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Abstract

We study the global (in time) existence of nonnegative solutions of the Gier-
er-Meinhardt system with mixed boundary conditions. In the research, the
Robin boundary and Neumann boundary conditions were used on the activa-
tor and the inhibitor conditions respectively. Based on the priori estimates of
solutions, the considerable results were obtained.
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1. Introduction

Biological spatial pattern formation is one area in applied mathematics under-
going vivid investigations in recent years. Most models involved in biological
phenomena are of the general reaction-diffusion type considered by Turing [1].
The distinctive attribute of Turing’s approach was the role of autocatalysis in
coexistence with lateral inhibition. These studies led to the assumption of the
existence of two chemical substances known as the activator and the inhibitor
(2] [3].

One of the famous studied models in biological spatial pattern formation is
the Gierer-Meinhardt system which has received numerous attention and has
been extensively studied [4] [5] [6]. The Gierer-Meinhardt system was used to
model the head formation of a small, fresh-water animal called hydra [4]. We
consider an activator concentration A and an inhibitor concentration #, satisfying

the activator-inhibitor system given by
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p
A = 2AA- A+ Herb, inQx(0,T)
A .
tH =DAH —H +, in Qx(0,T) "
ea—A+aA=0=a—H, on 8Q><(O,T)
ov ov _
H(x,0)=H,(x)>0, A(x,0)=A(x)=0 inQ

where a>0, b>0 and QcR" is a bounded smooth domain; A is the
Laplace or diffusion operator in R"; v(x) is the unit outer normal at X € 6Q,
0/0v =V -v is the directional derivative in the direction of the vector v. We
assume that the reaction exponents (p>1,g>0,r>0,5>0) satisfy

O<p__1<i_ (2)
r s+1

The diffusion constants are ¢ >0 and D >0 for the activator and inhibitor
respectively. The time relaxation constant 7 >0 was mathematically intro-
duced due to its usefulness on the stability of the system. The constant b
provides additional support to the inhibitor and may be thought of as a measure
of the effectiveness of the inhibitor in suppressing the production of the
activator and that of its own. In [7], the ratio in the middle of (2) is called net
self-activation index, since it compares how strongly the activator activates the
production of itself with how strongly it activates that of the inhibitor. On the
other hand, they call the ratio on the right hand side of (2) net cross-inhibition
index, since it compares how strongly the inhibitor suppresses the production of
the activator with that of itself. For the the inequality in (2), we expect the
production of the activator to be severely suppressed by the inhibitor.

In [4], some biological applications such as modeling of skeletal limb
development, Robin boundary conditions are more realistic since the Neumann
boundary conditions. A comparative numerical study of a reaction-diffusion
system was made in [8] with a range of different boundary conditions and it
revealed that certain types of boundary conditions selected a particular pattern
modes at the expense of others. It was shown that the robustness of certain
patterns could be greatly enhanced and the authors showed a possible ap-
plication to skeletal pattern of limb.

Special case was considered for the Neumann boundary condition (Ze. a=0)
in [5] [9]. In [5], Masuda and Takahashi proved the global solutions of the
special case of (1) with =0 exists for t>0 provided in addition to (2) one has
(p-1)/r <2/(N+2), we note the strict inequality here. In [9], Jiang improved
the net self-activation index noted in [5] to ( p —1) / r <1 and showed that the
solutions exists globally in time.

In this paper we consider the Robin boundary condition (a # 0) on the
activator and Neumann boundary condition on the inhibitor and study the
global (in time) existence of solutions for the Gierer-Meinhardt system in
(1). The theorem and lemmas in this current manuscript are inspired by [9].
We establish the global (in time) existence of (1) by proving the theorem
below:
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Theorem 1. Suppose Q is a smooth bounded domain with a smooth
-1
boundary 0Q in R. Assume that pT<mln{1,%}.Let A, and
+
H, eW”(Q), ¢>max{N,2}. Then every solution (A(X,t),H (x,t)) of (1)

exists globally in time.

2. Proof of Theorem 1

The local existence and uniqueness of (1) is standard and more details can be
found in [10] [11]. A priori-estimates need to be ascertain in order to prove
global in time existence of solutions. Let (A, H) be a solution of (1) in [0,T).

