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Abstract 
A maximal independent set is an independent set that is not a proper subset of 
any other independent set. A connected graph (respectively, graph) G with 
vertex set ( )V G  is called a quasi-tree graph (respectively, quasi-forest graph), 

if there exists a vertex ( )x V G∈  such that G x−  is a tree (respectively, for-
est). In this paper, we survey on the large numbers of maximal independent 
sets among all trees, forests, quasi-trees and quasi-forests. In addition, we 
further look into the problem of determining the third largest number of 
maximal independent sets among all quasi-trees and quasi-forests. Extremal 
graphs achieving these values are also given. 
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1. Introduction and Preliminary 

Let ( ),G V E=  be a simple undirected graph. An independent set is a subset S 
of V such that no two vertices in S are adjacent. A maximal independent set is an 
independent set that is not a proper subset of any other independent set. The set 
of all maximal independent sets of a graph G is denoted by ( )MI G  and its car-
dinality by ( )mi G . 

The problem of determining the largest value of ( )mi G  in a general graph of 
order n and those graphs achieving the largest number was proposed by Erdös 
and Moser, and solved by Moon and Moser [1]. It was then studied for various 
families of graphs, including trees, forests, (connected) graphs with at most one 
cycle, (connected) triangle-free graphs, (k-)connected graphs, bipartite graphs; 
for a survey see [2]. Jin and Li [3] investigated the second largest number of 

( )mi G  among all graphs of order n; Jou and Lin [4] further explored the same 
problem for trees and forests; Jin and Yan [5] solved the third largest number of 
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( )mi G  among all trees of order n. A connected graph (respectively, graph) G 
with vertex set ( )V G  is called a quasi-tree graph (respectively, quasi-forest 
graph), if there exists a vertex ( )x V G∈  such that G x−  is a tree (respective-
ly, forest). The concept of quasi-tree graphs was mentioned by Liu and Lu in [6]. 
Recently, the problem of determining the largest and the second largest numbers 
of ( )mi G  among all quasi-tree graphs and quasi-forest graphs of order n was 
solved by Lin [7] [8]. 

In this paper, we survey on the large numbers of maximal independent sets 
among all trees, forests, quasi-trees and quasi-forests. In addition, we further 
look into the problem of determining the third largest number of maximal in-
dependent sets among all quasi-trees and quasi-forests. Extremal graphs achiev-
ing these values are also given. 

For a graph ( ),G V E= , the neighborhood ( )GN x  of a vertex x is the set of 
vertices adjacent to x in G and the closed neighborhood [ ]GN x  is 
{ } ( )Gx N x∪ . The degree of x is the cardinality of ( )GN x , denoted by 

( )degG x . For a set ( )A V G⊆ , the deletion of A from G is the graph G A−  
obtained from G by removing all vertices in A and their incident edges. Two 
graphs 1G  and 2G  are disjoint if ( ) ( )1 2V G V G∩ =∅ . The union of two 
disjoint graphs 1G  and 2G  is the graph 1 2G G∪  with vertex set 
( ) ( ) ( )1 2 1 2V G G V G V G∪ = ∪  and edge set ( ) ( ) ( )1 2 1 2E G G E G E G∪ = ∪ .  

nG  is the short notation for the union of n copies of disjoint graphs isomorphic 
to G. Denote by nC  a cycle with n vertices and nP  a path with n vertices. 

Throughout this paper, for simplicity, let 2r = . 
Lemma 1.1 ([9]) For any vertex x in a graph G, 
( ) ( ) [ ]( )Gmi G mi G x mi G N x≤ − + − . 

Lemma 1.2 ([10]) If G is the union of two disjoint graphs 1G  and 2G , then 
( ) ( ) ( )1 2mi G mi G mi G= . 

2. Survey on the Large Numbers of Maximal Independent 
Sets 

In this section, we survey on the large numbers of maximal independent sets 
among all trees, forests, quasi-trees and quasi-forests. The results of the largest 
numbers of maximal independent sets among all trees and forests are described 
in Theorems 2.1 and 2.2, respectively. 

