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Abstract 
 
In this paper a new approach for obtaining an approximation global optimum solution of zero-one nonlinear 
programming (0-1 NP) problem which we call it Parametric Linearization Approach (P.L.A) is proposed. By 
using this approach the problem is transformed to a sequence of linear programming problems. The ap-
proximately solution of the original 0-1 NP problem is obtained based on the optimum values of the objec-
tive functions of this sequence of linear programming problems defined by (P.L.A). 
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1. Introduction 
 
Integer programming is one of the most interesting and 
difficult research areas in mathematical programming 
and operations research. During the past years, many 
works has been devoted to linear integer programming, 
linear 0-1 programming and nonlinear 0-1programming 
problems [1-4]. 

Nnonlinear constrained integer programming problem 
have many applications in sciences and engineering. A 
number of research paper dealing with reliability opti-
mization problems are reported in the literature. These 
are integer programming problems with nonlinear sepa-
rable objective function and nonlinear multi choice con-
strained [5,6]. 

A developed optimization method for solving integer 
nonlinear programming problem (INLP) with 0-1 vari-
able could be found in [7]. This method is closely related 
to the lexicographic method of Gilmore and Gomory [8], 
for the knapsack problem and additive algorithm of 
Balas [9]. 

One of the conventional methods for solving zero-one 
nonlinear programming problem is to transform it to a 
linear programming problem. The main difficulty of this 
method is the very large number of variables and con-
straints which increases the problem-size. 

A linearization involving a linear number of variables 
and constraints was first proposed by Glover [10] and 
improved by Oral and Kettani [11,12]. The resulting lin-
earization involving only n – 1 additional variable and  

2(n – 1) linear constraint. 
Hanssen and Meyer in [13] compare different ways for 

linearization the unconstraint quadratic zero-one mini-
mization problem. This approaches involves to increase 
the number of variables and constraints. 

Consider the zero-one nonlinear programming prob-
lem as follow:  
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      (1) 

where  . : nf    and ;  . : n
sg   1, ,s m   

and  . : n  ; k kh 1, , l   a
rete constraints 

re nonlinear functions.  
We can replace the disc of the form 

0jx   or 1; 1, ,j n  , by the continuous new ones of 
 2

jx xthe form 0j  ; 1, ,nj   . It is trivial that this two 
constraint st we consider zero-one 
nonlinear programming problem in which the discrete 
constraint are replaced with continuous ones. Then we 
have the following nonlinear programming problem: 
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    (2) 

In this paper we present a new approach call it para-
metric linearization approach for finding the approxi-
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ond section contains a description of parametric 
lin

. The Parametric Linearization Approach 

et 

mated global optimum of zero-one NP problem by solv-
ing a sequence of linear programming problems over 
sub-regions. The solution of the sequence of LP prob-
lems tends to the optimal solution of the original nonlin-
ear problem. The reminder of the paper is organized as 
follow:  

The sec

We call as a parametric piecewise linear ap-
proximation o

earization approximation and the convergence results. 
The third section contain a description of using the pa-
rametric linearization approximation for solving zero-one 
nonlinear programming problem. In the forth section the 
approach will be followed to decrease the number of 
sub-problems which must be solved in each iteration. 
Numerical examples used to illustrate the efficiency of 
the proposed approach and they are given in fifth section. 
The last section draws overall conclusions. 
 
2
 
L  f x  

 that 
be a nonlinear smooth function on [a,b]. We 

know the linear Taylor expansion of  f x  at the 
point 0 [ , ]x a b  as follows: 

      0 0 0f x x f x , f x x 

where x0 be an arbitrary point in (a,b). In ual Taylor us
expansion x0 is a fixed point but in our definition this is 
an arbitrary point. Thus we may call it moving linear 
Taylor expansion of  f x .  

Definition 2.1: W idere cons  a partition of an interval 
[a,b] as the following form: 

  ,P a b a y  ,

where 
ned by: 

0 1, , ,r ry y b  

0 1 ry y y   . 
orm of partition defiThe n

  , maxP a b y 0 1 1r i r i iy     . 

