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Abstract 
 
A time dependent Hamiltonian associated to the impact parameter model for the scattering of a light particle 
and two heavy ones is considered. Existence and non degeneracy of the ground state is shown. 
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1. Introduction 
 
In [1,2], the impact parameter model for the scattering of 
two heavy particles and a light one is studied, where it is 
assumed that the heavy particles are infinitely massive 
and that their motion along a classical trajectory is not 
affected by the light particle. Also, rigorous proof from 
first principles of the validity of Massey’s criterion is 
given [1,3]. 

The above mentioned results were proved for a simple 
Hamiltonian, by means of an adiabatic argumentation. 
Now we study a more complicated one than in [1], where 
a precise knowledge of the discrete spectrum of the cor-
responding Hamiltonian was needed. 

A physical ground state is a state of minimal energy, 
and therefore it has a relevant role in quantum theories. 
See for instance [4-17]. 

In this work we prove non degeneracy of the ground 
state for the Hamiltonian 

  1 1 1 2 2 1, 2 2,

1
,

2
H t V V V V              (1) 

defined as an operator in the Hilbert space  2 nL 

 2 n

 of 
all complex valued Lebesgue measurable square inte-
grable functions on , with domain , the 
Sobolev space of order two [18].  is the Laplace opera-
tor [11]. 

n H
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2 2
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,
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with derivatives in the distribution sense, and, 1 , 2 , 1 , 

2  are positive constants. Also, for , we will 
take the potentials  of rank one: 

1,2k 
kV

 , ,k kV g g  k  2 ,nL          (2) 

with 1 2,g g  fixed elements in  2 nL  . Here ( , )   de-
notes the scalar product in  2 nL , antilinear on the 
factor on the left. Moreover, 

 , , ,V g g ,        ,   , : ,g x g x t      (3) 

 t
n

 being a continuous function on  with values in 
 satisfying 


 0 0 n    and  

 
| |
lim .
t

t


   

We denote by  the Fourier transform [19], as an uni-
tary operator in  2 nL  : 

  
| |

ˆ lim e d ,ipx

K
x K

g g




 p x  x  2 ,ng L   

where the limit is taken in the -norm. 2L
 
2. Main Theorem 
 
From Weyl’s theorem [16], one knows that for each 
t ,  H t  is a self-adjoint operator with discrete 
spectrum in  ,0 . The eigenvector corresponding to 
the infimum of the spectrum of  H t  is called the 
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ground state for  H t

i 

. The following theorem was 
proved in [20]. 

Theorem 2.1. For  let  and 11, 2, 2 n
ig L   ĝ  

nonnegative functions obeying  More-
over, we suppose the constants 

2
1ˆ| | g Lp 

,i i

.
   in Equation (1) 

satisfy  

1 1 2 1 2 2 0.      

0 (2)E

     

such that 0  and 
2 11E E 0 .E  Here 

21 0  and 
 

1
, (E E  2), E E,   are the ground state ei-

genvalues associated to  

 1 1
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respectively. Then the following statements are valid: 
1) The eigenvalue , corresponding to the ground 

state for the operator  

     1 2 1 1 2 2

1

2
0 ,H V V        

,E

 

 

and the eigenvalue  corresponding to the ground 
state for the operator  

1 1 1 2

1
,

2
H V V        

are strictly negative and the inequality 0E E    holds.  
2) The eigenvale   ,E t  corresponding to the ground 

state for  H t  for all  lies in the interval t
 0

3) In the interval 
,E E  . 

 1  there are no eigenval-
ues of 

, E E

 H t  for every .  t
We mention that for a given function  20 ,ng L 

0

   
one can find a sufficiently large positive constant   
such that the operator  

 1
,

2
g g                   (4) 

has a (unique) negative eigenvalue E  for 0 .   In 
fact,  is a negative eigenvalue iff [1] E

2

1/22

ˆ1
,

2

g

p
E




 
 

 