Theorem 2.1 ([10] [11]) If T is a tree with 1n ≥  vertices, then 
( ) ( )1mi T t n≤ , where 

( )
2

1 1

1, if is even,
, if is odd.

n

n

r n
t n

r n

−

−

 +
= 


 

Furthermore, ( ) ( )1mi T t n=  if and only if ( )1T T n∈ , where 

( )1

2 42, or 4, , if is even,
2 2
11, , if is odd,

2

n nB B n
T n

nB n

 − −   
       = 

− 
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where ( ),B i j  is the set of batons, which are the graphs obtained from the basic 
path P of 1i ≥  vertices by attaching 0j ≥  paths of length two to the end-
points of P in all possible ways (see Figure 1). 

Theorem 2.2 ([10] [11]) If F is a forest with 1n ≥  vertices, then 
( ) ( )1mi F f n≤ , where 

( )1 1

, if is even,
, if is odd.

n

n

r n
f n

r n−


= 


 

Furthermore, ( ) ( )1mi F f n=  if and only if ( )1F F n∈ , where 

( )
2

1

2

, if is even,
2

1 2 11; for some with 0 , if is odd.
2 2

n P n
F n

n s nB sP s s n


=  − − −  ∪ ≤ ≤   

 

The results of the second largest numbers of maximal independent sets among 
all trees and forests are described in Theorems 2.3 and 2.4, respectively. 

Theorem 2.3 ([4]) If T is a tree with 4n ≥  vertices having ( )1T T n∉ , then 
( ) ( )2mi T t n≤ , where 

( )

2

2
5

, if 4 is even,
3, if 5,
3 1, if 7 is odd.

n

n

r n
t n n

r n

−

−

 ≥


= =
 + ≥

 

Furthermore, ( ) ( )2mi T t n=  if and only if ( ) ( )2 2 108 , 8 ,T T T P′ ′′=  or  
( )2T T n∈ , where ( )2T n  and ( )2 8T ′ , ( )2 8T ′′  are shown in Figure 2 and Figure 

3, respectively. 
Theorem 2.4 ([4]) If F is a forest with 4n ≥  vertices having ( )1F F n∉ , 

then ( ) ( )2mi F f n≤ , where 
 

 
Figure 1. The baton ( ),B i j  with 1 2j j j= + . 

 

 
Figure 2. The trees ( )2T n . 

 

 
Figure 3. The trees ( )2 8T ′  and ( )2 8T ′′ . 
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( )

4

2
7

3 , if 4 is even,
3, if 5,
7 , if 7 is odd.

n

n

r n
f n n

r n

−

−

 ≥


= =
 ≥

 

Furthermore, ( ) ( )2mi F f n=  if and only if ( )2F F n∈ , where 

( ) ( )
4 2

2 2 4 1

7 2

4 , if 4 is even,
2

5 or , if 5,
7 , if 7 is odd.

2

nP P n

F n T P P n
nP P n

− ∪ ≥


= ∪ =
 − ∪ ≥


 

The results of the third largest numbers of maximal independent sets among 
all trees and forests are described in Theorems 2.5 and 2.6, respectively. 

Theorem 2.5 ([5]) If T is a tree with 7n ≥  vertices having ( )iT T n∉ ,  
1,2i = , then ( ) ( )3mi T t n≤ , where 

( )

5

3

8

3 , if 7 is odd,
7, if 8,
15, if 10,
7 2, if 12 is even.

n

n

r n
n

t n
n

r n

−

−

 ≥


== 
=

 + ≥

 

Furthermore, ( ) ( )3mi T t n=  if and only if ( ) ( ) ( )3 3 38 , 10 , 10T T T T′ ′′=  or 
( )3T T n∈ , where ( ) ( ) ( ) ( )3 3 3 38 , 10 , 10 ,T T T T n′ ′′  are shown in Figure 4 and Fig-

ure 5, respectively. 
Theorem 2.6 ([12]) If F is a forest with 8n ≥  vertices having ( )iF F n∉ ,  
1,2i = , then ( ) ( )3mi F f n≤ , where 

( )
6

3 9

5 , if is even,
13 , if is odd.

n

n

r nf n
r n

−

−


= 


 

Furthermore, ( ) ( )3mi F f n=  if and only if ( )3F F n∈ , where 

( )
( )

( )

1 2

3

2 2

66 , if is even,
2

99 , if is odd.
2

nT P n
F n

nT P n

− ∪=  − ∪


 

 

 
Figure 4. The trees ( ) ( )3 38 , 10T T ′  and ( )3 10T ′′ . 

