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Abstract

A maximal independent set is an independent set that is not a proper subset of
any other independent set. A connected graph (respectively, graph) G with
vertex set V (G) is called a quasi-tree graph (respectively, quasi-forest graph),

if there exists a vertex x eV (G) such that G—x is a tree (respectively, for-
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est). In this paper, we survey on the large numbers of maximal independent
sets among all trees, forests, quasi-trees and quasi-forests. In addition, we
further look into the problem of determining the third largest number of
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1. Introduction and Preliminary

Let G=(V,E) be a simple undirected graph. An independent set is a subset S
of V such that no two vertices in Sare adjacent. A maximal independent set is an
independent set that is not a proper subset of any other independent set. The set
of all maximal independent sets of a graph G is denoted by MI(G) and its car-
dinality by mi(G).

The problem of determining the largest value of mi(G) in a general graph of
order n and those graphs achieving the largest number was proposed by Erdés
and Moser, and solved by Moon and Moser [1]. It was then studied for various
families of graphs, including trees, forests, (connected) graphs with at most one
cycle, (connected) triangle-free graphs, (&-)connected graphs, bipartite graphs;
for a survey see [2]. Jin and Li [3] investigated the second largest number of
mi (G) among all graphs of order 1; Jou and Lin [4] further explored the same
problem for trees and forests; Jin and Yan [5] solved the third largest number of
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mi(G) among all trees of order n. A connected graph (respectively, graph) G
with vertex set V(G) is called a quasi-tree graph (respectively, quasi-forest
graph), if there exists a vertex xeV (G) such that G-x is a tree (respective-
ly, forest). The concept of quasi-tree graphs was mentioned by Liu and Lu in [6].
Recently, the problem of determining the largest and the second largest numbers
of mi(G) among all quasi-tree graphs and quasi-forest graphs of order n was
solved by Lin [7] [8].

In this paper, we survey on the large numbers of maximal independent sets
among all trees, forests, quasi-trees and quasi-forests. In addition, we further
look into the problem of determining the third largest number of maximal in-
dependent sets among all quasi-trees and quasi-forests. Extremal graphs achiev-
ing these values are also given.

For a graph G =(V,E), the neighborhood Ng(x) of a vertex xis the set of
vertices adjacent to xin Gand the closed neighborhood Ng[x] is
{x} UNg (x). The degree of xis the cardinality of N (x), denoted by
deg,(X). For a set AcV (G), the deletion of A from G is the graph G- A
obtained from G by removing all vertices in A and their incident edges. Two
graphs G, and G, are disjoint if V(G,)NV (G,)=@ . The union of two
disjoint graphs G, and G, isthe graph G, UG, with vertex set
V(G,UG,)=V(G,)UV (G,) andedgeset E(G,UG,)=E(G,)UE(G,).
nG is the short notation for the union of 2 copies of disjoint graphs isomorphic
to G. Denoteby C, a cyclewith nverticesand P, a pathwith nvertices.

Throughout this paper, for simplicity, let r= V2.

Lemma 1.1 ([9]) For any vertex x in a graph G,
mi(G)<mi(G—x)+mi(G-Ng[x]).

Lemma 1.2 ([10]) If G is the union of two disjoint graphs G, and G,, then
mi(G)=mi(G,)mi(G,).

2. Survey on the Large Numbers of Maximal Independent
Sets

In this section, we survey on the large numbers of maximal independent sets
among all trees, forests, quasi-trees and quasi-forests. The results of the largest
numbers of maximal independent sets among all trees and forests are described
in Theorems 2.1 and 2.2, respectively.

Theorem 2.1 ([10] [11]) If T is a tree with n>1 vertices, then
mi(T)<t,(n), where

r"2+1, if niseven,

ti(n)z{r“, if nisodd.

Furthermore, mi(T)=t,(n) ifand onlyif T €T, (n), where
B[Z, Zj (4 T4j if niseven,
B(l, ”TlJ if nis odd,
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where B (i, j) is the set of batons, which are the graphs obtained from the basic
path P of i>1 vertices by attaching j>0 paths of length two to the end-
points of Pin all possible ways (see Figure 1).

Theorem 2.2 ([10] [11]) IfF is a forest with n>1 vertices, then
mi(F)< f,(n), where

r' if niseven
f n — ) 1
1(n) {r”l, if nis odd.

