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Abstract 
The main goal of this work is a feasibility study for the Bayesian Processor of 
Output (BPO) method applied to tropical convective precipitation regimes 
over Central and West Africa. The study uses outputs from the Weather Re-
search and Forecasting (WRF) model to develop and test the BPO technique. 
The model ran from June 01 to September 30 of 2010 and 2011. The BPO 
method is applied in each grid point and then in each climatic zone. Prior 
(climatic) distribution function is estimated from the Tropical Rainfall Mea-
suring Mission (TRMM) data for the period 2002-2011. Many distribution 
functions have been tested for the fitting. Weibull distribution is found to be a 
suitable fitting function as shown by goodness of fit (gof) test in both cases. 
The rain pattern increases with the value of the probability p. BPO method 
noticeably improves the distribution of precipitation as shown by the spatial 
correlation coefficients. It better detects certain observed maxima compared 
to the raw WRF outputs. Posterior distribution (forecasting) functions allow 
for a simulated rainfall amount, to deduce the probability that observed rain-
fall falls above a given threshold. The probability of observing rainfall above a 
given threshold increases with simulated rainfall amounts. 
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1. Introduction 

Economies of sub-Saharan Africa largely depend on agriculture. The agriculture 
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is essentially rain-fed. Precipitation is the most important and most widely stu-
died weather variable ([1] [2] [3] [4] [5]). Important decisions in agriculture, 
hydrology, aviation, event planning and other areas depend on the presence or 
absence of precipitation, as well as precipitation accumulation. Reliable predic-
tions of precipitation occurrence and precipitation amount are useful for above 
mentioned applications. 

For these reasons, there is a great deal of research activities to improve quan-
titative precipitation forecast (QPF) and weather centers continuously evaluate 
their operational high-resolution limited-area models to trace error sources. 
QPF is particularly challenging over Equatorial Africa, especially capturing small 
convective cells that constitute most of the rain events ([6] [7] [8]). 

Furthermore, QPFs obtained from a single numerical weather prediction 
(NWP) model are deterministic, and thus do not convey any information about 
the uncertainty about the prediction, which is a shortcoming in weather-related 
decision-making [9]. One approach to incorporating uncertainty information 
into weather forecasting is via ensembles of numerical forecasts ([10] [11]). 
While this is a major advance, the use of statistical post processing techniques 
for numerical forecasts remains essential. Several methods have been developed 
to statistically post process numerical predictions of precipitation occurrence 
and produce probabilistic quantitative precipitation forecasts. They include li-
near regression ([12] [13] [14]), quantile regression ([15] [16]), logistic regres-
sion ([17] [18]), neural networks ([19] [20]), binning techniques ([21] [22]), 
hierarchical models based on climatic prior distributions [23], and two-stage 
models in which a Gamma density is employed to model precipitation accumu-
lation ([24] [25] [26] [27]). 

In this paper, Bayesian Processor of Output for probabilistic quantitative pre-
cipitation forecasts is used. The Bayesian Processor of Output (BPO) is a theo-
retically-based technique for probabilistic forecasting of weather variates. It 
processes output from a numerical weather prediction (NWP) model and opti-
mally fuses it with climatic data in order to quantify uncertainty about a predic-
tand. The theoretical structures of the BPO are derived from the laws of proba-
bility theory. 

As is well known, Bayes theorem provides the optimal theoretical framework 
for fusing information from different sources and for obtaining the probability 
distribution of a predictand, conditional on a realization of predictors, or condi-
tional on an ensemble of realizations [28]. 

The objective of this work is a feasibility study for the Bayesian Processor of 
Output (BPO) method applied to tropical convective precipitation regimes over 
Central and West Africa. The paper is organized as follows: In Section 2, the 
model and experimental design are described, followed by the data used in this 
study. In Section 3, BPO techniques are briefly presented followed by the verifi-
cation of BPO forecasts in Section 4. In Section 5, results for probabilistic fore-
casts of daily precipitation accumulation over the Central and West Africa is 
presented. Section 6 is devoted to the conclusion. 
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2. Model Description and Experimental Design 
2.1. Model Description 

