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Abstract

In this paper a new approach for obtaining an approximation global optimum solution of zero-one nonlinear
programming (0-1 NP) problem which we call it Parametric Linearization Approach (P.L.A) is proposed. By
using this approach the problem is transformed to a sequence of linear programming problems. The ap-
proximately solution of the original 0-1 NP problem is obtained based on the optimum values of the objec-
tive functions of this sequence of linear programming problems defined by (P.L.A).
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1. Introduction

Integer programming is one of the most interesting and
difficult research areas in mathematical programming
and operations research. During the past years, many
works has been devoted to linear integer programming,
linear 0-1 programming and nonlinear 0-1programming
problems [1-4].

Nnonlinear constrained integer programming problem
have many applications in sciences and engineering. A
number of research paper dealing with reliability opti-
mization problems are reported in the literature. These
are integer programming problems with nonlinear sepa-
rable objective function and nonlinear multi choice con-
strained [5,6].

A developed optimization method for solving integer
nonlinear programming problem (INLP) with 0-1 vari-
able could be found in [7]. This method is closely related
to the lexicographic method of Gilmore and Gomory [8],
for the knapsack problem and additive algorithm of
Balas [9].

One of the conventional methods for solving zero-one
nonlinear programming problem is to transform it to a
linear programming problem. The main difficulty of this
method is the very large number of variables and con-
straints which increases the problem-size.

A linearization involving a linear number of variables
and constraints was first proposed by Glover [10] and
improved by Oral and Kettani [11,12]. The resulting lin-
earization involving only n — 1 additional variable and
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2(n — 1) linear constraint.

Hanssen and Meyer in [13] compare different ways for
linearization the unconstraint quadratic zero-one mini-
mization problem. This approaches involves to increase
the number of variables and constraints.

Consider the zero-one nonlinear programming prob-
lem as follow:

minimize f(x)

subjectto g (X)<0 s=1---,m 0
h, X):O k=1,---,1
X;=0orl j=1---,n,

where f():R" >R and g,(.):R">R; s=1---,m
and h (.):R" > R; k=1---,1 arenonlinear functions.
We can replace the discrete constraints of the form
X; = 0 orl; j=1,---,n, by the continuous new ones of
the form X{ —x; =0; j=1,---,n. Itis trivial that this two
constraints are equivalent. At first we consider zero-one
nonlinear programming problem in which the discrete
constraint are replaced with continuous ones. Then we
have the following nonlinear programming problem:

minimize f(x)

subjectto g (x)<0 s=1L---,m @
h(X)=0 k=L-1
X; =X, =0 j=1--,n,

]

In this paper we present a new approach call it para-
metric linearization approach for finding the approxi-
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mated global optimum of zero-one NP problem by solv-
ing a sequence of linear programming problems over
sub-regions. The solution of the sequence of LP prob-
lems tends to the optimal solution of the original nonlin-
ear problem. The reminder of the paper is organized as
follow:

The second section contains a description of parametric
linearization approximation and the convergence results.
The third section contain a description of using the pa-
rametric linearization approximation for solving zero-one
nonlinear programming problem. In the forth section the
approach will be followed to decrease the number of
sub-problems which must be solved in each iteration.
Numerical examples used to illustrate the efficiency of
the proposed approach and they are given in fifth section.
The last section draws overall conclusions.

2. The Parametric Linearization Approach

Let f(x) be anonlinear smooth function on [a,b]. We
know that the linear Taylor expansion of f(x) at the
point X, €[a,b] as follows:

f(x)=1f(%)+(x=%)f"(%),
where X, be an arbitrary point in (a,b). In usual Taylor
expansion X, is a fixed point but in our definition this is
an arbitrary point. Thus we may call it moving linear
Taylor expansion of f ().

Definition 2.1: We consider a partition of an interval
[a,b] as the following form:

IDr [avb] ={a= Yo Yis s Yy =b},
where y, <y, <---<Y,.
The norm of partition defined by:
R [a:b]" = MaX oy { Vi — Vi -

Definition 2.2: Let f(x) is a nonlinear function on
[a,b] and P, ([a,b]) be the partition of it. Let defined
f.(x) a parametric linear approximation of f(X) on
sub-interval [y;,y;,,] as follow:

f(x)=2f(s)x+f(s)-sf'(s)
X[ ¥i Vi &I =0, 1 =1,

where s; €(Y;,Y,,) isan arbitrary point.
Now we define G, (X) as the following form:

G, (X) = z:;[ 1:i (X)l[yﬂm] (X):| ’

where y,(X) is the characteristic function and defined
as the following:

1 xeA
(%)= 0 x¢A
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We call G,(.) as a parametric piecewise linear ap-
proximation of f (x) on [a,b].