 

 
Figure 5. The trees ( )3T n . 
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The results of the largest numbers of maximal independent sets among all qu-
asi-tree graphs and quasi-forest graphs are described in Theorems 2.7 and 2.8, 
respectively. 

Theorem 2.7 ([7]) If Q is a quasi-tree graph with 5n ≥  vertices, then  
( ) ( )1mi Q q n≤ , where 

( )
4

1 1

3 , if is even,
1, if is odd.

n

n

r n
q n

r n

−

−


= 

+
 

Furthermore, ( ) ( )1mi Q q n=  if and only if 5Q C=  or ( )1Q Q n∈ , where 
( )1Q n  is shown in Figure 6. 
Theorem 2.8 ([7])If Q is a quasi-forest graph with 2n ≥  vertices, then  
( ) ( )1mi Q q n≤ , where 

( )1 3

, if is even,
3 , if is odd.

n

n

r nq n
r n−


= 


 

Furthermore, ( ) ( )1mi Q q n=  if and only if ( )1Q Q n∈ , where 

( )
2

1

3 2

, if is even,
2

3 , if is odd.
2

n P n
Q n

nC P n


=  − ∪


 

The results of the second largest numbers of maximal independent sets among 
all quasi-tree graphs and quasi-forest graphs are described in Theorems 2.9 and 
2.10, respectively. 

Theorem 2.9 ([8])If Q is a quasi-tree graph with 6n ≥  vertices having  
( )1Q Q n∉ , then ( ) ( )2mi Q q n≤ , where 

( )
6

2 1

5 1, if is even,
, if is odd.

n

n

r n
q n

r n

−

−

 +
= 


 

Furthermore, ( ) ( )2mi Q q n=  if and only if ( )2Q Q n∈ , where 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4
2 2 2 2

2 1 2 3 4
2 2 2 2

, , , , if is even,
11, , 7 , 7 , 7 , 7 , if is odd,

2

e e e e

o o o o

Q n Q n Q n Q n n
Q n nB Q Q Q Q n


=  − 
  

 

 

where ( )2Q n  is shown in Figure 7 and Figure 8. 
Theorem 2.10 ([8])If Q is a quasi-forest graph with 4n ≥  vertices having 

( )1Q Q n∉ , then ( ) ( )2mi Q q n≤ , where 

( )
4

2 5

3 , if is even,
5 , if is odd.

n

n

r n
q n

r n

−

−


= 


 

 

 
Figure 6. The graph ( )1Q n . 
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Figure 7. The graphs ( ) ( )2
i
eQ n , 1 4i≤ ≤ . 

 

 

Figure 8. The graphs ( ) ( )2 7i
oQ , 1 4i≤ ≤ . 

 
Furthermore, ( ) ( )2mi Q q n=  if and only if ( )2Q Q n∈ , where 

( )

( )

( )

( )

4 2 1 2

2 2 2 3 2

1 2 2 5 2

4 , 2 ,
2

6 4 26 , 1, , if is even,
2 2

5 5 55 , , , if is odd,
2 2 2

nP P Q n s sP

n n sQ n Q P C B sP n

n n nQ P W P C P n

− ∪ − ∪


− − −  = ∪ ∪ ∪  
 

 − − −
∪ ∪ ∪



 

where W is a bow, that is, two triangles 3C  having one common vertex. 
A graph is said to be unicyclic if it contains exactly one cycle. The result of the 

second largest number of maximal independent sets among all connected un-
icyclic graphs are described in Theorems 2.11. 