We performed simulations using version 3.3 of the Advanced Research Weather 
Research and Forecasting (ARW-WRF) model [29], which is being developed by 
the Mesoscale and Meteorology Division of the National Center for Atmospheric 
Research (NCAR). The WRF model is a numerical weather prediction model de-
signed for a wide range of applications, ranging from idealized research to oper-
ational forecasting. It is a fully compressible, Euler nonhydrostatic model, with 
mass-based, terrain-following hydrostatic pressure vertical coordinates and 
Arakawa C-grid horizontal staggering. For the current work we choose the 
third-order Runge-Kutta split-explicit time-integration scheme and sixth-order 
centered differencing for advection and prognostic variables, conserving the flux 
form of mass, momentum, entropy, and scalars. Previous work has been done 
(not shown here) to determined satisfactory configurations by testing numerous 
physical parameterizations. Satisfactory Physical configurations are summarized 
in Table 1.  

Hong et al. [30] developed the single-moment six-class microphysics scheme 
for the WRF, which includes graupel as an additional predictive variable. This 
microphysics scheme was found to significantly influence the evolution of sur-
face precipitation [30]. Also used is the rapid radiative transfert model (RRTM) 
[31]. The RRTM longwave scheme accounts for multiple bands, trace gases, and 
microphysics species. The first-order closure scheme of Yonsei University (YSU) 
used for the planetary boundary layer (PBL) is a non-local K scheme with an ex-
plicit entrainment layer and parabolic K profile in the unstable mixed layer. The 
Noah land surface model (Noah LSM) is used to calculate soil temperature and 
moisture. The Tiedtke convection scheme is a bulk flux convection scheme [32]. 
It handles three types of convection: deep, middle level, and shallow convection. 
In the Tiedtke scheme, only one convective cloud is considered, comprising one 
single saturated updraft. Entrainment and detrainment between the cloud and 
the environment can take place at any level between the free convection level 
and the zero-buoyancy level. There is also one single downdraft extending from 
the free sinking level to the cloud base. The mass flux at the top of the downdraft 
is a constant fraction of the convective mass flux at the cloud base. This down-
draft is assumed to be saturated and is kept at saturation by evaporating precipi-
tation. The original closure assumption for deep convection relies on a closure in  
 
Table 1. Physics parameterizations used in the experiments. 

Microphysics WRF single-moment 6-class microphysics (WSM6) 

Radiation 
Rapid Radiative Transfer Model (RRTM)  

longwave radiation scheme 

Surface layer scheme Monin-Obukhov surface layer scheme 

Surface physics Noah Land Surface model (LSM) 

PBL scheme YSU PBL scheme 

Cumulus scheme Tiedtke cumulus parameterization scheme 
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moisture convergence, while that used in this version is based on the convective 
available potential energy (CAPE) modified by [33]. 

2.2. Experimental Setup 

The model is run from June 01 to September 30 of 2010 and 2011. The initial 
and boundary conditions are provided by the National Center for Environmen-
tal Prediction (NCEP) Global Forecasting System (GFS) three hourly products. 
We use the 0000 UTC cycle and run the WRF model for 48 hours starting at 
0000 UTC. The model is set at a horizontal grid resolution of 25 km × 25 km and 
has 41 vertical levels. Data analysed are total precipitation amount for the 
24-hourperiod starting at 0600 UTC, thus having 6 hours of spinup (from 00 
UTC to 0600 UTC). 

2.3. Area of Study 

The study area extends from 15˚W to 30˚E and 10˚S to 30˚N (Figure 1). A re-
gionalization of the domain was carried out using the one-degree daily precipi-
tation data set developed by the Global Precipitation Climatology Project 
(GPCP) [34] for the period 1997-2008. 

Six distinct main climatic regions (Figure 2) were delineated using a Ward’s 
clustering technique ([35] [36] [37] [38] [39]). In the following, the analysis will 
be conducted in each of the five regions (Region 2 to Region 6) that cover the 
study area (See Figure 2). 

Region 2 covers arid (Sahara Desert) and semiarid (Sahel) zones over Mauri-
tania, Mali, Niger, Chad and parts of Sudan, Cameroon and Nigeria. In the 
northern part of this region the climate is uniformly dry, with most areas re-
ceiving less than 130 mm/year of rain, some getting none at all for some years.  
 

