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Abstract

A combined approximate scheme is defined for convection-diffusion-reaction
equations. This scheme is constructed by two methods. Standard mixed finite
element method is used for diffusion term. A second order characteristic fi-
nite element method is presented to handle the material derivative term, that
is, the time derivative term plus the convection term. The stability is proved
and the I*-norm error estimates are derived for both the scalar unknown va-
riable and its flux. The scheme is of second order accuracy in time increment,
symmetric, and unconditionally stable.
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1. Introduction

Let QO be a bounded domain in R?(d=2,3) with Lipschitz boundary
I'=r,ul'y, where ') "I'; =&. Let T be a positive constant. In this paper,

we will consider the following linear convection-diffusion-reaction equations:
find ¢:Qx(0,7) >R such that

%JrV(x,t)~V¢(x,t)—div(A(x)V¢(x,t))
+r(x)g(x,0)=f(x.1), in Qx(0,7),

$(x,1)=0, onT,x(0,T), (1)
ag(x,t)+A(x)Ve(x,t)-n(x)=g(x,), onT,x(0,T),
#(x.0)=¢"(x), in Q.
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Here, v:Qx[0,7]—> R’ is the convection vector field; r:Qx[0,7] >R is
the reaction function; f:Qx[0,7]—>R and g:I';x[0,7] >R are given
scalar functions; a >0 isa constant and n is the outward unit normal vector
to T'; A:Q— S, denotes the diffusion matrix function, where S, is the
space of symmetric d xd matrices, such that

d
y "§"2 S zAijgiégj <aq ”5"2 ,Vée RY, (2)

i,j=1

where a,,a, are positive constants.

Typically, these Equations (1) express the general mathematical model incor-
porating different types of transport phenomena in engineering and applied
sciences, such as the dispersal of a pollutant through a moving viscous medium
(e.g., a river or the atmosphere, [1]), currents in semiconductor devices [2], and
airflow past an aerofoil (see [3], for example). When the diffusive term is smaller
than the convective one, these equations are the so-called convection dominated
problems (see [4]).

In many practical convection-diffusion processes, convection essentially do-
minates diffusion (e.g., in some financial models [5]), and although the govern-
ing differential equation is parabolic, it displays several characteristics of hyper-
bolic problems. When applied to these problems, standard finite element and fi-
nite difference methods usually exhibit some combination of nonphysical oscil-
lation and excessive numerical dispersion [6] [7]. It is therefore logical to design
numerical procedures that incorporate the parabolic/hyperbolic nature of these
problems. One such method is the modified method of characteristics (MMOC)
which was first formulated for a scalar parabolic equation by J. Douglas and T. F.
Russell in [8] and then extended by Russell [9] to nonlinear coupled systems in
two and three spatial dimensions. Similar schemes had been defined by Piron-
neau [10] for the incompressible Navier-Stokes equations and by Siili [11] and
Morton, Priestley, and Siili [12] for first-order hyperbolic equations, with the
latter technique being referred to as the Euler characteristic Galerkin method.
The intent of the method is to obtain accurate approximations to convection-
dominated problems. Basically, in the modified method of characteristics, the
time derivative and the convection term are combined as a directional deriva-
tive. In other words, the procedure involves time stepping along the characteris-
tics, allowing us to use large, accurate time steps.

Mixed finite element method has been proven to be an effective numerical
method for solving fluid problems. It has an advantage to approximate the un-
known variable and its diffusive flux simultaneously. There are many research
articles on this method ([13] [14] [15] [16]). An algorithm combining the mixed
finite-element method and the modified method of characteristics was first ap-
plied to the miscible displacement problem in porous media by Ewing, Russell,
and Wheeler [17]. Then, the scheme had been extended by Wheeler and Dawson
[18] to advection-diffusion-reaction problems. Numerical results have verified

that large, accurate time steps are possible, and sharp fronts have been resolved
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(without oscillations or numerical diffusion) by coarser grids that standard pro-
cedures can use.