Theorem 2.11 ([13]) If U is a connected unicyclic graph of order 6n ≥  with 

5U C≠  and ( )1Q Q n∉ , then ( ) ( )2mi G u n≤ , where 

( )
6

2 5

5 1, if is even,
3 2, if is odd.

n

n

r nu n
r n

−

−

 +
= 

+
 

Furthermore, ( ) ( )2mi G u n=  if and only if ( )2U U n∈ , where 

( )
( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
2

2 1 2 3 4 5 6
2 2 2 2 2 2

, if is even,

, , , , , , if is odd,
e

o o o o o o

Q n n
U n

U n U n U n U n U n U n n

= 


 

where ( ) ( )2
i
oU n  is shown in Figure 9. 

3. Main Results 

In this section, we determine the third largest values of ( )mi G  among all qua-
si-tree graphs and quasi-forest graphs of order 7n ≥ , respectively. Moreover, 
the extremal graphs achieving these values are also determined. 

Theorem 3.1 If Q is a quasi-tree graph of odd order 7n ≥  having  
( ) ( )1 2,Q Q n Q n∉ , then ( ) 53 2nmi Q r −≤ + . Furthermore, the equality holds if 

and only if ( )
2
i
oQ U= , 1 6i≤ ≤ , where ( ) ( )2

i
oU n  is shown in Figure 9. 

Proof. It is straightforward to check that ( ) ( )( ) 5
2 3 2i n

omi U n r −= + , 1 6i≤ ≤ . 
Let Q be a quasi-tree graph of odd order 7n ≥  having ( ) ( )1 2,Q Q n Q n∉  such 
that ( )mi Q  is as large as possible. Then ( ) 53 2nmi Q r −≥ + . If Q is a tree, by 
Theorems 2.1, 2.3 and ( )2Q Q n∉ , we have that  
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Figure 9. The graphs ( ) ( )2
i
oU n , 1 6i≤ ≤ . 

 

( ) ( )5 5
23 2 3 1n nr mi Q t n r− −+ ≤ ≤ = + . This is a contradiction. 

Suppose that Q contains at least two cycles and x is the vertex such that Q x−  
is a tree. Then ( ) 3degQ x ≥ . By Lemma 1.1, Theorems 2.1 and 2.2,  

( ) ( ) [ ]( ) ( ) ( )1 2 4 15 53 2 1 3 1n nn n
Qr mi Q mi Q x mi Q N x r r r− − − −− −+ ≤ ≤ − + − ≤ + + = + , 

which is a contradiction. We obtain that Q is a connected unicyclic graph, thus 
the result follows from Theorem 2.11. 

Theorem 3.2 If Q is a quasi-tree graph of even order 8n ≥  having  
( ) ( )1 2,Q Q n Q n∉ , then ( ) 65 nmi Q r −≤ . Furthermore, the equality holds if and 

only if ( )8Q ′= , ( )8′′ , ( )10′′′ , ( ) ( )3
i
eQ n , 1 12i≤ ≤ , where ( )8′ ,  

( )8′′ , ( )10′′′  and ( ) ( )3
i
eQ n  are shown in Figure 10. 

Proof. It is straightforward to check that ( )( ) ( )( )8 8 10mi mi′ ′′= =  ,  
( )( )10 20mi ′′′ =  and ( ) ( )( ) 6

3 5i n
emi Q n r −= , 1 12i≤ ≤ . Let Q be a quasi-tree 

graph of even order 8n ≥  having ( ) ( )1 2,Q Q n Q n∉  such that ( )mi Q  is as 
large as possible. Then ( ) 65 nmi Q r −≥ . If Q is a tree, by Theorem 2.1, we have 
that ( ) ( )6 2

15 1n nr mi Q t n r− −≤ ≤ = + . This is a contradiction, so Q contains at 
least one cycle. Let x be the vertex such that Q x−  is a tree. Then x is on some 
cycle of Q, it follows that ( ) 2degQ x ≥ . In addition, by Lemma 1.1, Theorems 
2.2 and 2.5, ( ) ( ) ( )3 16 6

35 3 1nn nmi Q x r r r t n− −− −− ≥ − = = − . We consider the fol-
lowing three cases. 