 
Figure 1. WRF model domain and topography. 



R. S. Tanessong et al. 
 

267 

 
Figure 2. Homogeneous rainfall regions for the June-September (JJAS) season. 

 
The southern part serves as a transition zone between the arid Sahara and the 
wetter savanna region further south. Annual rainfall averages between 100 and 
200 mm received from June to September (Figure 3). Region 3 covers Liberia, 
Ivory Coast, Ghana, Togo, Benin, Nigeria, Cameroon and Central African Re-
public, in the area bordering the Gulf of Guinea. It has both areas of hot dry 
season (moderate rainfall) and wet climate (high, all-year rainfall). Rainfall 
ranges between 100 and 400 mm/year in the former and as much as 1800 mm in 
the latter. Region 4 represents the transition between the ocean and the conti-
nent. Breeze phenomena are very recurrent. Region 5 covers the South Atlantic 
Ocean and represents an oceanic climate. Region 6 is characterized by the tropi-
cal wet climate. 

2.4. Data Sources and Structure 
2.4.1. TRMM 3B42 
For the purpose of verification we used Tropical Rainfall Measuring Mission 
(TRMM) data as ground truth. TRMM data show that the JJAS seasons 2010 and 
2011 were wet and dry respectively (Figure 4). TRMM was used instead of gauge 
data because of the irregular spatial distribution of gauges and the sparse net-
work in the region. TRMM is a joint mission of the American National Aero-
nautics and Space Administration (NASA) and the Japanese National Space De-
velopment Agency (NASDA) to measure precipitation in the tropics and sub-
tropics. In this work, version 6 of the 3B42 data set is used. It provides three 
hourly estimations of rainfall on a 0.25˚ × 0.25˚ grid. These data are provided 
online by the NASA at http://mirador.gsfc.nasa.gov. Nicholson et al. [40] eva-
luated TRMM products over West Africa over the May to September season. 
They found that TRMM-merged rainfall products showed excellent agreement 
with gauge data. 

Although the 0.25˚ grid spacing of TRMM data is close to WRF’s 25 km, they 
were regridded in order to achieve coincidence of both grids points. 

2.4.2. 1DD GPCP Precipitation Data 
The 1DD GPCP data set is a 1˚ × 1˚ longitude/latitude precipitation product  



R. S. Tanessong et al. 
 

268 

 
Figure 3. Mean rainfall (mm) for the period 1997 to 2008. 
 

 
Figure 4. Mean JJAS anomalies for years 2010 and 2011. 
 
from Global precipitation Climatology Project. The GPCP algorithm combines 
precipitation estimates from several sources, including infrared (IR) and passive 
microwave (PM) rain estimates, and rain gauge observations [41]. The IR data 
come mainly from the different Geostationary Meteorological Satellites but also 
from polar-orbiting satellites for high latitudes [42]. The microwave data come 
from the Special Sensor Microwave Imager (SSM/I) onboard the Defense Me-
teorological Satellite Program. The multi-satellite estimates are first adjusted to-
wards the large-scale gauge average for each grid box, and then combined with 
gauge analysis using a weighted average. 1DD GPCP Precipitation data are used 
in the present work to subdivide the study area into subdomains and to deter-
mine seasonal cycle in each. 

3. Bayesian Processor of Output Techniques 

Following the ideas of Bayes, if we have a set of forecasts and past observations, 
we can use this prior information to improve future forecasts. Based on past 
couples of forecasts and observations, we can construct a model to link each 
forecast amount to the probability of observed amount. Example, determine the 
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probability of observing a rainfall amount greater than 10 mm, knowing that the 
forecast amount is 1 mm. The concept is illustrated in Figure 5. The BPO is 
operationalized by the meta-Gaussian model ([43] [44] [45]). It is described be-
low in terms of input elements and forecasting equations. 

3.1. Input Elements 

The following algorithm defines the input elements, outlines the estimation 
procedure, and details the calculation of the posterior parameters (the para-
meters of the forecasting equations). 