Arbogast and Wheeler [19] defined a characteristics-mixed method to ap-
proximate the solution of an advection-dominated transport problem. It used a
characteristic approximation that is similar to that of MMOC-Galerkin method
to handle advection in time and a lowest order mixed finite element spatial ap-
proximation for diffusion term. Piecewise constants were in the space of test
function, so mass is conserved element-by-element. It was proved finally that the
method was optimally convergent to order 1 in time and at least suboptimally
convergent to order 3/2 in space. In [20], we have considered a combined nu-
merical approximation for incompressible miscible displacement in porous me-
dia. Standard mixed finite element was used for Darcy velocity equation and a
characteristics-mixed finite element method was presented for approximating
the concentration equation. Characteristic approximation was applied to handle
the convection term, and a lowest order mixed finite element spatial approxima-
tion was adopted to deal with the diffusion term. Thus, the scalar unknown
concentration and the diffusive flux can be approximated simultaneously. This
approximation conserves mass globally. The optimal [*-norm error estimates
were derived. Then, we extended this method to the slightly compressible misci-
ble displacement problem in [21].

It should be pointed out that the works mentioned above which involved the
characteristic method all gave one order accuracy in time increment At. That is
to say, the first order characteristic method in time was analyzed. As for higher
order characteristic method in time, Rui and Tabata [22] used the second order
Runge-Kutta method to approximate the material derivative term for convec-
tion-diffusion problems. The scheme presented was of second order accuracy in
time increment Af, symmetric and unconditionally stable. Optimal error esti-
mates were proved in the framework of Z*-theory. Numerical analyses of con-
vection-diffusion-reaction problems with higher order characteristic/finite ele-
ments were analyzed in [23] [24], which extended the work [22]. The [* (Lz)
error estimates of second order in time increment Af were obtained.

The goal of this paper is to present a second order characteristic mixed finite
element method in time increment to handle the material derivative term of (1).
It is organized as follows. In Section 2, we formulate an approximate scheme that
combines the second order characteristic finite element method for the material
derivative term and mixed finite element method for the diffusion term. In Sec-
tion 3, we prove the stability of the combined approximate scheme. In Section 4,
we derive the I’-norm error estimates for both the unknown scalar variable and
its flux. The scheme is of second order accuracy in time increment, symmetric,

and unconditionally stable.

2. Formulation of the Method

In this paper, we adopt notations and norms of usual Sobolev spaces. Moreover,

we adopt some notations for the functional spaces involved, which were used in
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[22] [23] [24]. For a Banach space X and a positive integer m, spaces
C"’([O,T],X) and Hm((O,T),X) are abbreviated as C"(X) and H"(X),
respectively, and endowed with norms

2

oV (t)“i dt} ’

o (t)HX }’ (p"H’"(X) = UOT%

where @) denotes the j-th derivative of ¢ with respect to time. The Banach

" ” = max { max
Pllemx) 1[0,7] {j:O,--~,m

space Z" is defined by
zm :{f c C,/(Hnl—,f (Q))’] :0,...’m}’
equipped with the norm ||go||zm = max {||¢||C,(Hm_,);03j£m}. Similar spaces

and norms are considered for the boundary sets I'; and I',. Denote by H;D (Q)
the closed subspace of H'(Q) defined by

1}, (@)={peH'(Q).0],, =0},
and [25]

H(div;Q)::{v e(2(@)) divv eLZ(Q)}.

2.1. The Characteristic Lines

Now, we define the characteristic lines associated with vector field v and recall
some classical properties satisfied by them. Thus, for given (x,7)eQx[0,T],
the characteristic line through (x,#) is the vector function X, (x,#-) solving

the initial value problem

a;(e (x,t;r):V(Xe(x,t;r),r), X, (x67)=x (3)
T

Next, assuming they exist, we denote by F, (respectively, by L) the gradient
of X, (respectively,of v) with respect to the space variable x, i.e,

a(X.), (x,657), L, (x,1):= v, (x,1). 4)
» ox,

s N

(F), (x67)=

We adopted some propositions and lemmas from [23].