Case 1. ( )1 1Q x T n− ∈ − . If ( ) 6degQ x ≥  then [ ]QQ N x−  is a forest with at 
most 7n −  vertices, by Lemma 1.1, Theorems 2.1 and 2.2, 

( ) ( ) [ ]( ) ( ) ( )1 1 7 16 85 9n nn n
Qr mi Q mi Q x mi Q N x r r r− − − −− −≤ ≤ − + − ≤ + = . This is a 

contradiction. So we assume that ( )2 5degQ x≤ ≤ . 
• deg 2x = . There are 6 possibilities for graph Q. See Figure 11. Note that  

( )*
1 1Q Q n= . By simple calculation, we have that ( )* 2 1n

imi Q r −≤ +  for  
2 6i≤ ≤ , a contradiction to ( ) 65 nmi Q r −≥ . 

• deg 3x = . Suppose that there exists an isolated vertex y in [ ]QQ N x−  and 
[ ] ( )1 5QQ N x y F n− − ∉ − , then  

( ) ( ) [ ]( ) ( ) ( )1 1 4 1 1 65n n n
Qmi Q mi Q x mi Q N x r r r− − − − − −≤ − + − < + = . Hence there are 4 

possibilities for graph Q. See Figure 12. 
Note that ( ) ( )2*

8 2eQ Q n= , ( ) ( )7*
9 3eQ Q n=  and ( ) ( )2*

10 1eQ Q n= . By simple calcu-
lation, we have ( )* 2

7 1nmi Q r −= + , a contradiction to ( ) 65 nmi Q r −≥ . 
• 4 deg 5x≤ ≤ . Since [ ]QQ N x−  is a forest of odd order 5n −  or even or- 
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Figure 10. The graphs ( )8′ , ( )8′′ , ( )10′′′  and ( ) ( )3
i
eQ n , 1 12i≤ ≤ . 

 

 
Figure 11. The graphs *

iQ , 1 6i≤ ≤ . 
 
der 6n − , by Lemma 1.1, Theorems 2.1 and 2.2, we have  

( ) ( ) [ ]( )6 2 6 65 5n n n n
Qr mi Q mi Q x mi Q N x r r r− − − −≤ ≤ − + − ≤ + = . The equalities 

holding imply that ( )1 1Q x T n− = −  and [ ] ( )1 5QQ N x F n− = −  or ( )1 6F n − . 
Hence we obtain that ( ) ( )3

i
eQ Q n= , 1 4i≤ ≤ . 

Case 2. ( )2 1Q x T n− ∈ − . If ( ) 4degQ x ≥  then [ ]QQ N x−  is a forest with at 
most 5n −  vertices, by Lemma 1.1, Theorems 2.2 and 2.3, we have that 

( ) ( ) [ ]( ) ( ) ( )1 5 5 16 65 3 1 4 1n nn n
Qr mi Q mi Q x mi Q N x r r r− − − −− −≤ ≤ − + − ≤ + + = + . 

This is a contradiction. So we assume that ( )2 3degQ x≤ ≤ . 
• deg 2x = . Suppose that [ ] ( )1 3QQ N x F n− ∉ − , by Lemma 1.1, Theorems 

2.3 and 2.4, we have that 
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Figure 12. The graphs *

iQ , 7 10i≤ ≤ . 
 

( ) ( ) [ ]( ) ( ) ( )1 5 3 76 105 3 1 7 19 1n nn n
Qr mi Q mi Q x mi Q N x r r r− − − −− −≤ ≤ − + − ≤ + + = + . 

The equalities holding imply that 10n = , that is, ( )2 9Q x T− =  and  
[ ] ( )2 7QQ N x F− = . Hence we obtain that ( )10Q ′′′= . Now we assume that 
[ ] ( )1 3QQ N x F n− ∈ − . There are 7 possibilities for graph Q. See Figure 13. 