Furthermore, mi(F)=f,(n) ifand onlyif FeF (n),where

gpz, if niseven,
F(n)=
B(l;—n _12_ 28] U sP, for some s with 0<s SnT_l, if nis odd.

The results of the second largest numbers of maximal independent sets among
all trees and forests are described in Theorems 2.3 and 2.4, respectively.
Theorem 2.3 ([4]) If T is a tree with n>4 vertices having T ¢T,(n), then
mi(T)<t,(n), where
res, if n>4iseven,
t,(n)=43, if n=5,
3r"°+1, if n>7isodd.

Furthermore, mi(T)=t,(n) ifand onlyif T =T,(8),T,(8),R, or
T eT,(n), where T,(n) and T,(8), T,(8) are shown in Figure 2 and Figure
3, respectively.

Theorem 2.4 ([4]) If F is a forest with n>4 vertices having F ¢ F (n),
then mi(F)<f,(n), where

1
- -
Ji J2

Figure 1. The baton B(i, j) with j=j +j,.

HT L

Tse(n), n > 4 is even T5(5 Tso(n), n > 7 is odd

Figure 2. The trees T,(n).

'_E—’_i’—I—T*

Figure 3. The trees T,(8) and T,(8).
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3r"*, if n>4iseven,
f,(n)=13, if n=5,
7™, if n>7isodd.

Furthermore, mi(F)=f,(n) ifand onlyif FeF,(n),where
n-4

P, UTPZ, if n>4iseven,
F,(n)=<T,(5)orP,UR, ifn=5
Pun27P2, if n>7is odd.

The results of the third largest numbers of maximal independent sets among
all trees and forests are described in Theorems 2.5 and 2.6, respectively.

Theorem 2.5 ([5]) If T'is a tree with n>7 vertices having T ¢T,(n),
i=12, then mi(T)<ty(n), where

3r"®, if n>7isodd,
7, if n=8,

t.(n)=

(") 15, if n=10,
7r"® 4+ 2, if n>12iseven.

Furthermore, mi(T)=t,(n) if and only if T=T,(8),T,;(10),T;(10) or
T eT,(n), where T,(8),T;(10),T;(10),T,(n) are shown in Figure 4 and Fig-
ure 5, respectively.

Theorem 2.6 ([12]) If Fis a forest with n>8 vertices having F ¢ F(n),
i=12, then mi(F)< f,(n), where

5rn—6
fy(n)= ;
3( ) {13rn—9'
Furthermore, mi(F)= f,(n) ifand onlyif F e F;(n),where
T
F3 (n) = n-9
T2(9)UTP2, if nis odd.

s

g ul el cs

T5(8) T4(10) Ty (10)

if niseven,
if nisodd.

P,, if niseven,

Figure 4. The trees T,(8),T,(10) and T,(10).

m

T3.(n), n > 12 is even T3,(n), n > 7 is odd

Figure 5. The trees T,(n).
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The results of the largest numbers of maximal independent sets among all qu-
asi-tree graphs and quasi-forest graphs are described in Theorems 2.7 and 2.8,
respectively.

Theorem 2.7 ([7]) If Q is a quasi-tree graph with n>5 vertices, then
mi(Q)<q,(n), where

3r™*,  if niseven,
ql (n) = n-1 - -
r'"=+1, if nisodd.

Furthermore, mi(Q)=gq,(n) if and only if Q=C; or QeQ,(n), where
Q. (n) is shown in Figure 6.

Theorem 2.8 ([7])If Q is a quasi-forest graph with n>2 vertices, then
mi(Q)<q,(n), where

n

q‘(n)— rt, if niseven,
" 133, if nis odd.

Furthermore, mi(Q)=,(n) ifand onlyif QeQ (n), where

n .
=P, if niseven,

S 2
Ql(n): n_3
CguTPz, if nisodd.

The results of the second largest numbers of maximal independent sets among
all quasi-tree graphs and quasi-forest graphs are described in Theorems 2.9 and
2.10, respectively.