Step 0: Given are two samples, the climatic sample of the predict and W, 
and the joint sample of the predictor vector and the predict and (X, W), re-
spectively: 

( ){ }: 1, ,w n n M= 
, 

( ) ( )( ){ }, : 1, ,x n w n n N= 
, 

where ( ) ( ) ( )( )1 , , Ix n x n x n= 
 and N M≤ ; all realizations of W from the 

joint sample are included in the climatic sample. The index I  scans over the 
number of predictors. 

Step 1: Using the climatic sample, the prior (climatic) distribution function 
G of predict and W is estimated, such that ( ) ( )G w P W w= ≤ ; P  denotes 
the probability. 

Let g denote the corresponding prior (climatic) density function of W. 
Step 2: Using the marginal sample ( ){ }: 1, ,ix n n N= 

 of the joint sample, 
we estimate the marginal distribution function iK  of predictor iX , such 
that 

( ) ( ) , 1, , .i i i iK x P X x i I= ≤ =   

(The bar over iK  signifies that this is only an initial distribution function 
of iX , which need not cohere to the specified prior distribution function of 
W and the yet-to-be-constructed family of likelihood functions. This detail is 
accounted for in the derivation of the meta-Gaussian BPO, and thus need not 
be considered in application.) 

Step 3: The normal quantile transform (NQT) of the predictand and of 
every predictor is defined: 

( )( )1 ,V Q G W−=  

( )( )1 , 1, , ,i i iZ Q K X i I−= = 
 

 

 
Figure 5. Concept of BPO technique. 
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where Q is the standard normal distribution function, and 1Q−  is the inverse 
of Q. Next, we apply the NQT to each realization in the original joint sample; 
specifically, for 1, ,n N= 

, we calculate ( ) ( )( )( )1v n Q G w n−= ,  
( ) ( )( )( )1 , 1, ,i i iz n Q K x n i I−= = 

; then the transformed joint sample is eva-
luated ( ) ( )( ){ }, : 1, ,z n v n n N= 

, where ( ) ( ) ( )( )1 , , Iz n z n z n= 
. 

Step 4: Using the transformed joint sample, we estimate the following 
moments. For the transformed predictand V , ( ) ( )2

0 0,E V Var Vµ σ= = . 
For every transformed predictor , 1, ,iZ i I=  , ( ) ( )2,i i i iE Z Var Zµ σ= = , 

( )0 ,i iCov Z Vσ = . For 1, , 1i I= −
 and 1, ,j i I= +  , ( ),ij i jCov Z Zσ = . 

The estimates of variances and covariances should be the maximum like-
lihood estimates (i.e., they should be calculated using N as the divisor). 

Step 5: We form two I-dimensional column vectors ( )1, , Iµ µ µ=  , 
( )10 0, , Iσ σ σ=  , the transpose of vector σ , which is denoted Tσ , and an 

I I×  symmetric matrix { }ijσΣ = , with 2
ii iσ σ=  for 1, ,i I= 

, and  

ji ijσ σ=  for 1, , 1i I= −
 and 1, ,j i I= +  . Next we calculate an I I×  

symmetric matrix 

( ) 12 T
0M σ σσ

−−= Σ −                        (1) 

Step 6: The values of the posterior parameters are calculated as follows: 
1

4 2
0

T 4
0

T
M
σ

σ σ σ
 

=  
+ 

                       (2) 

2
T T

2
0

Tc Mσ
σ

=                          (3) 

T 0
0 2

0

c c µ
σ µ

σ
 

= − 
 

                       (4) 

where [ ]T
1, , Ic c c=   is an I-dimensional row vector. 

3.2. Forecasting Equations 

Given a prior distribution function G of predict and W and given a realiza-
tion ( )1, , Ix x x=   of the predictor vector, the meta-Gaussian posterior dis-
tribution function of predict and W is specified by the equation 

( ) ( )( ) ( )( )1 1
0

1

1 I

i i i
i

w Q Q G w c Q x cK
T

− −

=

  
Φ = − −  

  
∑           (5) 

For any number p such that 0 1p< < , the p-probability posterior quantile 
of predict and W is specified by the equation 

( )( ) ( )1 1 1
0

1

I

p i i i
i

w G Q c Q K x c TQ p− − −

=

  
= + +  

  
∑           (6) 