We want to ascertain that /is bounded away from zero. Let
u(t):lxrggH(x,t), te[0,T)

then
u(0)=infH,(x)>0

XeQ)

t

Lemma 1. u(t)>u(0)e * forall 0<t<T .

Proof Let
t

H™(x,t)=H(xt)-u(0)e * (3)

then H” (X, t) satisfies

. <7 1 AT L
H, :Ht—{u(o)e } :;{DAH -H +Hs}+;u(0)e d

[ ot r ot
_1 DAH*—[H*+U(0)€‘ Tj+ As}lu(o)e :
7| H T
il Y I
:;_DAH —H —u(O)ef+Hs}+;u(O)ef
i . . A1 Lo L
=2|DAH"-H ~=u(0)e * +=u(0)e *
| + s} Tu( )e +Tu( )e
B r r
~ L paH K+ A }:E[DAH*—H*J+ A
T| H® T TH*®
1 . . .
>—| DAH -H Qx|0,T
T[ J in x[ )
and
oH™ 0 -
e~ ZIH(xt)-u(0)e 7 |=——H (xt
2 s =
but
ﬁ:0 on 6Qx[0,T)
1%
thus
oH"

—=0 onoQx[0,T).
ov
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Additionally at t=0, from (3)
H™(x,0)=H (x,0)-u(0)=H (x,0)—inf H(x,0)>0

So H'(x,0)>0 forany xeQ.
Hence from maximum principle, H” (X, t) >0 in Qx [O,T) and thus

t

H(x,t)-u(0)e = >0,

t

u(t)=inf H(x,t)>u(0)e =, te[0,T)

XeQ

O
Lemma 2. For any two constants a>1 >0, let p—_1<min{1,i}.
r s+1
Define
o AT(x1)
h ”(t)_IﬂHﬂ(x,t)dX’ 0<t<T
Suppose
2¢\rD(a~1)(B+1) 2z’ + D)\JaB, (4)
then
» (t)g[ﬁ_a]hmﬂ (t)+Cuh2 (). )
T
Here
o r
g_z{r—(p—l)w} ©
and
5o r {q_(s+1)(p—1)_(s+l_£ja} o
r-(p-1)-o r r a

where §>0, 0>0, 3€(0,1) and

r

c=|a(pey | o

Proof Let ¢ >1 and f20,
X d A Aa Aal a
ey (1) = a(f _ﬂdxj:jg[mldx:.[g[ AP t}dx

a-1 p a r
= o fepnar A | p A - DAH —H + 2| |dx
o Hﬂ’ H“+b TH” H*

a+p-1

-y G a0 e
A“ A A+
_-[Q’BDWAHdX+JQﬂTH —_[ B—F=t H/}+s+1
v A ) D A ALt p-1 ALt r
:(g_ajj'gmdx_i_agZIQWAAdX_ﬂTJ‘QWAHdX-FO[J'Qm ﬁIQ Hﬂ+s+1
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But
5 a-1 ) Aa—l ) Aa— )
ae IQ 7 AAdX = ae J.BQ—ﬂVAvdS—ae (a—l)jQW|VA| dx
-1
+ae ﬁj ——VAVHXx
a-1
:aez.fm/:\_'ﬂ [_jAde—ag (a-1) j |VA| dx
) Aafl
+ac’ [ 77 VAVHOX
Aa Aa—Z
=—€a édes —CCEZ (a _1)J.QW|VA|2 dX
5 Aa—l
+ae ﬁjﬂWVAVde
Additionally,
ﬂD A* pD A* /)’(,8+1)D A 2
- g e AHd = == [ S VH S+ = J'QHﬁ+2|VH|dx
afD ¢ A
- [ =7 i VAVHX
_ pBD A ,B(,B+1) D A 2
_Tj.ﬁ(z Hﬂﬂ (O)dS + - .[Q H/”z |VH| dx
apD ¢ A
- [ =7 i VAVH
/3(,3+1) afD
= T IQ H p+2 |VH| d T
now we have,
haﬁ (t):[g—ajjﬂ Saﬁ dx — aeaj dS ae’ (a - 1j |VA| dx
+aﬂ(62 +EJIQ%VAVHdX— ﬂ(ﬂ:l) jﬂ 7 |VH|2 dx
Aa+p l ﬂ Aa+r
ta Q Hﬂ’+q .[Q Hﬁ+5+1
B A A“ [VA]
=(?—0.’ij H'B dx — aea.[ dS (043 (a—l)J.QFT dx
D) A“ VH VA _,B(,B+1) A” [VH[
+aﬂ(e+ jfﬂHﬂH X . L’H”’IHId
Aa+p—l ﬂ Aa+r
+aIQ Hﬁ'*'q J.Q Hﬂ+s+1
_ ﬂ Aa p-: 1 Aa+r
—(;—“Jfgmdx—“eafmwds taf T J e
“ VA[ D\VH VA
+ J‘QF|:—0!€2 (0! —l)‘T dX+(lﬁ(€2 +7J?Td
—'B(’B+l) — dx}.
T
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VA
We deduce from above a quadratic equation involving e and o Let us