Theorem 2.9 ([8])If Q is a quasi-tree graph with n>6 vertices having
QzQ(n), then mi(Q)<a,(n), where

5r"° +1, if niseven,

()=,

', if nisodd.
Furthermore, mi(Q)=gq,(n) ifand onlyif QeQ,(n), where
Qs (n),Qﬁ?(n),Qé?(n),Qé?(n). if niseven,

n)= _
81 Q0 r).00(7).02 (7). (7). if nisode,
where Q,(n) is shown in Figure 7 and Figure 8.
Theorem 2.10 ([8])If Q is a quasi-forest graph with n>4 vertices having
QeQ (n), then mi(Q)<a,(n), where
4, (n)= 3r™*, if niseven,
2Y7 1505, if niis odd.

W aPw e
e (n e (n n is odd

n is even

Figure 6. The graph Q,(n).

K2
138 03{ Scientific Research Publishing

<3



J.-J. Lin, M.-J. Jou

frry ey T NI

(1) (n) (2) (n) (f) Qgi)(”

Figure 7. The graphs Q! (n), 1<i<4.

Ao A0 AL AL

Q5 (1) 5 (7) Q52 (1) Q50 (1)

Figure 8. The graphs Q{) (7), 1<i<4.

Furthermore, mi(Q)=0,(n) ifand onlyif Qe Q, (n), where

P4un—;4P2,Ql(n—25)usP2,

Q,(n)= Q2(6)un—;6P2,C3uB(1,#just, if nis even,

Q, (S)UnTSPZ,W U ”;5 P,.C. UnT_SPZ, if nis odd,

where Wis a bow, that is, two triangles C, having one common vertex.

A graph is said to be unicyclicif it contains exactly one cycle. The result of the
second largest number of maximal independent sets among all connected un-
icyclic graphs are described in Theorems 2.11.

Theorem 2.11 ([13]) If U is a connected unicyclic graph of order n>6 with
U=#C, and QgQ,(n), then mi(G)<u,(n), where

0, (n) = 5r"°+1, if niseven,
2 3r'*+2, if nisodd.

Furthermore, mi(G)=u,(n) ifand onlyif U eU,(n), where

() e
Uz(n)z{Qze (n), if niseven,

Ug (n). Vg (), Uz (), UZZ)(m), U (n),UZZ (), if nis odd,
where U{)(n) is shown in Figure 9.

3. Main Results

In this section, we determine the third largest values of mi(G) among all qua-
si-tree graphs and quasi-forest graphs of order n>7, respectively. Moreover,
the extremal graphs achieving these values are also determined.

Theorem 3.1 I Q is a quasi-tree graph of odd order n>7 having
QeQ(n),Q,(n), then mi(Q)<3r"°+2. Furthermore, the equality holds if
and only if Q=UY), 1<i<6, where U{)(n) is shown inFigure 9.

Proof. 1t is straightforward to check that mi (Ug'o) (n)) =3r"°+2, 1<i<6.
Let Qbe a quasi-tree graph of odd order n>7 having Q#Q,(n),Q,(n) such
that mi(Q) is as large as possible. Then mi(Q)>3r"°+2. If Qis a tree, by
Theorems 2.1,2.3 and Q & Q,(n), we have that
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USD (n) UsS (n)

Figure 9. The graphs U{)(n), 1<i<6.

3r"*+2<mi(Q)<t,(n)=3r""+1. This is a contradiction.

Suppose that Q contains at least two cycles and xis the vertex such that Q —x
is a tree. Then degQ(X) >3. By Lemma 1.1, Theorems 2.1 and 2.2,
3™ +2<mi(Q)<mi(Q-x)+mi (Q —No[x]) < (R P e T
which is a contradiction. We obtain that Q is a connected unicyclic graph, thus
the result follows from Theorem 2.11.

Theorem 3.2 I Q is a quasi-tree graph of even order n>8 having
QeQ (n) ,Q, (n) , then mi (Q) <5r"°. Furthermore, the equality holds if and
onlyif Q=Q'(8), Q'(8), Q"(10), Q¥ (n), 1<i<12, where Q'(8),
Q"(8), Q"(10) and Q) (n) are shown in Figure 10.