Given also a prior density function g of predict and W, the meta-Gaussian 
posterior density function of predict and W is specified by the equation 

( ) ( )( ) ( )( ){ } ( )
2 21 11 1exp

2
w Q G w Q w g w

T
φ − −    = − Φ     

       (7) 
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In the current work, one predictor is used. When there is only one predic-
tor (I = 1), its subscript is omitted. Thus X  replaces 1X , K  replaces 1K , 
and the forecasting Equations (5)-(6) can be written 

( ) ( )( ) ( )( )1 1
0

1

1 I

i
i

w Q Q G w c Q K x c
T

− −

=

  
Φ = − −  

  
∑          (8) 

( )( ) ( )1 1 1
0

1

I

p i
i

w G Q c Q K x c TQ p− − −

=

  
= + +  

  
∑           (9) 

In the following, processing will be done by grid point and climatic zones. 

4. Results 
4.1. Processing by Grid Point 
4.1.1. Prior Distribution Function 
The prior distribution function G of precipitation amount W is conditional on 
precipitation occurrence: ( ) ( )| 0G w P W w W= ≤ > . It is estimated from the 
TRMM data for the period 2002-2011. This estimation is done at any grid point. 
Many distribution functions are tested for the fitting. Weibull distribution is 
found to be a suitable fitting function as shown by goodness of fit (gof) test (not 
shown here). 

4.1.2. Marginal Distribution Function 
The single predictor X is the estimate of the 24-h total precipitation. The mar-
ginal distribution function K  of X  is conditional on precipitation occur-
rence: 

( ) ( )| 0K x P X x W= ≤ > . It is estimated for WRF model outputs cover the 
period JJAS2010-2011 from the joint sample. Weibull distribution is also found 
to be more suitable. 

4.1.3. Transformed Rain wp 
Once the five elements ( )0 1, , , ,G K T c c  are specified, the transformed rain may 
be calculated, given any value p of the probability. 

From the definition, the number p is the probability that the value of the pre-
cipitation is less than or equal to w p. In this section, the number p is simply in-
terpreted as the probability that the rain is equal to w p. Only values of p for 
which the spatial distribution of precipitation is close to the observations will be 
presented. 

Figure 6(a) represents the weather of June 10, 2010. This figure shows that 
the rain pattern produced by the BPO method is denser than those produced by 
WRF and TRMM for great values of the probability p. The algorithm used in the 
BPO method gives the cumulative distribution (CDF) of the rains. This is why 
the intensity of rainfall increases with the probability. Indeed, the chances of ob-
serving the precipitation less than 5 mm at a point are less than the chances to 
observe precipitation less than 10 mm at this point. In the following, p will be 
simply taken as the probability that the rain patterns be that shown on the maps. 

BPO method introduces a noise, that is, it introduced rains in some parts of  
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Figure 6. (a) 24-h accumulated spatial distribution rainfall amount: 10-06-2010. (b) Same as (a) but 
the climatological mean has been removed. 
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the field, compared to observations. 
For p = 0.4 (Figure 6(a)), the maximum rainfall is located on the coast of Libe-

ria, Sierra Leone and Guinea. The intensity of rainfall in the region is about 15 
mm. The TRMM observations confirm that these areas were rainy at June 10, 2010. 

The observed intensity is 25 mm instead of 15 mm as forecasted by the BPO 
method for p = 0.4. For p = 0.45, other maxima are found over West Cameroon 
and northern Burkina Faso. It is generally found that when the probability p in-
creases, the areas that have the maxima are preserved with the difference that 
intensity also increases. For p = 0.6, some observed maxima are located by the 
BPO method. These include the maximum observed on the north of the Central 
African Republic and the south-eastern Nigeria. 

Figure 7(a) displays rainfall patterns of June 15, 2010. The field and intensity 
of rainfall increase with the value of the probability p. Maxima are detected by 
the BPO method especially for p = 0.45, 0.5, 0.55 and 0.6. The maximum ob-
served in southern Nigeria is well reproduced by the BPO method. Intensities 
are in the same order for p = 0.6. This intensity is about 50 mm. For the values of 
p less than 0.6, these areas of maximum intensity are well detected but the inten-
sities are underestimated. The maxima observed on the coast of Liberia, Sierra 
Leone, the Guinea Conakry are detected by the BPO method. The TRMM ob-
servations also show maxima rainfall in southern Central African Republic, 
northern Democratic Republic of Congo. These maxima were not well localized 
by BPO method. 