Proposition 1. If ve(C’ (C" (ﬁ)) for n>1 an integer, then X, e
C° (S_) X [O,T] X [O,T]) and itis C" with respect to the x variable.

In order to compute second order approximations of matrices F, and F,',

we need the following equations:

ZF" (x,5;7) =L(Xe(x,t;r),f)Fe(x,t;r),
T

> (5
ZTF; (x.1;7)= V(%+ LVJ(Xe (x,t;r),z')Fe (x,5;7).
Proposition 2. If veC° (C1 (ﬁ)) , then
IMleo(ci(a)) e
E(x,t;r)"ﬁe <(c'@) , VxeQ, 1,7€[0,T]. (6)
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Proposition 3. If ve C’ (C2 (ﬁ))m c' (Cl( )) then F, satisties the Taylor

expansion

F,(x,t;5)=1+(s—t)L(x,1)

‘ ov (7)
+J.S(r—s)V(5+ij(Xe(x,t;r),z')Fe (x,t;7)dr,

and its inverse, F,', satisfies the Liouville’s theorem

Fe'1 (x t's)=1+(t—s)L(Xe (x,t;s),s)

_I (r—1) (—+LV)(XL,(x,t;z'),z')Fe(Xe(x,t;s),s;r)dr. ®)

By using the Liouville’s theorem and the chain rule, we obtain

aidetFLf1 (x.t;7) =—detF," (x,t;r)divv(Xe (x,t;r),r),
T

2

:—detF (x,t;7) =detF, " (x,t; r)((divv)2 (Xe(x,t;r),r) 9)

dzv(—+LVj (x.67).7)=(L-L7)(X, (x.57).7)).

Proposition 4. If veC

0

) then

M HCO cl Q -

detF;l( tt)<e Ver,t,Te[O,T]. (10)

)<
Proposition 5. If ve C° (C2 £_2 )r\C1 (Cl( )), then detF," satisfies
)=1

detF," (x,t;5) =1—(s—1)divv(x,t)
(7~

) o (detF )(x,t;r)dr. (an

+[

2.2. Variational Formulation

From the definition of the characteristic lines and by using the chain rule, it fol-

lows that

—(Xe (x,t;r),r) =%(Xe (x,t;r),r)
+V(Xe (x,t;f),z')~V¢(Xe (x,t;r),z').

By introducing the flux o =AV¢ and using (12), we rewrite equation (1.1)

(12)

atpoint X, (x,7;7) andtime 7 as follows

?(Xe (x,t;r),z’)—diva(Xe (x,t;r),r)
T

( x t T))¢( x t; z' )=f(Xe (x,t;z'),r), (13)
( xtz’ ) A( xtz' )V¢(Xe(x,t;z'),r).

Before giving a week formulation of (13), we adopted a lemma from [23],
which can be considered as a Green’s formula.

Lemma 6. Let X :ﬁ%m,){ eC? (ﬁ) be an invertible vector valued
function. Let F =VX and assume that F' e C' (ﬁ) Then
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I div w( X(x))(//(x)dxz_[rF’T (x)n(x)-w(X (x))y (x)dl "
—J. F! x)w X(x))~Vw(x)dx—JQdivF’T(x)-w(X(x))t//(x)dx,

with we H' (X(Q)) a vector valued function and y € H' (Q) a scalar func-
tion.