Proof. Tt is straightforward to check that mi (Q'(S)) =mi (Q"(S)) =10,
mi(Q"(10))=20 and mi (Qéie) (n)) =5r"°, 1<i<12. Let Q be a quasi-tree
graph of even order n>8 having Q¢Q,(n),Q,(n) such that mi(Q) is as
large as possible. Then mi(Q)=5r"°. If Qs a tree, by Theorem 2.1, we have
that 5r"° <mi(Q)<t,(n)=r"?+1. This is a contradiction, so Q contains at
least one cycle. Let x be the vertex such that Q—X is a tree. Then xis on some
cycle of Q, it follows that degQ( )> 2. In addition, by Lemma 1.1, Theorems
2.2 and 2.5, mi(Q-x)>5r"°—r (81 _ 36—, (n—1). We consider the fol-
lowing three cases.

Case 1. Q-xeT,(n-1).If degy(x)>6 then Q—Ngy[x] isa forest with at
most n—7 vertices, by Lemma 1.1, Theorems 2.1 and 2.2,
5r"° <mi(Q)<mi(Q- x)+m|(Q NQ[X])< rOD2 1 — 9™ This is a
contradiction. So we assume that 2 <deg Q( ) <5.

o degx =2. There are 6 possibilities for graph Q. See Figure 11. Note that
Q= Q,(n). By simple calculation, we have that mi (Q ) <r"?41 for
2<i<6,a contradiction to mi(Q)>5r""°.

o degx=3. Suppose that there exists an isolated vertex yin Q- N, [X] and
Q-Ng[x]-yeF (n-5), then
mi (Q) <mi (Q - X) +mi (Q -Nq [X]) <r V4 (9 _ 506 fence there are 4
possibilities for graph Q. See Figure 12.

Note that Q, :Qg) (n), Q :Qéz)(n) and Q) :Ql(:)(n). By simple calcu-
lation, we have mi (Q;) =r"?+1, a contradiction to mi(Q)>5r"".

e 4<degx<5.Since Q-N, [X] is a forest of odd order n—5 or even or-
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 uf

Q/(S) QN(8) Qlll(lo)
i (o &) ) i)

ﬁﬂ&ﬁ
Ty Ay

10) Q(u)( ) Q(u( )

Figure 10. The graphs Q'(8), Q’(8), Q"(10) and Q) (n), 1<i<12.

Q1 Q5 Q3

Q) (n) Q%) (n)

T T
Qi Qs Qs

Figure 11. The graphs Q, 1<i<6.

der n—6, by Lemma 1.1, Theorems 2.1 and 2.2, we have

5r"® <mi(Q)<mi(Q-x)+mi (Q —Ng[x ]) <r"?4r"® =5r"° . The equalities
holding imply that Q —x = T(n 1) and Q—-Ny[x]=F(n-5) or F(n-6).
Hence we obtain that Q=Ql)(n), 1<i<4.

Case 2. Q-xeT,(n-1).If degy(x)>4 then Q—N,[x] isa forest with at
most n—5 vertices, by Lemma 1.1, Theorems 2.2 and 2.3, we have that
5r™° <mi(Q) <mi(Q-x)+mi (Q -N, [x]) <3S (gt 4
This is a contradiction. So we assume that 2<deg, (X) <3.

« degx=2. Suppose that Q—Ng[x]¢ F(n-3), by Lemma 1.1, Theorems
2.3 and 2.4, we have that
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X

* *

Q7 Qs

WI w
X
* *
QQ Q]_O
Figure 12. The graphs Q, 7<i<10.

5 <mi(Q)<mi(Q-x)+mi(Q-No[x])<3r™ +14+7r™7 =19 11
The equalities holding imply that n=10, thatis, Q—x=T,(9) and
Q- Ng[x]=F,(7). Hence we obtain that Q=Q"(10). Now we assume that
Q—Ng[x]€ R (n—3). There are 7 possibilities for graph Q. See Figure 13.

Note that Q; :Qgt) (n), Q, = Qg? (n) and Q= Qé? (n). By simple calcu-
lation, we have mi (QI* ) <r"?+2 for 14<i<17, a contradiction to
mi(Q)=5r"° when n>10.Inaddition, r®?+2=mi (Q;) =5r** when
n=8, it follows that Q =Q{Y(8).