Figure 8(a) shows the rains patterns of 20-07-2010. The maximum observed 
on the coast of Guinea Conakry is well locate for p = 0.6. Some maxima observed 
in southern Mali, south of Niger and central Nigeria have not been well detected 
by the BPO method. 

Given the foregoing, it is found that BPO method introduced background 
noise. It provides low rainfall almost throughout the study area especially when 
the value of the probability p increases. This led us to subtract the average daily 
climatology (8.8 mm) over the entire region to get rid of this noise. Figure 6(b), 
Figure 7(b) and Figure 8(b) show these new maps. Figure 6(b) shows the rains 
patterns of 10-06-2010. This field is less dense than that of Figure 6(a). Some 
maxima are well captured by the BPO method. These maxima are observed on 
the coast of Sierra Leone, eastern Chad, the southwest coast of Cameroon and 
eastern Senegal. In general, withdrawal of the daily average climatology reduces 
the field of the rains. For some values of the probability (p = 0.55 and p = 0.6), 
this field is close enough observed field. 

4.2. Processing by Climatic Zones 

In the following, the analysis will be conducted in each of the five regions (Region 
2 to Region 6) that cover the study area (see Figure 2). The following figures show 
prior and posterior distribution functions and prior and posterior densities. 

4.2.1. Region 2 
Figure 9(a) represents the prior (climatic) distribution function G and three  
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Figure 7. (a) 24-h accumulated spatial distribution rainfall amount: 15-06-2010. (b) Same as (a) but 
the climatological mean has been removed. 
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Figure 8. (a) 24-h accumulated spatial distribution rainfall amount: 20-07-2010. (b) Same as (a) but 
the climatological mean has been removed. 
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Figure 9. Examples of probabilistic forecasts of the precipitation amount 
W, conditional on precipitation occurrence, W greater than 0, and based 
on three different realizations x = 1, 10, 25 [mm] of predictor X for 24-h 
total precipitation amount output from the WRF model: (a) the prior 
(climatic) distribution function G and three posterior distribution func-
tions G(w|x = 1), G(w|x = 10), G(w|x = 25); (b) the prior (climatic) den-
sity function g and three posterior density functions g(w|x = 1), g(w|x = 
10), g(w|x = 25). 

 
posterior distributions functions based on three different realizations: 1 mm, 10 
mm and 25 mm of predictor X. For simulated value of 1 mm of precipitation, 
the probability of observing an amount less than or equal to 20 mm of rainfall at 
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any point in the Region 2 is 0.75. This means that there is 75% chance to observe 
at any point of this region an amount of rain less or equal to 20 mm. We deduce 
that the probability of observing rainfall amount greater than 20 mm is 0.25, that 
is there is only 25% chance to observe rain greater than 20 mm in intensities. 

For simulated value of 10 mm of rainfall, the probability of observing rainfall 
less than or equal to 20 mm is 0.65. That is 65% chance to observe rainfall ≤20 
mm when the model simulates 10 mm of precipitation at a point. We deduce 
from the above that the probability of observing rainfall greater than 20 mm is 
0.35. 

Thus, there is 35% chance of observing rainfall intensities greater than 20 mm 
at a point when the model simulates 10 mm of rainfall. For a simulated value of 
25 mm, the probability of observing rainfall ≤ 20 mm is 0.58, that is there is 58% 
of chance of observing rainfall ≤ to 20 mm when the WRF model simulates 25 
mm of rainfall at a point. The probability to observe rainfall intensity greater 
than 20 mm is 0.42; that is 42% of chance. 

Based on the above analysis, it appears that the probability of observing rain-
fall above a given threshold increases with simulated rainfall amounts. This re-
sult is consistent with that of Tanessong et al. [46]. 