            (4) 

where we denote 
22 : .p  p  Note also that for a given 

g the right hand side of (5) is a monotone decreasing 
function of E. Therefore, given functions ig  in  2 nL   
one can find constants  , 1,2i i i   large enough for 

the hypotheses of the theorem to hold. 
We will prove in this manuscript that under the hy-

potheses of theorem 2.1, for  the ground state of t
 H t  is not degenerate.  
Let  E t  be the ground state eigenvalue of the time 

dependent operator given by Equation (1). We define  

   
2

:
2

p
p E   t  and  
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;ii ii
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Moreover,  
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Lemma 2.1. Let  E t  be the ground state eigen-
value of the time dependent operator  H t  given by 
Equation (1). Then, the matrix equation  

4

11 12 11 21

12 22 12 11

11 12 11 12

21 11 12 22

0 ,

: ,
T

M

a a b b

a a b bA B
M

b b d dB D

b b d d

 
    
 
 

 
       

 


 
  

x
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    (8) 

has a nontrivial solution. Furthermore  

  11 12

12 22

det det 0
d d

D
d d

  
   

  
   .t 

Proof: Let  t  the eigenvector for  H t  with re-
spective eigenvalue  E t , then the Fourier transform 
of  t  is given by 

       

       

1,1
1 1 2 1,

2,2
1 2 2 2,

ˆˆ
ˆ , ,

( )

ˆˆ
, , ,

gg
t g g

gg
g g







    

   

 
 

 
 

p p

p p

   (9) 

where    
2

: . The Plancherel theorem im- 
2

p
E t  p

plies that      2ˆ ˆ, , , nu v u v u v L   
1ˆ

.  Taking inner 
roducts in (9) with p g  and 1,ĝ   for  we get  1, 2,i     
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This system of equations is represented in matrix form 

precisely by Equation (8), where  
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From Theorem 2.1 we deduce the existence of a non-
trivial solution to Equation (8).  

Now we fix  For every t  let us consider 
the function,  

0.E  
and observe that for 0 (2) ,E E  
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The last inequality being true because of the remark 

following Equation (5). Also, we have used the Schwarz 
inequality and the Fourier transform property  

     1 2 1 1 2

1
0

2 2H V V           

is not degenerate. 
     2, 2ˆ ˆ .i tg e g


  pp p  When  E E t    is the ei- Proof: Lemma (2.1) assures that  exists. Equa-

tion (8) implies,  

1D

genvalue for   ,H t

  E t

 then the determinant of matrix D in 
Equation (8) satisfies,  Theorem 2.1 
states that 

   det .D R E t
0 ,E E


     and  1 0 2 .E E E 

  0.D  
 

Then, (12) gives   det

1 ,D B y x   1 .TA B D B x 0      (13) 

We take  so that,  1: ,TC A B D B 
The main result will be proved by showing that the 

dimension of the eigenspace associated to the ground 
sate remains constant over time. 

11 12

12 22

,
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C
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where  Lema 2.2. The ground state for the operator  
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From Theorem 2.1, we know that there exists a non-
trivial solution to system (8). Thus  Accord-
ingly,  

det 0.C 
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,
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C
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for some constant  Moreover, for  .k k t 0t   the 
matrix  is not null. In fact, for this value of t, 
the following terms simplify 
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where we use equation (5), the hypothesis  0 12E E  
and statement (3) of theorem 2.1. Therefore,  
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Substitution of these equalities in Equation (9) gives, 
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Here, 
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This determines the vector  up to a multiplica-
tive constant, and from the Plancherel theorem, also the 
eigenspace associated to the ground state for 

 ˆ 0

 0 ,H  
proving the statement of the lemma.  

Theorem 2.2. Let  H t  be defined by Equation (1) 
and suppose the hypotheses of theorem 2.1 hold true. 
Moreover, we take the curve  so that : n  
  ,t a vt    ,M

, n
t   for some positive constant M 

and fixed vectors  Then the dimension of the 
spectral projection onto the interval 

.a v
 0 ,E E 
 

, asso-
ciated with the selfadjoint operator H t , is equal to 
one for each .t   

Proof: The resolvent i  of a self-adjoint opera-
tor A at 

 R A
i  is defined by  with I denoting 

the identity operator on
  1

A
iI

 2 nL  . We take  2 2 ,H H t  
  ,1 1H H t  for two distinct values  and  and 
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