Note 2.1: In the following theorems it is shown that
when the norm of partition tends to zero it means
P,([a,b])"—)O then G, (x) is uniformly convergent
to f(x) (the original nonlinear function). In the other
word we may shown that:

G, — f uniformly on [a,b]

First we show that G, — f pointwise on [a,b].

Lemma 2.1: Let P,([a,b])={a=Y,. ¥, Y, Y, =D}
is an arbitrary partition of [a, b]. If f(y) is continuous
function on [a,b] and X,Se&[y;,Y;,,] then:

limy (fi(s)+ (s)(x=5))= T (w).

Proof: The proof is a simple conclusion of the defini-
tion.

Definition 2.3: A family F of complex function f
defined on the set A in a metric space X is said to be
equicontinuous on A if for every & >0 there exist
6 >0 such that |f (x)-f (Z)| <& whenever d(X,2)<4,
x,zeA, felF.

Here d(x,z) denote the metric of A (see [6]).

Since {G, (x)} is a sequence of linear function it is
trivial that this sequence is equicontinuous.

Theorem 2.1: Let {fy} be an equicontinuous se-
quence of functions on a compact set A and {fy} con-
verges point-wise on A. Then {fy} converge uniformly
on A.

Proof: Since {f,} isequicontinuous on A then:

Vg>035>05.t.d(x,z)<5—>|fN (x)- fy (z)|<g
X,ze AN=12,--.

It is trivial that for each xe A and 6 >0 we have
Acl,_N(x6). So |J _,N(x,6) is an open-cov-
ering for A. Since A is a compact set this open-covering
have a finite sub-covering. Thus there exist the point
a,,a,,,a, in A such that AgUir:l N(;,5). There-
fore for each xe A there exist ¢;(i=1,2,---,r) in A
such that d(X,¢;) <& and therefore:

|fN (x)- fy (ai)|<gfor N =12

We know that {f,} is pointwise convergence se-
quence then there existing a natural number M such that
foreach p>M, q>M we have:

|fU| (051)— fp(al)|Sg
|fq (az)— fp(a2)|S£

<¢g

|fq (ar)_ fp(ar)

Therefore we have the following inequalities:
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|fq (X)_ fp(x)|:|fq(x)_ fq (ai)+ fq (ai)_ fp (ai)+ fp (ai)_ fp(x)|

S|fq (X)_ fq (ai)|+|fq (ai)_ fp (ai)|+|fp(ai)_ fp(x)|S377

Then according to the theorem 7.8 in [6] the sequence
{fy} is uniformly continuous on A and the proof is
completed.

Theorem 2.2: Let G, (x) is a piecewise linear ap-
proximation of f (x) on [a,b] as the following form:

r-1

6, (0= 100, ()]
Then:
G, — f uniformly on [a,b] .

Proof: The proof is immediate consequence of lemma
2.1 and theorem 2.1.

Let f () A — R is nonlinear smooth function where
A=T].[a.b]cR".

Here we introduce a piecewise linear parametric ap-
proximation for f(x) which is the extension of defini-
tion 2.2.

Definition 2.4: Consider the nonlinear smooth func-
tion f():A—>R where A=]]  [a.b]. Also con-
sider B, (A) as a partition of A as follows:

PM (A)= {Ahiz:'“win“l’.”’i” =O:1:”'nr_1}n
where

Ay = p’ll s Adisn, ]x [’742 s Aoy, JX X |:/11n ’ﬂ’(i+l)n:| (3)

Hence A is partitioned to M cells where M =r". Let
for k=1,---,M shown the k™ cell of this partition by
E, and s, =(S,,~,S¢) is used to shown any point of
E,. Now f,(x) is defined as a linear parametric ap-
proximation of f(x) for xeE, as follows:

fi (x) = Vi (X)|x:sk (x=35,)+ f(s,)

where s, € E, for k=1,---,M.
Now G, (X) is defined as a pricewise linear ap-
proximation of f (X) on A as follows:

Gy (x) =3[ £, (x) 26, (¥)]

k=1

Note 2.2: As note 2.1 we have
limye (a0 Cm (x)=f(x).
3. Description of the Approach

At first for description our approach we consider the
nonlinear programming problems which are shown in

Q).