Now, we can multiply (13) by test functions y € H}D (Q) and ye H(div;Q),
integrate in Q respecetively, and apply the usual Green’s formula and (14)
with X (x)=X,(x,t;7), obtaining

JoSB (X, (wte). ey (x) v [ F (xt57)r (X, (0057).7)- 0 ()
+ [, dvE T (x7) -0 (X, (x,67),7)y (x) dx

+ [, (X (7)) (X, (x,57),7)y (x) dx

- BT (nsr)n(x)-o (X, (ot7), )y (x)dr

—jf (667), )y (x)dx,

(o(x, (x.t:7).7), 7) = (A(X. (0.6:7)) V(X (x.8:7).7), 7).
Lemma 7. [23] Zet X :Q— X (Q),X € C*(Q) bean invertible vector valued
function  satifying X (x)=x,Yxel . Let F=VX and assume that
F'eC'(Q). Then

[ F'n )y (x)dr = [ n(x)-w(x)y (x)detFdr, (16)

(15)

with weHl(X(Q)) and y e H'(Q), where n is the outward unit normal
vectorto I.

Now, replacing in (15) formula (16) with X (x)=X,(x,z;7), and replacing
the Robin condition, we have

_le¢ xtr)) x)dx+JF x,t,z’)( (x,t;r),f)-Vl//(x)dx

(
+_[dlvF (x.t;7)-0(X, (x.557) T)l//

(
o

+J. xtr X( ) )1//()
7w (

(17)
+J. a¢ (x.67), 1)y (x)detF, l(x,t,z')dl"
_I f (x.1;7) (//(x dx+I (x.1;7), )(//(x)detFe’l(x,t;r)dl",

(O'(X x,t; z' ,;()z(A x t; z' (X(,(x,t;z'),r),)(>.

2.3. The Combined Approximate Scheme

We now present our time-stepping procedure for (17). Let N be the number of
time steps, At =T/N be the time step, and ¢" =nAt for n=0,1/2,1,3/2,---,N
We will use the notation " (x):= t//(x,t") for a function. Moreover, for

n=0,1,---, we define
X! (x)= X, (x,0""5), F) (x)= X, (x,0""52"),
(18)

1 1
n+— n+—

1 1
X, 2 (x)=X, (x " t+2], F, 2(x)=24X (x " tmz}

1306
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By fixing ¢=¢"",n=0,1,---,N—1 in (17) and using a Crank-Nicolson me-
thod [26] with respect to 7. Thus, from (18) we have
i 9 (x)-¢" (X! ()
Q

At

(x)dvs [, 0" (1) Vo ()
2L (F) ()" (X2 (5) -y ()
21, dz-v(F:f(x)-o"<xz(x>)w<x)dx
+— j ¢ (x)y (x)dx+— jr(X;(x))¢"(X:(x))y/(x)dx
s (wl( o (x)der(F7) (3)o (x)ar
=—j( 7 +f”(X"( ) (x)dx
—j (&7 () + e () der(F2) () (),
(A7 (x)o™ (x), ;() ~ (V¢ (%) 2).
By using (8) and (11), we see that
(F7) " (x)=1(x)+ Az (2 (x))+ O((A)')
det(F?') ' (x) =1+ Ardiwy™ (x)+0((ar)'), (20)
div(E!) " (x) = aevdiy” (X2 (x))+O((ar) ).
Taking (20) into (19), we can obtain

f § - ¢" (X7 (x)) o™ +o" (X! (x))
o At 2

+%IQL” (X7)o" (X (x))-Vdx

(19)

s,

-Vdx

+%IﬂVdivv" (X: (X)) 0" (X: (x))l//dx

+J'Qr¢n+1+F(X:(;C))¢H<X:(x))l//dx (21)

g+ (1+ Atdivy™)
+| «a
g+ g” (l + Atdivv"“)

Tx 2
.[ AR A (Xn( ))de+jrk . wdr,
(A IO'M,Z):(VWH,Z)-

wdll

We propose two explicit numerical schemes to approximate X (x):
X (x)=x-Av""(x) (Euler scheme),
rHrl At i (22)
X (x)=x—Arv 2 x—;v” (x)| (Runge-Kutta scheme).

A similar notation to the one in Section 2.2 is used for the Jacobian of X},

%%
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namely,
Fp (x)=VX} (x)=1(x)-AL"™ (x).