fix @ >1 and choose £ >0, wehave
2¢,[rD(a-1)(f +1) 2z’ + D) Jap,

therefore the quadratic form involving V—AA and % in the inequality above

]

is non-positive since its determinant

{aﬂ[ez+8jﬁ}z§4[_€20‘(0‘_1)]{ P2 (p+ 1)%

H
Thus
ﬁ A Aa+p l ﬁ Aa+r
h..s (t) S(?—ajj.g 7 dx — aeaf dS +al, qu IQ H/”S”
ﬂ A Aa+p—1 ﬂ Aa+r
S(?—ajJ.QHﬂdx+aQ qu J.QH‘M”
B ﬂ a+p-. 1 Aa+r
_[?_ajha,ﬂ (t)+0,’J.Q Hﬁ'+q ,[Q Hﬁ+s+1
We have
pT_l<1:> r-(p-1)>0
and
p-1_a .. (p-D(s+])
r s+1 r

we choose o >0 sufficiently small such that

r-(p-1)>o

and

0> (P-1)(s+1) +(s+1_ﬁja
r r a
Now, we write
Aa+ p-1 Aa+ p-1 Aa+ p-1

O N

o
A%t p-1 Aa*'p—lHﬁ;

(r=(P-D-0)  (p-1)(s+1) S

HﬂHa[ r ]H r H[ r a)g H”H [ r JH r Hr

(p-1)(s+l)  s+1

s+l B

B Aa+p—1Hﬂg _ Aa+p—lH'B%
HeH [L p;l)fa] HEYTT Ly (L pil)fgj e
Aa+ p-1 H ﬂ&[l— P*i*“] Aa+ p-1 H s (1—@]
= = p-l+o

_pghlto pp-lic 5(1—&) plto (1—"'1“’) 5[1- j p-lto
H/?/? p +B " H r H(s+l) . Hﬂ w Iy . H(ﬂ+s+1) p
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but
Aa Ap—lAO' B Aa Ap—1+a
A° Pt
A5

r

Aa+ p-1 —

p—lJrchr p-l+o p-l+o

AQ[L r r ] AT

Aa&(l—g)
AT e

aS(l—gj

a(l—&)[l—gj (asr) g

thus
i a(lfs)(lng A

e H ﬁ[l_g) H 5(1—@) H (ﬁ+5+1)g

G ke w2

_s[1-PHo

W

a(1-9)1-222 N

“l+o “l+o

Y ﬂ(lfs)(lfpf) H ( ﬁ+s+1)%
1-9 l—g p-1l+o
B H -5 Aa Aa+|’ r
- H s H p+s+1

where 9 and J are defined by (6) and (7)

p-l+o

A p-1 [ A” -9 r A% p—i-*—o’
a——— < a| H -9 -
H'B(Hq+b) H# H Arsi

r P p-l+c

a \? r a+r Ty
<alu™?® A —A
- H s H P+s+l

' p-l+o p-lto

A -9 r ,Br_l AT Y 1

ﬂz_fl H P+s+l

by Young’s inequality, we obtain
r

_Pto Hr—(p-1)-o 19

A¢1+Pfl r a a+r

a——F——< a(ﬁj u”’ —Aﬂ LA
H” (H® +b) H

T T H Ps+l

_pto r(p1)-o 1-9
a+p-1 a+r p o
o A _é A I < a(ﬁ u_‘S A_ .
H/(H®+b) 7 H/
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Therefore
_r
_Ppo v (p1)-o 1-9
a+p-1 ﬁ AT ﬂ r A*
af ———dx—-&| ——dx<|a| & U_a —_— dx
IQHﬂ(Hq+b) TIQHﬂ+5+1 (z’j jﬂ(Hﬂ