Definition 2.2: Let  f x  is a nonlinear function on 
[a,b] and   ,rP a b  b partition of it. Let defined 

 i

e the 
f x  a p linear approximation of arametric  f x  on 

terval sub-in 1,i iy y   as follow: 

       
 1, & 0, , 1,

i i i i

i i

if x f s x f s s f s

x y y i r

  

  




 

where  1,i i is y y   
 we define 

is an arbitrary point. 
Now  r x  as the followingG  form: 

where 

    
   

1

1

,0 i i

r

r i y yi
G x f x x






   , 

 A x
ollowin

 is the characteristic function and defined 
as the f g: 

 
1

0 .A

x A
x

x A



  

 

(.)rG  
f  f x

e 
 on [a,b]. 

Note 2. following theorems it is shown that 
w  

1: In th
hen the norm of partition tends to zero it means 

  , 0P a b   r  G x  is then r  uniformly convergent 
to  f x  (the original nonlinear function). In the other 
word we may shown that: 

 uniformly on ,rG f a b 　  

First we show that rG  f  pointwise on [a,b]. 
Lemma 2.1: Let     0 1 1, , , , ,r r rP a b a y y y y b    

partition of [a, b]. If 


 f y  is continuous 


is an arbitrary 
function on [a,b] and 1,, i ix s y y   then : 

       m i0li
r i iP f s f s x s

 

Definition 2.3: A family of complex f ction f 
defined on the set A X is said to be 
eq

f y   . 

Proof: The proof is a simple conclusion of the defini-
tion. 

  
 in a metric space 

un

uicontinuous on A if for every 0   there exist  
0   such that    f x f z    whenever  ,d x z  , 

, ,x z A  .f   
Here  ,d x z  denote the metric of A (see [6]). 
Since   rG x  is a sequence

l that this seq ntinuous. 
 

 of linear function it is 
trivia ence is equico

Theorem 2.1: Let 
u

 Nf  be an equicontinuous se-
qu tence of func ions on a compact set A and  Nf  con-
ve int-wise rges po on A. Then  Nf  converge uniformly 
on A.  

Proof: Since  Nf  icontinuous on A then: is equ

     0 0 . . , N Ns t d x z f x f z

, , 1, 2, .x z A N

          
 

  

at forIt is trivial th  each x A  and 0   we have 
 ,

x A
A N x 


 . So  ,

x A
N x 


mp
 Thus t


o act set this 

ring. here

 is an 
open-

 exist the 

open-cov-
A is a c coveri g 
ove point 

ering for A. Since 
have a finite sub-c

2

n

1, , , r    in A such that 1

r

iN  ,
i

A  


 . There-
fore for each x A  the 1,2, , )i i rre ( exist     in A 
such that  , id x    and therefore: 

    for 1, 2, .N N ix f    

We know th

f N   

at  Nf  is pointwise ce se-
quence the ing a natural num

convergen
n there e ber M such that 

for each  we have: 
xist
q Mp M , 

   
   

   

1

2 2

q

q r p rf f

1p

q p

f f

f f

  

  

 

 

 

  

 

Therefore we have the following inequalities:   


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               

            3

q p q q i q i

q q i q i p i p i p

f x f x f x f f

f f f f f x

  p i p i pf f f x 

f x     

   

      
 

 
Then according to the theorem 7.8 in [6] the sequence 

  

 Nf  is uniformly continuous on A and the proof is 
leted. 

Theorem 2.2: Let 
comp

 rG x  is a piecewise linear ap-
proximation of  f x  on [a,b

1r

] as the following form: 

       
1,

0

.
i ir i y y

i

G x f x x




     

Then: 

 uniformly on ,rG f a b 　 . 

Proof: The p mediate consequence of lemmroof is im a 
2.1 and theorem 2.1. 