Now, we restate three lemmas concerning properties of the characteristic line
approximations. For this, we require the time step to be bounded and the veloc-
ity to satisfy the following assumption.

Claim 1. The velocity field v e C° (W1’°o (Q)) and satisties v=0 on T .

Lemma 8. [23] Under Claim 1, if ||v| At <1/2 , we can see that

c(r'(e)
X3 (Q)=X (Q)=0. (23)
Lemma 9. [23] Under Claim 1, if ||V||c"(W'~°°(Q)) At <1/2 , we have
(F2) () =1+ (x)+ () (£ (x)) +0((a)'). (24)

Corollary 1. Under the assumptions of Lemma9, Vx e, we have

det(F7) " (x) =1+ Addivy™ (x) +O( (1)),

(25)
n -1 2
det (F{ ) ()| <14 8|V * o((ary’).
Lemma 10. [22] Under Claim 1, if w eI’ (Q) and ||V||CO(W"’°(Q)) Ar<l1/2,
then there exists a positive constant ¢ such that
"l//oX,." * < (l+cAt)||l//||2 ,forn=0,---,Nand i=E,RK, (26)

where o X/ zy/(X,").
Thus, in the case where the characteristic lines and their gradients are not ex-

plicitly known, we propose the following time approximation of (21)

¢ —¢" o X
Q At

n+1+ noXn
t//dx+.[n%-w//dx

L)X Vyer S (Vo) Ky
¢+ (1 + Atdivv™"! )
2

fn+1 +f" o X" g“l +g" (1+Atdivv"”)
= Jo e [ 2

(A%GHI,;{) _ (V¢n+1a7()~

(27)

wdl

wdl,

The time difference approximation (27) will be combined with a standard Ga-
lerkin finite element and mixed finite element in the space for ¢(x) and
o (x), respectively [27] [28]. We discrete ¢(x) in space on a quasi-uniform
finite element mesh 7, of Q with maximal element diameter /,.For o(x),
we denote as s, >0 and 7, similarly. Let Vh'; xW, < H}. (Q)xH (div;Q)
be finite element spaces with index kand / respectively.

We define a bilinear form A""* on Vh; X Wh’J X Vh; and a linear form "2

on Vh'; for n=0,---,N—1 by

K2
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n+l n n n+l n n
u = o X o, +0,0X
Ah+l/2(¢h70hﬂvjh)5(%,‘//h + %,Vl//h

+%((L”GZ)0XZ,V%)+%((Vdivvn 'O-Z)o Xg’l//")

g+ (rg))o X7 7+ gy (1+ Atdive™ ) (28)
+ > l//h ta > l//h >
I'r

2 2

>

2 2

. mil L ogng xon g”Jrl +gn 1+ Atdivw™
ﬁn 1/2(%’)E[f f E’W}J+[ ( )’WhJ
T'r

where ¢, €V} .0, .y, eVt
Then, the fully discrete scheme reads: Given ¢’ eV;", find {qﬁ;’ ,0h }N_l €
Vi, x W, such that

~’4hn+l/2 (¢h’0hﬂl//h):‘7:;:n+l/z (‘//h): v‘//hEVhZJ

(29)
(Ao ) =(Vei. ). ¥ 2,

Throughout the analysis, K will denote a generic positive constant, indepen-

dentof #,,h,,At. Similarly, & will denote a generic small positive constant.

3. Stability of the Approximate Scheme

In this section, we derive the stability of the approximate scheme (29). In order
to develop the stability, some assumptions on the different terms of (1) are re-
quired.

Claim 2. The velocity field v e C° (W2’°° (Q)) and satisfies v=0 on T.

Remark. Throughout this paper c, denotes the maximum between the
positive constant appearing in Lemma 10 and the norm of the velocity in
c (> (Q)).