+ degx=3. Suppose that Q—Ng[x]¢F (n-4), by Lemma 1.1, Theorems
2.3 and 2.4, we have that
5r™° <mi(Q) < mi(Q-x)+mi(Q—Ng[x])<3r"V®+1+3r" 0 =gr™* 41
The equalities holding imply that n=8, thatis, Q—-x=T,(7) and
Q- Ng[x]=F,(4). Hence we obtain that Q=Q'(8),Q"(8). Now we assume
that Q—Ny[x]eF(n—4).Since Q-xeT,(n-1) and
Q- Ng[x]eF(n—-4), it follows that Q =Ql/(n), 2<i<4, a contradiction to
QeQ,(n).

Case 3. Q-xeT,(n-1). Since Q—Ng[x] is a forest with at most n—3
vertices, by Lemma 1.1, Theorems 2.2 and 2.5, we have
5r™° <mi(Q) < mi(Q-x)+mi(Q—Ng[x])<3r™® 4 r™ =5r"° The
equalities holding imply that Q—xeT,(n-1) and Q—Ny[x]eF(n-3) or
F,(n—4). For the case that Q—Ng[x] € F,(n—4), we obtain that Q= QY,
7<i<9. For the other case that Q—N,[x]e F,(n—3) There are 7 possibilities
for graph Q. See Figure 14.

Note that Q =Q4”(n), Q,=QL"(n) and Q; =Q!*'(n). By simple cal-
culation, we have mi (Q,* ) <r"?+1 for 21<i<24,a contradiction to
mi(Q)>5r"".

In the following, we will investigate the same problem for quasi-forest graphs.

Theorem 3.3 I Q is a quasi-forest graph of odd order n>7 having
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Q¢ 61 (n) , 62 (n) , then mi (Q) <9r"". Furthermore, the equality holds if and
onlyif Q=Q\)(n), 1<i<4, where Q\)(n) isshown inFigure 15.

iseliialise

Q@h Q12 Q@13
T T T T

Q14 Q1s Q@1e Qir

Figure 13. The graphs Q, 11<i<17.
Qs Qi @30

@ Q3o Q33 Q34

Figure 14. The graphs Q , 18<i<24.
Wi Hh
=) =(2)
30 (n) 30 (TL)

[0 T

=(3) ~(4)
3o (n) 3o (TL)

Figure 15. The graphs Q! (n), 1<i<4.
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Proof. 1t is straightforward to check that mi ((5;')) (n)) =9r"’, 1<i<4.Let Q
be a quasi-forest graph of odd order nx>7 having Q¢ 61 (n) , 62 (n) such
that mi(Q) is as large as possible. Then mi(Q)>9r"". If Q is a forest, by
Theorem 2.2, we have that 9r"™" <mi(Q)< f,(n)=r"". This is a contradiction,
so Q contains at least one cycle. Let x be a vertex such that Q—Xx 1is a forest.
Then x is on some cycle of Q, it follows that deg,(x)>2 and Q—Ny[x] isa
forest with at most n—3 vertices. By Lemma 1.1, Theorem2.2 and 2.6, we ob-
tain that mi(Q—x)>mi(Q)-mi(Q—Ng[x])=9r"" —r"*=5r"" = f,(n-1) .
We consider the following three ases.

Case 1. Q-xeF(n-1).If deg,(x)>7 then Q—Ng[x] isa forest with at
most n—8 vertices, by Lemma 1.1 and Theorem 2.2, we have that
or"’ <mi (Q)<mi(Q—x)+mi (Q -Ng [X]) <™ Z17r™° This is a con-
tradiction. So we assume that 2 <deg,(x) <6 . There are 9 possibilities for graph
Q. See Figure 16.

Note that 7 €G,(n), @ <Q,(n), @ €Gu(n), G =G2(n).

Q. =Q(n), @ =Q¥(n).By simple calculation, we have mi ( _l*) <17,
i=6,8,9, a contradiction to mi (Q) >9r"7,

Case 2. Q—x=F,(n-1). If degy(x)>3 then Q—Ng,[x] is a forest with
at most n—4 vertices, by Lemma 1.1, Theorems 2.2 and 2.4, we have that
or"7 <mi(Q)<mi(Q-x)+mi(Q—Ng[x])<3r"* + "™ =4r"™* This is a
contradiction. So we assume that degQ(X) =2. There are 5 possibilities for
graph Q. See Figure 17.