Let is nonlinear smooth function where 
   

 a piecewise linear parametric ap-
proximation for 

 . :f A    
 1

n

i iA a b 
roduce

, .n

i

Here we int

 f x  which is the exte n of defini-
tio

 

nsio
n 2.2. 
Definition 2.4: Consider the nonlinear smooth func-

tion f A where  1
,

n

i ii . :   A a b


 . Also con-
A as follows: sider partition of 

ce A is

 MP A  as a 

   , 1| , , 0,1, , 1 ,
nM i i nP A A i i r      

where 

1 2, ,i

 1 2 1 2, 1) 1,i i i i niA       
  (3) 

Hen  partitioned to M cells where 

1 2, , ( ( 1), ,
n ni i i i           

.nM r
partition 

 Let 
for  shown the cell of this by 1, ,k M 

 and 1
k k

thk  

kE  , , n
ks s s  

w  k

is  to show nt of used n any poi

kE . No f x
imation of 

 is defi
 

ned  linear tric ap- as a parame
prox f x  for kx E  as follows: 

      | kkk x s kf x f x x s f s    

where k ks E  
 

for 1, , .k M   
ow G  as a pricewise linear ap-

ximation  
N  is 

pro
M x

 of 
defined

f x  on A as follows: 
M

     
1

kM k E
k

G x f x x


     

Note s note 2   2.2: A .1 we have 

     0
m MA

G x f x  . li
MP

 
3. Description of the Approach 
 
A ach we consider the 
nonlinear programming problems which re shown in 
(2).  

In our approach we introduce the parametric linearization 
approximation for nonlinear functions. For solving the 
optimization problem (2) the nonlinear objective func-
tion and constraints are transformed approximately to the 
piecewise linear functions. 

We consider  MP A  
of the cell [0

which is explained above be a 
artitions Without loss of generality 

region  is 
rvals of t m  

,1] .n  p
[0,1]n

he for
we can assume that this partition of the 

gular, it means that we have sub-intere

1,
j ji i  

 
 ; 1, ,j n   and 

ji ji h   where 
1

h
r

  and  

0,ji

t first for description our appro
 a

1, , 1r .   
We consider the nonlinear constraints of the form 

2 0j jx x  , 1, , .j n   By using the parametric lin-
earization approach we may change approximately this 
constraint to the following form: 

  21 x ( 1)

( 1)

2 0, ,

1, , , .
2

j j j j

j j

j

i j i j i i

i i

i

x

j n

   

 






     


 
 

After this according to the following manner in each  

sub-region f the form  of ay 

form the other linear functions in the optimization 
pr
So each nonlinear functi

 o  A  ,1]n we m trans-  
1 2, , , ni i i  [0

non
oblem (2) to the parametric linear approximation form. 

ons  f x ;  sg x , 1, ,s m  ;  

 kh x , 1, ,k l   in the 
1 2, ,i iA , ni

 sub-regions trans-  

formed approximately to the following  parametric lin-
ear form: 

       
1 1

n n

jj j
j jx x

f f
f x f x

 
 

 

 
     

 

   
    s sn n 

1 1

1, ,

s s jj j

g g

j j

g x g x
x x

s m

 
 

  
 



 



 

 

       
1 1

k kn n

k k j
j j

h h
h x h x

x x

 


j j


 
       

1, ,k l 

where 
1 2
, , ,

ni i i        such that 
( 1)

2
j j

j

i i

i

 



 , 

1, ,j n   and  1, , nx x x   such that ( 1),
j jj i ix     

 . 

Therefore in each sub-region of the above form we 
have the following linear programming problem:    
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     

     

     

 

1

1 1

1 1

2

( 1)

minimize

subject to 0 1, ,

0 1, ,

2 1 2 0 1, ,

, 1, ,

j j

j j

n n

j
j

1jj
j

s sn n

j sj j
j j

k kn n

j kj j
j j

i j i

j i i

f
x f

x

g g

f

x

x g s m
x x

h h
x h k l

x x

x j n

x j n


 


 

 
 

 

 



 

 



  
  





     

      
  

    

  


 




 

 

 









                 (4) 

 
For solving the above linear programming problem we 

divided the interval [0,1] to r equal sub-interval of the  

form 





 



1 2 3 1
0, , ,1 .

r

r r r r

     
          

    We know that  

in the solution of the optimization problem (3) all vari-
ables must be equal zero or one. Therefore after dividing 
the interval [0, 1] we only should consider the first and  

the last sub-intervals 
1

0,r r
A   

  
 and 

1
,1r

r

r
A

    
 . 