but by Hélder’s inequality

Aa 1-9 AD’ 1-9 .
L{Wj dxﬁ(jgdx)y(jgmdxj ~|of -,

Thus
Aa+p—1 'B a+r
af, H” (H*+b) dX_?Ig P O
r
P _pto | (ptjo
r -5 1O)% Kl-9 —Spl-9
< a(?) u’lQ hy s =Cu’h; ).
Finally,
h (1)< (ﬁ - a] h . +Cu’h?
a,p - r a,p a,p
O
Remark 1. The condition in (4) is true for any
a>2 and 0< < L
2K

2
TeE

2
where K > max {%,R}

Lemma 3. Let 0<6<1, #>0 and >0 on (0,T) be an integrable
function. Let h, ; =h, ,(t) beanonnegative function on [0,T) satisfying the
differential inequality

havﬁ (t)g_eha,ﬁ—"_gh;ﬁy OSt<T (8)

Then
h,s(t)<x, 0<t<T (9)

where « isthe maximal root of the algebraic equation
x=G(£)x* =h, ,(0).
Moreover, if T =o0, we have

limsuph, ,(t)<x,, (10)

too0
where x, isthe maximal root of the algebraic equation
x-G,(¢)x* =0.
Proof.
h,s(t)<-6h, ,+<he
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h,,(t)+6h, ,<ch,
e” [ha,ﬂ (t)+ Gha,/j] <e”Sh’

alemnsl=een,
I;E[eglhaﬁ]df <[oe%¢ (2, (2)dx

e"h, ; (t)=h,, (0) < [e%¢ ()Nl , (2)dx

e"h, , (t)<h, ,(0)+ [ e”¢ (2)h:, (x)dx

h,,(t)<e™h, ,(0)+ [ e ™A (x)hi, (x)dr. (11)
Let
s (t)=sup b ().
and

G(¢):=sup j; e "¢ (y)dy

0<t<T

in particular,at T =

G,(¢)= Iimsupj'; e "¢ (1)dy

t—w

we obtain now that
N, ()<, ,(0)+G (LN, (1) (12)

Notice that the quantity G (g ) is finite and hence (9) follows from (12). As

t > oo in (11), we ascertain

limsuph, ,(t)<G, (¢)limsuph? ,(t)

too t—wo

thus (10) follows since G, (¢) is finite. O
The next Lemma follows after applying Lemma 3 to (5).
Lemma 4. For any «,f >0 suchthat S <r7a,and all conditions in Lemma
2 hold true. Then there exists a constant C(T)=C, ,(T)<o such that

h, ,(t)<C(T) (13)

forall te[0,T).
Proof. For sufficiently small >0, suchthat f<za with «a >1, we obtain

2¢,[tD(a—1)(B+1) 2 (ze’ + D) Jap, é—a <0,

therefore we deduce from Lemma 2 that h, , satisfies

h,s(t) < [ﬁ—a] h,.s +Cu~’his.

T
Since

——a<0
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and
_t
u(t)>u(0)e -
for all te [O,T) , then from Lemma 3, (13) is true for o >1 and sufficiently
small £ such that f <7« . Since H is bounded away from zero, then (13) is
true for any «,f>0. O
From Lemma 1 and Lemma 4, we deduce the Corollary below.
Corollary 1. Let ¢>1 and all other assumptions in Theorem 1, Lemma 2,

Lemma 3, and Lemma 4 hold true. Define

AP
AH)=——
gl( ) Hq+b
AI’
AH)=
gz( ) HS

then there exist positive constant C, (T ), such that

||gj(A,H)L[(Q)£C£(T), j=12

forall 0<t<T.
Proof. The proof to this Corollary follows from Lemma 3 and Lemma 4. [J]

3. Conclusion

In this paper, we have studied the Gierer-Meinhardt system with Robin boundary
conditions and Neumann boundary conditions on the activator and inhibitor
respectively. Global existence of solutions have been obtained under the mixed

boundary conditions using a priori estimates of solutions.
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