Note that ( ) ( )1*
11 2eQ Q n= , ( ) ( )5*

12 3eQ Q n=  and ( ) ( )6*
13 3eQ Q n= . By simple calcu-

lation, we have ( )* 2 2n
imi Q r −≤ +  for 14 17i≤ ≤ , a contradiction to  

( ) 65 nmi Q r −≥  when 10n ≥ . In addition, ( )8 2 * 8 6
172 5r mi Q r− −+ = =  when  

8n = , it follows that ( ) ( )6
3 8eQ Q= . 

• deg 3x = . Suppose that [ ] ( )1 4QQ N x F n− ∉ − , by Lemma 1.1, Theorems 
2.3 and 2.4, we have that 

( ) ( ) [ ]( ) ( ) ( )1 5 4 46 85 3 1 3 9 1n nn n
Qr mi Q mi Q x mi Q N x r r r− − − −− −≤ ≤ − + − ≤ + + = + . 

The equalities holding imply that 8n = , that is, ( )2 7Q x T− =  and  
[ ] ( )2 4QQ N x F− = . Hence we obtain that ( ) ( )8 , 8Q ′ ′′=  . Now we assume 

that [ ] ( )1 4QQ N x F n− ∈ − . Since ( )2 1Q x T n− ∈ −  and 
[ ] ( )1 4QQ N x F n− ∈ − , it follows that ( ) ( )2

i
eQ Q n= , 2 4i≤ ≤ , a contradiction to 

( )2Q Q n∉ . 
Case 3. ( )3 1Q x T n− ∈ − . Since [ ]QQ N x−  is a forest with at most 3n −  

vertices, by Lemma 1.1, Theorems 2.2 and 2.5, we have  
( ) ( ) [ ]( ) ( ) ( )1 5 3 16 65 3 5n nn n

Qr mi Q mi Q x mi Q N x r r r− − − −− −≤ ≤ − + − ≤ + = . The  
equalities holding imply that ( )3 1Q x T n− ∈ −  and [ ] ( )1 3QQ N x F n− ∈ −  or  

( )1 4F n − . For the case that [ ] ( )1 4QQ N x F n− ∈ − , we obtain that ( )
3

i
eQ Q= ,  

7 9i≤ ≤ . For the other case that [ ] ( )1 3QQ N x F n− ∈ −  There are 7 possibilities 
for graph Q. See Figure 14. 

Note that ( ) ( )10*
18 3eQ Q n= , ( ) ( )11*

19 3eQ Q n=  and ( ) ( )12*
20 3eQ Q n= . By simple cal-

culation, we have ( )* 2 1n
imi Q r −≤ +  for 21 24i≤ ≤ , a contradiction to  

( ) 65 nmi Q r −≥ . 
In the following, we will investigate the same problem for quasi-forest graphs. 
Theorem 3.3 If Q is a quasi-forest graph of odd order 7n ≥  having  
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( ) ( )1 2,Q Q n Q n∉ , then ( ) 79 nmi Q r −≤ . Furthermore, the equality holds if and 
only if ( ) ( )3

i
oQ Q n= , 1 4i≤ ≤ , where ( ) ( )3

i
oQ n  is shown in Figure 15. 

 

 
Figure 13. The graphs *

iQ , 11 17i≤ ≤ . 
 

 
Figure 14. The graphs *

iQ , 18 24i≤ ≤ . 
 