Figure 9(b) represents the prior (climatic) density function g and three post-
erior density functions based on three different realizations of predictor X: 1 
mm, 10 mm and 25 mm. For a simulated rainfall amount of 1 mm, the most 
likely rainfall value that can be observed is 5 mm. This most likely value is 8 mm 
when simulated rainfall amount is 10 mm and becomes 12 mm for a simulated 
rainfall amount of 25 mm. Thus, when the simulated rainfall amount increases, 
the chances of observing heavy rainfall also increase. These results thus streng-
then those found previously. Figure 9(b) also shows that the density decreases as 
the observed quantities increase, indicating that heavy rainfall events are rare 
and therefore difficult to predict. 

4.2.2. Region 3 
Figure 10(a) represents the prior (climatic) distribution function G and three 
posterior distributions functions based on three different realizations: 1 mm, 10 
mm and 25 mm of predictor X. For simulated rainfall amount of 1 mm, the 
probability to observe rainfall ≤ 20 mm is 0.90, that is 90% of chances. Then the 
chances of observing the rainfall amounts greater than 20 mm are 10% only 
when simulated rainfall amount is 1 mm. For simulated rainfall amounts of 10 
mm, the probability of observing rainfall ≤ 20 is 0.75 mm, for example; that is 
75% chance. 

Thus the probability of observing rainfall greater than 20 mm is 0.25; yielding 
25% chance. For simulated rainfall amount of 25 mm, the probability of observ-
ing rainfall ≤ 20 mm is 0.7; 70% chance. The chances of observing the rainfall 
greater than 20 mm are 30%. 

Unlike Region 2, we note that the chances of observing rainfall greater than a 
given threshold increase weakly when the simulated rainfall amount increase in  
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Figure 10. Examples of probabilistic forecasts of the precipitation 
amount W, conditional on precipitation occurrence, W greater than 0, 
and based on three different realizations x = 1, 10, 25 [mm] of predictor 
X for 24-h total precipitation amount output from the WRF model: (a) 
the prior (climatic) distribution function G and three posterior distribu-
tion functions G(w|x = 1), G(w|x = 10), G(w|x = 25); (b) the prior (cli-
matic) density function g and three posterior density functions g(w|x = 
1), g(w|x = 10), g(w|x = 25). 

 
Region 3. This could be due to complex topography of Region 3. This region in-
cludes the Niger valley, the west highlands of Cameroon, the Adamawa Plateau 
of Cameroon and Mount Cameroon. The climate of this region is very diverse 
and complex. 
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Figure 10(b) represents the prior (climatic) density function g and three 
posterior density functions. For the simulated rainfall amount of 1 mm, the most 
likely value that can be observed is 4 mm with a density of 0.06. The most likely 
value is 7 mm for simulated rainfall amount of 10 mm. It is 10 mm when the 
simulated rainfall amount is 25 mm. 

4.2.3. Region 4 
Figure 11(a) represents the prior (climatic) distribution function G and three  
 

 
Figure 11. Examples of probabilistic forecasts of the precipitation 
amount W, conditional on precipitation occurrence, W greater than 
0, and based on three different realizations x = 1, 10, 25 [mm] of 
predictor X for 24-h total precipitation amount output from the 
WRF model: (a) the prior (climatic) distribution function G and 
three posterior distribution functions G(w|x = 1), G(w|x = 10), 
G(w|x = 25); (b) the prior (climatic) density function g and three 
posterior density functions g(w|x = 1), g(w|x = 10), g(w|x = 25). 
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posterior distributions functions. For simulated rainfall amount of 1 mm, the 
probability of observing less than or equal to 20 mm rainfall is 0.8; that is 80% 
chance. 

The probability of observing rainfall amount greater than 20 mm is 0.2; 20% 
chance. 

For simulated rainfall amount of 10 mm, the probability of observing rain-
fall ≤ 20 mm is 0.6; that is 60% chance. The probability to observe rainfall 
amount greater than 20 mm is 0.4. The probability of observing rainfall amounts 
≤ 20 mm knowing that the simulated rainfall amount is 25 mm is 0.5 and the 
probability to observe rainfall greater than 20 mm is 0.5. Figure 11(b) shows 
that the most likely values of rainfall knowing that the simulated quantities for 1 
mm, 5 mm and 25 mm are respectively 5 mm, 12 mm and 15 mm. 