Copyright © 2011 SciRes.

In our approach we introduce the parametric linearization
approximation for nonlinear functions. For solving the
optimization problem (2) the nonlinear objective func-
tion and constraints are transformed approximately to the
piecewise linear functions.

We consider P, (A) which is explained above be a
partitions of the cell [0,1]". Without loss of generality
we can assume that this partition of the region [0,1]" is
regular, it means that we have sub-intervals of the form

[/LA, .+11§ j=1--,n and 4 =ih where h=l and
J ] J r

i.=0,1---,r—1.

JWe consider the nonlinear constraints of the form
XJ? -X;=0, j=1L--,n. By using the parametric lin-
earization approach we may change approximately this
constraint to the following form:

(27, ~1)x; =4 =0.x; € p"i i, ]
j 2

After this according to the following manner in each

j:l’...’n’jfl

sub-region of the form Ahizf"»in of [0,1]" we may trans-

form the other nonlinear functions in the optimization
problem (2) to the parametric linear approximation form.
So each nonlinear functions f(x); g,(x), s=1---,m;

h (x), k=11 in the A |

formed approximately to the following parametric lin-
ear form:

sub-regions trans-

— e () Lo (7))
FO)=f(2)+ 2 o, XJ_ZHT;/1
- n ags I n ags ﬂ_, _
g, (x)=9,(2)+>", 8x(. )xj_zj_l a>f )ﬂ
! i
s=1,---,m
_ _oh (4 Coh (7)) -
hk(x):hk(/?«)-i-Zj:l g)f )Xj_z“ g)f )/1
) i
k: s ’I
A+
where Z:[Zl’zﬁz’“"ﬂ_’ln] such that Z’.J _ 1j +2(|+1)j ’

j:L...’n and X:(xl’---,xn) such that Xje[ﬂ’lj’/l(iﬂ)j :I

Therefore in each sub-region of the above form we
have the following linear programming problem:
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For solving the above linear programming problem we
divided the interval [0,1] to r equal sub-interval of the
form [0,l}u{z,z}uu{r—_l,l} We know that

r rr r
in the solution of the optimization problem (3) all vari-
ables must be equal zero or one. Therefore after dividing
the interval [0, 1] we only should consider the first and
the last sub-intervals A :{O,l} and A :{r—_l,l}.
r r

In these sub-intervals let Z,j L and 4 = 2r-1 so

2r I 2r

we have 2" linear programming problems of the form
which be shown in (4). Let this linear programming
problems be solved the optimum solution and the opti-
mal value of the objective function of this linear pro-
gramming problems are shown with X' and Zz re-
spectively then the optimal solution of the original opti-
mization problem of the form (2) may be calculated as
follows:

2’ = minlsisz" {Z'*} (5)

According to the theorems and lemmas which are
proved in Section 2, we know that if in any partitions of
[0, 1] the norm of partitions tends to zero we have
limg_,, A; ={0} and lim,,, Ay ={1} Therefore if an
arbitrary partition of [0, 1] be refined then each linear
approximation of nonlinear functions f (x) and g,(X);

s=1---,m and hk(X); k=1,---,1 tends to the values
and g.(1); s=L--,m and h(1); k=L--1 and

constraint of the form (27,,]_ —l)xj —ﬂ_,lf =0; j=L--,n

tends to values X; = 0 or X; = 1 which is the hole feasible
solution of the original zero-one non-linear programming
problem (2).

4. Decreasing the Number of Sub-Problems

According to the described approach for solving zero-one
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minimize Y afaff) X+ (-3, 5‘;5(%) P
] ]
subject to Z?_lag;x(%)xj+gs</1)—zr;_lagg)f%))?£0 s=1,---,m
J
A 7 “)
o on (7 L oh(2)
> g)fj )xj hk(z)_zj]%z:o k=11
(24, 1) -227 =0 =t
X, €| A, A, | j=1n

nonlinear programming problems this problems must be
converted to a sequence of linear programming problems.
In this situation if n the number of variable in the main
optimization problem is a large number then we faced
with 2" sub-problems which must be solved.