In these sub-intervals let 
1

2ji r
   and 

2 1

2ji r

r 
  so  

be shown in (4). Le
ms be solved the optimum solut

we have 2n linear programming problems of the form 
which t this linear programming 
proble ion and the opti-
mal value of the objective function of this linear pro-
gramming problems are shown with ix  and iz  re-
spectively then the optimal solution of the original opti-
mization problem of the form (2) may be calculated as 
follows: 

 min n ii
z z 

 
  

1 2
              (5) 

ms and lemmas which are Aٍccording to the theore
proved in Section 2, we know that if in any partitions of 
[0, 1] the norm of partitions tends to zero we have 

 0limR RA   and  lim 1R RA   Therefore if an 
arbitrary partition of [0, 1] be refined then each linear 
approximation of nonlinear functions  f x  and  sg x ; 

1, ,s m   and  kh x ; 1, ,k l   tends to the values 
 0f ,  0sg ; 1, ,s m  ;  0kh ; 1, ,k l   and  1f  

and  sg 1 ; 1, ,s m  and  1kh ;   1,,k l  and   

constraint of the form   2 0
ji  ; 1, ,j n2 1

ji jx      

te

 

According to the described approach

nonlinear programming problems this problems must be 
converted to a sequence of linear programming problems. 
In this situation if n the number of variable in the main 
optimization problem is a large
with 2n sub-problems which must be solved. 

According to the following manner this number may 
be decreased. At first the sub-problems are solved se-
quentially until the first feasible solution has been deter-
mined. For the reminder sub-regions by substituting xj  
with 

nds to values xj = 0 or xj = 1 which is the hole feasible 
solution of the original zero-one non-linear programming 
problem (2). 

4. Decreasing the Number of Sub-Problems 
 

 for solving zero-one 

 number then we faced 

ji  the objective function of the converted linear  

programming problem was calculated. If t ulate
ective fu  th linear 

problem is greater e ob e functi
e linear programming problem in

ed with the older ones. This manner has 
 

w the effi-
ci

he calc  
value of the obj nctions of is program-
ming  than th jectiv on of 
the feasible solution th  
this sub-region isn’t solved otherwise it be solved.  

After this if the solved problem has the feasible solu-
tion the value of the objective function of this problem 

as substitutw
been repeated until the sub-problems are ended. The
aved value of the objective function and corresponding s

design variable are the approximated answer for the main 
zero-one nonlinear programming problems. 
 
5. Numerical Examples 
 
Now we give the numerical examples to sho

ency of our proposed algorithm. 
Example 5.1: Consider the following zero-one nonlin-

ear programming problem: 

   1 21
2 3

π
n 1 sin sin 1xz e x x  

 

2 2 2
1 2 3

2

1 2 1 3

2

. .

2

2 1 3

s t

x x x

x x x x

  

   
   

 

 
1 2 3

1 2 3

2

, , 0,1

x x x

x x x

   





mi

 
      
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In the first stage we divided the region [0, 1]3 to r3 
equal sub-regions. According to our notation in (4) we 
consider the following sub-regions:  

1 2 30 ,0 ,0

1 1 1
0, 0, 0,A

r r r
              
     

1 2 30 ,0 , 1

1 1
0, 0, 1A 
           

1
,1r r r r

     

 

1 2 3 r r r      
0 , 1 ,0

1 1 1
0, 1 ,1 0,rA 
              

1 2 30 , 1 , 1

1 1    
1

0, 1 ,1 1 ,1r rA
r r r 

             
 

1 2 31 ,0 ,0

1 1
1 ,1 0, 0,rA

r r
                  

 

1 2 31 ,0 , 1

1 1 1
1 ,1 0, 1 ,1r rA

r r r 
                   

 

1 2 31 , 1 ,0

1 1
1 ,1 1 ,1 0,r rA

r r 
1

r
                   

 

1 2 31 , 1 , 1

1 1 1
1 ,1 1 ,1 1 ,1r r rA

r r r  
                    

. 