 
Figure 15. The graphs ( ) ( )3

i
oQ n , 1 4i≤ ≤ . 
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Proof. It is straightforward to check that ( ) ( )( ) 7
3 9i n

omi Q n r −= , 1 4i≤ ≤ . Let Q 
be a quasi-forest graph of odd order 7≥n  having ( ) ( )1 2,Q Q n Q n∉  such 
that ( )mi Q  is as large as possible. Then ( ) 79 nmi Q r −≥ . If Q is a forest, by 
Theorem 2.2, we have that ( ) ( )7 1

19 n nr mi Q f n r− −≤ ≤ = . This is a contradiction, 
so Q contains at least one cycle. Let x be a vertex such that Q x−  is a forest. 
Then x is on some cycle of Q, it follows that ( ) 2degQ x ≥  and [ ]QQ N x−  is a 
forest with at most 3n −  vertices. By Lemma 1.1, Theorem2.2 and 2.6, we ob-
tain that ( ) ( ) [ ]( ) ( )7 3 7

39 5 1n n n
Qmi Q x mi Q mi Q N x r r r f n− − −− ≥ − − ≥ − = = − . 

We consider the following three ases. 
Case 1. ( )1 1Q x F n− ∈ − . If ( ) 7degQ x ≥  then [ ]QQ N x−  is a forest with at 

most 8n −  vertices, by Lemma 1.1 and Theorem 2.2, we have that  
( ) ( ) [ ]( ) ( )8 17 1 99 17nn n n

Qr mi Q mi Q x mi Q N x r r r− −− − −≤ ≤ − + − ≤ + = . This is a con- 
tradiction. So we assume that ( )2 6degQ x≤ ≤ . There are 9 possibilities for graph 
Q. See Figure 16. 

Note that ( )*
1 1Q Q n∈ , ( )*

2 2Q Q n∈ , ( )*
3 3Q Q n∈ , ( ) ( )1*

4 3oQ Q n= ,  
( ) ( )2*

5 3oQ Q n= , ( ) ( )3*
7 3oQ Q n= . By simple calculation, we have ( )* 917 n

imi Q r −≤ ,  
6,8,9i = , a contradiction to ( ) 79 nmi Q r −≥ . 

Case 2. ( )2 1Q x F n− = − . If ( ) 3degQ x ≥  then [ ]QQ N x−  is a forest with 
at most 4n −  vertices, by Lemma 1.1, Theorems 2.2 and 2.4, we have that  

( ) ( ) [ ]( ) ( ) ( )1 4 4 17 59 3 4n nn n
Qr mi Q mi Q x mi Q N x r r r− − − −− −≤ ≤ − + − ≤ + = . This is a 

contradiction. So we assume that ( ) 2degQ x = . There are 5 possibilities for 
graph Q. See Figure 17. 

Note that ( )*
10 2Q Q n= , ( )*

12 2Q Q n= , ( ) ( )4*
14 3oQ Q n= . By simple calculation, 

we have ( )* 53 1n
imi Q r −≤ + , 11,13i = , a contradiction to ( ) 79 nmi Q r −≥ . 

Case 3. ( )3 1Q x F n− ∈ − . Since [ ]QQ N x−  is a forest with at most 3n −  
vertices, by Lemma 1.1, Theorems 2.2 and 2.6, we have that  

( ) ( ) [ ]( ) ( )1 67 3 79 5 9nn n n
Qr mi Q mi Q x mi Q N x r r r− −− − −≤ ≤ − + − ≤ + = . The equali- 

 

 
Figure 16. The graphs *

iQ , 1 9i≤ ≤ . 
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ties holding imply that ( )3 1Q x F n− ∈ −  and [ ] ( )1 3QQ N x F n− ∈ − . There are 
3 possibilities for graph Q. See Figure 18. 

Note that ( ) ( )1*
17 3oQ Q n= . By simple calculation, we have ( )* 78 n

imi Q r −= , 
15 16i≤ ≤ , a contradiction to ( ) 79 nmi Q r −≥ . 

Theorem 3.4 If Q is a quasi-forest graph of even order 8n ≥  having 
( ) ( )1 2,Q Q n Q n∉ , then ( ) 811 nmi Q r −≤ . Furthermore, the equality holds if and  

only if ( )2 2
88

2
nQ Q P−

= ∪ . 