Note that Q;=Q,(n), Q,=Q,(n), Q;=Q\(n). By simple calculation,
we have mi ((3,*) <3r"®+1, i=11,13, a contradiction to mi (Q) >or"7,

Case 3. Q-xeF,(n-1). Since Q—N,[x] is a forest with at most n—3
vertices, by Lemma 1.1, Theorems 2.2 and 2.6, we have that
9" <mi(Q)<mi(Q—x)+mi (Q -Ng [x]) <5r" L "3 = 9r"7 | The equali-

LD I T

Figure 16. The graphs Q, 1<i<9.
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ties holding imply that Q—xeF,(n—1) and Q-N,[x]eF (n—-3). There are
3 possibilities for graph Q. See Figure 18.

Note that Q= (3&) (n). By simple calculation, we have mi ((5,*) =8r"’,
15<i <16, a contradiction to mi(Q)>9r"".

Theorem 3.4 If Q is a quasi-forest graph of even order n>8 having

QeQ (n), Q, (n), then mi(Q)<11r"®. Furthermore, the equality holds if and

only if Q=Q,(8) U”T_B P,.

Proof It is straightforward to check that mi (Qz (8) unT_S sz =11r"" . Let Q
be a quasi-forest graph of even order n>8 having Q¢Q (n),Q,(n) such
that mi(Q) is as large as possible. Then mi(Q)=11r"". If Q is a forest, by
Theorems 2.2, 2.4, 2.6, 2.8 and 2.10, we have that
11r"® <mi(Q) < f,(n)=5r""°. This is a contradiction, so Q contains a coponent
Q with at least one cycle.

A~ ~ n - S ~
Let ‘Q‘ =s. Suppose that Q—-Q # 5 P,.Since Q isnota treeand

Q¢ 61 (n) , 62 (n) , by Lemma 1.2, Theorems 2.2, 2.4 and 2.7, we have that

mi(Q) = mi(@)-mi(Q—é)

3rst.3r™4 if s>4iseven,
<13. 777 if s=3,
(rs’1+1)-r(”'s)'l, if s>5is odd,
or"®  if s>4iseven,
<121 jif s=3,
5r"®  if s>5isodd,
<118,
AT AL A
Q1o Qn [
ATl N
@IIS Q14
Figure 17. The graphs Q", 10<i<14.
xT
A LA T
Qs [ Q17

Figure 18. The graphs Q, 15<i<17.
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—% —
Q18 Q19
Figure 19. The graphs Q, 18<i<19.

which is a contradiction. Hence we obtain that s is even and Q —C} :n—;SPZ.
Let x be the vertex in (5 such that (j —X 1is a forest and W(é - x) be the
number of components of Q—X. We consider the following two cases.

Case 1. W((j - X) =1.Then (j is a quasi-tree graph. Since
QeQ (n),Q2 (n) it follows that s>8. By Lemma 1.2 and Theorem 2.9, it fol-
lows that mi(Q)= (5!’5_6 +1) " =5r"° 41" <11r"®. The equality holding
imply that s=8.In conclusion, Q=0Q,(8) un—;8 P,.

Case 2. W((j - x) >2. Then degx>3.In addition, suppose that Q— N [x]
has a isolated vertex or degQ(X) >4, by Lemma 1.1 and Theorem 2.2, we have
that 11r"* <mi(Q)<mi(Q - x)+mi (Q ~Ng [x]) <y (9 Z5ps s
is a contradiction, hence, we have that degQ(X) =3 and Q-N, [X] has no
isolated vertex. For the case that Q—x ¢ F;(n—1), by Lemma 1.1, Theorems 2.2
and 2.4, we have that
11r"® <mi(Q) <mi(Q - x)+mi (Q -N, [x]) <7r"™7 4™ =11r™® | The equa-
lities holding imply that Q-xeF,(n-1) and Q-N,[x]eF (n—-4). Since
W(é - X) > 2, there no such graph Q. For the other case that Q—xeF (n-1),
there are 2 possibilities for graph Q. See Figure 19.

Note that Q, =Q, (n) and Qo = lee) (8) un—;8 P, when s=8. On the oth-

er hand, mi ((31*9) <21r"*® when s2>10,a contradiction to mi(Q)>11r"*.
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