In each sub-region of the above form we choose the  
element 

ji ; 1, 2,3j   of 
1 2 3
, ,i i i       equal to 

the middle point of each intervals. In the other word we 

have 
ji  is equal to 

1

2r
 or 

2 1

2

r

r


. 

So in each sub-region nonlinear 0-1 programming 
problem converted approximately to the following linear 
programming problem:  

1

r

 

       
      

     
   

1 1

2 3 2 1

1

2 2 3 3

1

2

2 2

. .

i

s t



  


2 3 1 1 2 2 3 3

1 2 1 2 2

21 1

1

1

2 3

2 2
1 2 3

2 2

π π
1 sin 1 1 sin

2 2

π π
cos 2 1

2 2 2 2

2 1 2 1

min i i

i

i i i i

i i i i

i i i i i i i i

i i i i i

z e e x

e x x

x x x

 



   

   

       

    

 



                  
      

        

       

          3 1 1 2 2 1 3

1 2 3

1 2 3

1 2 3

1 2 3 , ,

4 1 3

2

, ,

i i i i i i i

i i i

x x x

x x x

x x x A

      
















       

   
 

 

 
This linear programming problem he op-

timum value of the original 0-1 nonlinear programming 
problem is calculated according (5). In the following 
tableau we show the approximate optimal solution for 
different values of r. 
 

r x* z* 

s are solved. T

10 (0.952657, 0, 1.04734) 1.05075 

100 (0.995025, 0, 1.00497) 1.00501 

1000  1.005 

 
Example 5.2: Consider the following 0-1 linear pro-

gramming problem: 

For solving this problem at first we transform it to the 
following convex nonlinear programming: 

3

Now using the parametric linearization technique we 
transform the above nonlinear programming problem to 
the following sequence of linear programming problems: 

1 2 3

1 2 3

2 3

1 2 3

max 3 3

. . 2 4

4 3 2

3

0 or 1 1, 2,3j

z x x x

s t x x x

x x

x x x

x j

  
      
   


 

 

1 2 3

1 2 3

2 3

1 2 3
2

max 3 3

. . 2 4

4 3 2

3

0 1, 2,j j

z x x x

s t x x x

x x

x x x

x x j

  
      
   


  

 

 
 

1 1 2 2 3 3

1 2 3

1 2 3

2 3

1 2 3

2

1 2 3 ( 1) ( 1) ( 1)

max 3 3

. . 2 4

4 3 2

3

2 1 0, 1,2,3

, , , , ,

j ji j i

i i i i i i

z x x x

s t x x x

x x

x x x

x j

x x x

 

      

  
    
  

   

    

            

 


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Here we consider r =10 and assuming that 
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0.05
ji

and 

   

0.95
ji   from the above sequence of linear pro- 

gramming problem we have 8 linear programming prob-
lems for solving. After solving these problems on the 
sub-feasible region and constitute a set of the approxi-

ate optimal solution of the sub-problems, the approxi-
mate optimal solution of t original problem is obtained 
from followin lem: 

m
he 

the g optimization prob

 1 8max i iz   

wher is the optimal vale of the objective function 
f the sub-problems. Then the approximate optimal solu-

tio
028, 1.0028, 1.0028) with the opti-

mal value of the objective function is and z* = 7.0194.  
 
6. Conclusions 
 
In this paper we investigated the optimization technique 
for solving zero-one mixed nonlinear programming prob- 
lems. We obtained the global convergence for our ap-
pr

the zero-one
nonlinear programming problems and then prop
approach can be used for solved this problems. 
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