According to the following manner this number may
be decreased. At first the sub-problems are solved se-
quentially until the first feasible solution has been deter-
mined. For the reminder sub-regions by substituting X;
with /Tij the objective function of the converted linear

programming problem was calculated. If the calculate
value of the objective functions of this linear program-
ming problem is greater than the objective function of
the feasible solution the linear programming problem in
this sub-region isn’t solved otherwise it be solved.

After this if the solved problem has the feasible solu-
tion the value of the objective function of this problem
was substituted with the older ones. This manner has
been repeated until the sub-problems are ended. The
saved value of the objective function and corresponding
design variable are the approximated answer for the main
zero-one nonlinear programming problems.

5. Numerical Examples

Now we give the numerical examples to show the effi-
ciency of our proposed algorithm.

Example 5.1: Consider the following zero-one nonlin-
ear programming problem:

min z=el™ (1+sinsin(§ X, D-i-(xg —1)2
st.
XX+ X <2
2% (%, +1)" %% <3
X+ X, +X, <2
X, %, % €{0,1}
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In the first stage we divided the region [0, 1]° to I’
equal sub-regions. According to our notation in (4) we
consider the following sub-regions:

e (]
ottt
v ot
v ot ot
v oot}

min

st

b i3 h

This linear programming problems are solved. The op-
timum value of the original 0-1 nonlinear programming
problem is calculated according (5). In the following
tableau we show the approximate optimal solution for
different values of r.

r X 7

10 (0.952657, 0, 1.04734) 1.05075
100 (0.995025, 0, 1.00497) 1.00501
1000 1.005

Example 5.2: Consider the following 0-1 linear pro-
gramming problem:

max  Z=3X +X, +3X,
St =X +2X, +X, <4
4%, 3%, <2
X =X, +X <3

X; =0orl j=1,2,3

Copyright © 2011 SciRes.

A+ AT+ AL +24, (x1 4

i
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—_
|
= |~
—_

1 1
Ar-ll,oz,r-13 :[ :IX[O’F}{I_F’I}

1 1
v =1l o]
A =1t {1 1]

In each sub-region of the above form we choose the

element ﬂflj ; j=123 of A= [Z,l ,Z,Z,Z,J equal to
the middle point of each intervals. In the other word we
2r-1

2r
So in each sub-region nonlinear 0-1 programming

problem converted approximately to the following linear
programming problem:

—_

= . 1
have 4 isequalto — or
! 2r

|
—
SN—
5]
|
(DA
A
7\
—_
+
=,
=)
7\
SR
e
N—
——
—_—
X
|
=l
SN—

=

g

For solving this problem at first we transform it to the
following convex nonlinear programming:

max  Z=3X +X, +3X,
St =X +2X,+X% <4
4%, —=3%, <2
X =X, +X; <3
X;—%;=0j=12,3
Now using the parametric linearization technique we
transform the above nonlinear programming problem to
the following sequence of linear programming problems:

max Z=3X +X, +3X,
st. =X F2X, + X, <4
4%, —=3%, <2
X =X, +X <3
_ R
(2;11]_ —l)xj—ﬂ,lj -0, =123

(%1%, %) € |:/7“|, A, ]X [/112 A, ]X |:ﬂ13 A, ]
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Here we consider r =10 and assuming that ﬂ_,,j =0.05

and ﬂ_,,j =0.95 from the above sequence of linear pro-

gramming problem we have 8 linear programming prob-
lems for solving. After solving these problems on the
sub-feasible region and constitute a set of the approxi-
mate optimal solution of the sub-problems, the approxi-
mate optimal solution of the original problem is obtained
from the following optimization problem:

max, {Zi }

where z is the optimal vale of the objective function
of the sub-problems. Then the approximate optimal solu-
tion of the original zero-one linear programming problem
is obtained X = (1.0028, 1.0028, 1.0028) with the opti-
mal value of the objective function is and z* = 7.0194.

6. Conclusions

In this paper we investigated the optimization technique
for solving zero-one mixed nonlinear programming prob-
lems. We obtained the global convergence for our ap-
proach. Numerical examples are shown the effectiveness
of the proposed algorithm. The nonlinear integer pro-
gramming problems can be transformed to the zero-one
nonlinear programming problems and then proposed
approach can be used for solved this problems.
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