Proof. It is straightforward to check that ( ) 8
2 2

88 11
2

nnmi Q P r −− ∪ = 
 

. Let Q  

be a quasi-forest graph of even order 8n ≥  having ( ) ( )1 2,Q Q n Q n∉  such 
that ( )mi Q  is as large as possible. Then ( ) 811 nmi Q r −≥ . If Q is a forest, by 
Theorems 2.2, 2.4, 2.6, 2.8 and 2.10, we have that 

( ) ( )8 6
311 5n nr mi Q f n r− −≤ ≤ = . This is a contradiction, so Q contains a coponent 

Q̂  with at least one cycle. 

Let Q̂ s= . Suppose that 2
ˆ

2
n sQ Q P−

− ≠ . Since Q̂  is not a tree and  

( ) ( )1 2,Q Q n Q n∉ , by Lemma 1.2, Theorems 2.2, 2.4 and 2.7, we have that 

( ) ( ) ( )
( )

( )

( ) ( )

44

3 7

11

8

10

6

8

ˆ ˆ

3 3 , if 4 is even,

3 7 , if 3,

1 , if 5 is odd,

9 , if 4 is even,
21 , if 3,
5 , if 5 is odd,

11 ,

n ss

n

n ss

n

n

n

n

mi Q mi Q mi Q Q

r r s

r s

r r s

r s
r s

r s

r

− −−

− −

− −−

−

−

−

−

= ⋅ −

 ⋅ ≥
≤ ⋅ =


+ ⋅ ≥
 ≥


≤ =
 ≥

<

 

 

 
Figure 17. The graphs *

iQ , 10 14i≤ ≤ . 
 

 
Figure 18. The graphs *

iQ , 15 17i≤ ≤ . 



J.-J. Lin, M.-J. Jou 
 

146 

 
Figure 19. The graphs *

iQ , 18 19i≤ ≤ . 
 

which is a contradiction. Hence we obtain that s is even and 2
ˆ

2
n sQ Q P−

− = .  

Let x be the vertex in Q̂  such that Q̂ x−  is a forest and ( )ˆw Q x−  be the 
number of components of Q̂ x− . We consider the following two cases. 

Case 1. ( )ˆ 1w Q x− = . Then Q̂  is a quasi-tree graph. Since 
( ) ( )1 2,Q Q n Q n∉  it follows that 8s ≥ . By Lemma 1.2 and Theorem 2.9, it fol-

lows that ( ) ( )6 6 85 1 5 11s n s n n s nmi Q r r r r r− − − − −= + ⋅ = + ≤ . The equality holding  

imply that 8s = . In conclusion, ( )2 2
88

2
nQ Q P−

= ∪ . 

Case 2. ( )ˆ 2w Q x− ≥ . Then deg 3x ≥ . In addition, suppose that [ ]QQ N x−  
has a isolated vertex or ( ) 4degQ x ≥ , by Lemma 1.1 and Theorem 2.2, we have 
that ( ) ( ) [ ]( ) ( ) ( )1 1 5 18 611 5n nn n

Qr mi Q mi Q x mi Q N x r r r− − − −− −≤ ≤ − + − ≤ + = . This 
is a contradiction, hence, we have that ( ) 3degQ x =  and [ ]QQ N x−  has no 
isolated vertex. For the case that ( )1 1Q x F n− ∉ − , by Lemma 1.1, Theorems 2.2 
and 2.4, we have that  

( ) ( ) [ ]( ) ( )1 78 4 811 7 11nn n n
Qr mi Q mi Q x mi Q N x r r r− −− − −≤ ≤ − + − ≤ + = . The equa- 

lities holding imply that ( )2 1Q x F n− ∈ −  and [ ] ( )1 4QQ N x F n− ∈ − . Since  

( )ˆ 2w Q x− ≥ , there no such graph Q. For the other case that ( )1 1Q x F n− ∈ − , 
there are 2 possibilities for graph Q. See Figure 19. 

Note that ( )*
18 2Q Q n=  and ( ) ( )1*

19 2 2
88

2e
nQ Q P−

= ∪  when 8s = . On the oth-

er hand, ( )* 10
19 21 nmi Q r −≤  when 10s ≥ , a contradiction to ( ) 811 nmi Q r −≥ . 
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