4.2.4. Region 5 
Figure 12(a) represents the prior (climatic) distribution function G and three 
posterior distributions functions. The probability of observing rainfall ≤ 10 mm 
for example knowing that the simulated quantity is 1 mm is 0.85; 85% chance. 
When the simulated quantities are 10 mm and 25 mm, the probability of ob-
serving rainfall ≤ 10 mm are 0.75and 0.72 respectively. The probability of ob-
serving rainfall amounts greater than 10 mm are 0.25 and 0.28 respectively. Fig-
ure 12(b) shows that the most likely values which can be observed are between 3 
and 5 mm for simulated rainfall amounts greater than 1 mm. It is noted that the 
most likely precipitations have low intensities. That means that heavy rainfalls 
are not recorded in the ocean during the JJAS season. 

4.2.5. Region 6 
For simulated rainfall amount of 1 mm, the probability of observing rainfall ≤ 20 
mm is 0.8 and that to observe rainfall greater than 20 mm is 0.2 (see Figure 
13(a)). When the simulated rainfall amounts are 10 mm and 25 mm, the proba-
bility of observing rainfall ≤ 20 mm are respectively 0.7 and 0.65 and those to 
observe rainfall greater than 20 mm are respectively 0.3 and 0.35. The most likely 
values of rainfall are 6 mm, 9 mm and 12 mm for simulated rainfall amounts of 
1 mm, 10 mm and 25 mm respectively (see Figure 13(b)). 

5. Conclusion 

The Bayesian Processor of Output method was used to produce Probabilistic 
Quantitative Precipitation Forecast over Central and West Africa. It processes 
output from a NWP model and optimally fuses it with climatic data in order to 
quantify uncertainty about a predictand. Outputs from the Weather Research 
and Forecasting (WRF) model were used to develop and test the BPO technique. 
The model ran from June 01 to September 30 of 2010 and 2011. The BPO me-
thod was applied in each grid point and then in each climatic zones. Prior (cli-
matic) distribution function was estimated from the Tropical Rainfall Measuring 
Mission (TRMM) data for the period 2002-2011. Many distribution functions 
have been tested for the fitting. Weibull distribution was found to be a  
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Figure 12. Examples of probabilistic forecasts of the precipitation 
amount W, conditional on precipitation occurrence, W greater than 0, 
and based on three different realizations x = 1, 10, 25 [mm] of predictor 
X for 24-h total precipitation amount output from the WRF model: (a) 
the prior (climatic) distribution function G and three posterior distribu-
tion functions G(w|x = 1), G(w|x = 10), G(w|x = 25); (b) the prior (cli-
matic) density function g and three posterior density functions g(w|x = 
1), g(w|x = 10), g(w|x = 25). 

 
suitable fitting function as shown by goodness of fit (gof) test in both cases. BPO 
method noticeably improves the distribution of precipitation as shown by the 
spatial correlation coefficients, reliability diagrams and relative operating cha-  
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Figure 13. Examples of probabilistic forecasts of the precipitation 
amount W, conditional on precipitation occurrence, W greater than 0, 
and based on three diferent realizations x = 1, 10, 25 [mm] of predictor X 
for 24-h total precipitation amount output from the WRF model: (a) the 
prior (climatic) distribution function G and three posterior distribution 
functions G(w|x = 1), G(w|x = 10), G(w|x = 25); (b) the prior (climatic) 
density function g and three posterior density functions g(w|x = 1), 
g(w|x = 10), g(w|x = 25). 

 
racteristic curves. It better detects certain observed maxima compared to the raw 
WRF outputs. Posterior distribution (forecasting) functions allow for a simu-
lated rainfall amount, to deduce the probability that observed rainfall falls above 
a given threshold. The probability of observing rainfall above a given threshold 
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increases with simulated rainfall amounts. The forecasting functions determined 
in the present paper can be used by forecasters as guidance for issuing probabil-
istic forecasts from a single deterministic forecast. In addition, this forecasting 
tool might assist forecasters throughout the season in a wide variety of weather 
events. 
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