cases a) through d). The missing cell has to be 
in an odd position on the main diagonal covering the corner of a 3 3×  square.  
If the deficient square is of type ( ) ( )4 3 4 3m m+ × +  then all but one of the  

3 3×  squares are covered by the cases a) through d) and one of them is covered 
by the case e) or f). The missing cell has to be in an even position on the main 
diagonal covering the center of a 3 3×  square. It is easy to see that once the 2- 
squares and the missing cell are places in the central region, the rest of the crack  
can be tiled by 4T  in a unique way for ( ) ( )4 1 4 1m m+ × +  squares and in two  

ways for ( ) ( )4 3 4 3m m+ × +  squares. 
We show now that after the addition of the 2-squares to the staircase the re-

sulting region can be tiled by 2 4×  rectangles. This is obvious if the number of 
rows in the staircase is 1 or 2. If the number of rows is larger, we do induction 
on the number of rows. The induction step is illustrated in Figure 8 and consists 
in removing 2 4×  rectangles containing the additional 2-squares. We start 
removing 2 4×  rectangles from the top of the staircase. Each removal deletes 
also a 2-square on the largest diagonal of the staircase. In order to avoid am-
biguity, we want the 2-squares on the diagonal to be eliminated in order, from 
the top to the bottom. What is left is a smaller staircase with the additional 
2-squares added which can be tiled by 2 4×  rectangles due to the induction 
hypothesis. 

To finish the proof of the counting results we need to show that any tiling by 
dominoes of a 2 2m m×  square or of a ( ) ( )2 1 2 1m m+ × +  deficient square 
with the missing cell on the main diagonal can be divided in tilings of comple-
mentary staircases regions with extra squares added. Observe that any of the 
2m  available cells on the diagonal is covered by a different domino. To obtain 
the splitting, divide the set of dominoes that cover the cells on the diagonal in 
two equal parts and assign them to the lower, respectively upper, maximal stair-
case in the original 2 2m m×  or ( ) ( )2 1 2 1m m+ × +  square. This argument al-
so allows to count the number of cracks. The crack is uniquely determined by 
the partition of extra 2 2×  squares in two equal parts between the upper and 
lower staircases. Independent of the size of the deficient square, this partition 
can be done in 2

m
mC  ways. 

 

 
       (a)             (b)          (c)           (d)            (e)         (f) 

Figure 7. Tilings of a 3 × 3 square. 
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The propagation of the crack is illustrated in Figure 9 and it is self-explana- 
tory. 

3. Proof of Theorem 2 

The proof of Theorem 2 is similar to that of Theorem 1. Figure 7 shows that the 
appearance of the extra 2 2×  square inside the 3 3×  squares is forced and the 
only possible coverings of a 3 3×  square are shown in that figure. The differ-
ences in counting appear due to the fact that the extra 2 2×  squares that are 
added in the central region do not need to be divided in two equal parts, but ra-
ther can be divided arbitrarily. If the extra 2 2×  squares are placed, then the 
region covered by the crack is well defined. As a 2 2×  square can be placed in 
only two positions, the number of cracks is 22 m  for a ( ) ( )4 1 4 1m m+ × +  
square and 22 2 m×  for a ( ) ( )4 3 4 3m m+ × +  square. The extra factor of 2 ap-
pears due to the fact that in the last case the region supporting the crack can be 
tiled in two ways. See Figure 7(e), Figure 7(f). Same arguments justify the extra 
factors of 2k  and 2 appearing in the statements 7 and 8 in Theorem 2. 

4. Proof of Theorem 3 

a) In order to prove first part in a) we use a technique introduced in [1] for 
 

 
Figure 8. The induction step. 
 

 
Figure 9. Propagation of the crack. 
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4T . Any line parallel to y x= −  that intersects a tile from 4T  across diagonals 
of cells, cuts either a cell or two cells from each tile. This leads to a ( )1, 2,1  in-
variant, which is available even if an extra 2 2×  tile is added to the tile set. We 
label the diagonal in the first quadrant by integers, starting from the corner of 
the first quadrant. Using the invariant it is shown in [1] that in any tiling of a 
(non deficient) first quadrant even diagonals parallel to y x= −  are tiled by the 
blocks of two cells belonging to the same tile and the odd diagonals are tiled by 
single cells belonging to distinct tiles. In a tiling of a deficient first quadrant, this 
pattern has to hold till we reach the diagonal containing the missing cell. 

Assume that the missing cell is placed on an even diagonal 2nD  of length 2n. 
As the tiling of 2 1nD −  is done by single cells belonging to distinct tiles, this 
forces 2nD  to be tiled by the blocks of two cells belonging to the same tile, so 
taking out a cell from 2nD  leads to a contradiction. 

Assume now that the missing cell is placed on an odd diagonal 2 1nD +  of 
length 2 1n + . Then the diagonal 2nD  is covered by n  tiles, each tile covering 
two cells from 2nD . These tiles also cover n  cells from 2 1nD + . After taking out 
the missing cell, the rest of n  cells of 2 1nD +  are covered by single cells from 
tiles that also cover 2n  cells from the diagonal 2 2nD +  and n  cells from the 
diagonal 2 3nD + . The two cells left uncovered on 2 2nD +  are covered by single 
cells from distinct tiles, which also cover 4 cells from 2 3nD +  and 2 cells from 

2 4nD + . So, it follows that the number of new tiles that cover the rest of the di-
agonals is forced. By induction, one can easily show that for any 2k ≥  and 
even, the number of new tiles that appear in its cover is k . Once 2 1k n> + , 
this forces 2 1n kD + +  to have at least 2k  cells, in contradiction to  
2 2 1k n k> + + . This finishes the proof for the first part of a). 

Several tilings of deficient second quadrants are shown in Figure 10. The half 
infinite strips in the figures can be tiled by 2 4×  rectangles. Tilings for the rest 
of the cases can be obtained from these via a symmetry about the line y x= −  
or a translation that leaves in the second quadrant a region that can be tiled by 
2 4×  rectangles. This proves second part of a). 

Third part of a) follows combining first part of a) with Theorem 2. 
b) If a deficient half strip is tiled by 4T , then a deficient first quadrant or a 

deficient third quadrant is tileble by 4T . But this is in contradiction to a). 
c) Due to the (1,2,1) invariant mentioned above, in any tiling of a deficient in-

finite strip, the diagonals inside the strip parallel with the line y x= −  are cov-
ered either by blocks of two cells of by single cells belonging to individual tiles. 

The proof is similar to that in [1], showing that a double infinite strip of odd 
width cannot be tiled by 4T , but here we have more cases to consider. Clearly a 
deficient strip of width 1 or 2 cannot be tiled. We show first a stronger result 
that implies impossibility of tiling a deficient strip of width 3 or 4. If a tiling is 
possible, the infinite sequences (…,3,3,3,3,2,3,3,3,…), (…,4,4,4,4,3,4,4,4,…) are 
linear combinations with positive coefficients of translates of the block (1,2,1). 

Consider the first infinite sequence and look at the diagonal containing the 
missing cell, say 0D . Label the rest of the diagonals from left to right. If 0D  is  
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                   (a)                                      (b) 

 
(c) 

Figure 10. Tilings of a deficient second quadrant. 
 
tiled by a block of two cells belonging to a single tile, then the diagonal 2D  
cannot be tiled. If 0D  is tiled by two single cells belonging to different tiles, 
then 4D  cannot be tiled. 

Consider now the second infinite sequence and look at the diagonal 0D  that 
contains the missing cell. If 0D  is tiled by single cells belonging to different 
tiles, then either 1D  or 1D−  is covered by a block of two cells and two single 
cell, which make 2D  or 2D−  impossible to tile. If 0D  is tiled by a block of 
two cells and a single cell, then one of 1D  or 1D−  is covered by a block of two 
cells and two single cells, and the other is tiled by four single cells. This forces 
one of 2D  or 2D−  to be impossible to tile. 

For the induction step, the case of width k , k  odd, notice that for any di-
agonal there is at least a block of two cells from the same tile part of its cover. 
Otherwise one of the adjacent diagonals is forced to have more than k  cells. 
Then we may subtract an infinite sequence (…, 4, 4, 4, …) from the invariant 
associated to the whole strip and reduce the problem to a deficient strip of width 

4k − . 
For the induction step, the case of width k , k  even, the above argument 

works if we show that the existence of a diagonal covered only by single cells 
from distinct tiles gives a contradiction. Assume that the diagonal containing the 
missing cell, 0D , is covered only by single cells. Then either 1D  (say) (or 1D− ) 
is covered by 1k −  blocks of two cells and two single cells. This forces 2D  to 
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be covered by two blocks of two cells and 2 4k −  single cells, 1k −  of which 
belong to tiles covering the previous diagonals. By induction, this shows that the 
diagonal 2nD  is covered by 2n  blocks of two cells, which leads to a contradic-
tion if 2n k> . If a diagonal different from one with the missing cell is covered 
only by single cells, then the adjacent diagonals have to be completely covered by 
blocks of two cells or by single cell belonging. This determines a pattern that 
leads to a contradiction as we reach the diagonal containing the missing cell. 

d) The proof of c) and a) use only the (1,2,1) invariant, so the argument is also 
available for a bent strip. 

e) This easily follows from a). 
f) This easily follows from a). 
g) Obvious due to a counting argument. 
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