Claim 3. The diffusion matrix coefficients, A, belong to W' (Q). More-
over, A is a positive definite symmetric d xd matrix and there exists a strictly
positive constant 6 which is a uniform lower bound for the eigenvalues of
AT

As a consequence of Claim 3, there exists a unique positive definite symmetric
d xd matrix function C, such that A =C* and C, eW'”(Q). Let us in-

2
troduce the constant ¢, := max {”Cl.,.”WLw(Q)} . Clearly, Claim 3, we have
1] N

5||w||z < (A’lw, w) = ||Cw||§ <c, ||w||§ , VweR". (30)

Claim 4. The reaction function, reW"”(Q), satisfies 0<y<r(x) in Q,

where y isa constant.

Under the previous claims, let ¢, == H\/;H;l»w(g)'

Claim 5. The source function f eC’ (L2 (Q)) . In Robin boundary condition,
geCO(LZ(FR)) and a>0.

. . . Y .
For a given series of functions {l//}n:o , we define the following norms

%%
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1/2
ol = mas ol Wiy = {a Sl |
o =y =y ) A vl =(A7y.w).

Similar definitions are considered for functional spaces [” (LZ(FR)) and

r (L2 (Ty )) associated to the Robin boundary condition. Moreover, we define

- 12
ol =8 Slor L, |

Lemma 11. Let the above Claims 2 - 5 and cAt<1/2 be assumed. If
{¢,§’,0,;’}N1 be the solution 0f(29). Then it holds that

n=

A (40008

2 ol il + e -5

2
0.1

L (1 + Atdivv"”)

1 +1 2 0 1 2
+—| " — @y o Xy || +—|a’” +0'”0X”||
AL h h RK " 4 h h E

Ve +(Vré) ) X
~{£(t -

reat(Nrgr [ + g | o

2 (31)

0,

1
+_
4

2 «a
+_
4

2

¢n+1
h

2 n 2 n 2 n+l
+||0'h " +cAt||0'h " +cAt||V¢h

)

o
the constant cis given by ¢=max {1, ¢ T 2c,, clc3/}/}.

Proof Substituting w, = ¢ into (28), we have

A:H/Z (¢h’o_h’¢;+1)

n+l n n n+l n n
_ B = o Xy a0 |+ o, +0, 0 X} Ao
B At P 2 T

+%((L”a,f )o X v ) +%((Vdivv" ol ) o X1, gt ) (32)

rg (g o X # gy (1+ Atdiv™ )
+ 2 ’ ¢h +a 2 ’ ¢h
I'r

=L+L+L+1,+1,+1.

Lemma 4.1 in [23] implies that

B
2At

1

T AR |

¢n+l
h

rexif)

i (33)
B = o X

Ly, . 1
2ol -2l + 5

and

K2
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L={lor - oz ozl e 5lor +or o xal
> (oo [ - caneor] )+ gl oo X (34)
26(% o, 2j+(§—202j ’ ‘1‘ o +o; oX" -

Next, by using ¢,At <1, we obtain

At
I, 371/1+c1m

Then when /;>0 and /; <0, we have

n

h

n n
L'o),

V¢lll1+l

clAt{ 2
<—ilo
2

e

|

CA[ n n+
2=l o). (35)
Similarly, for I, we obtain the estimate
At 2 1 2
1,2 —="—lo}|" =[]l 36
4 2 2 A (36)

Analogous computations to term [, give

1>6(At‘\/—¢hj ”\/—m \/-¢h)oXn
“\/_¢n+l

(37)

—max {cl,clc3/7}%(“\/;¢h

)

For the boundary integral term /,, we first use some properties of the inner
product in the space L*(T;) and the inequality (1+clAt)2 <1+3¢At to get

the estimate

”(// (1 + Atdivv™! ) (Z)IR

(1+cAr) ||1,1/||OF (1+3c,At) ||1//||

)

Then, by summing up from (33) to (38), inequality (31) follows.

0.7

for y e I’(T;). Thus, we obtain

I>a (aAt

a n+l n . n+l 2
— + 1+ Atdivv
A )

0.7 x

(38)

3
-2
4

By using Lemma 11 and following the arguments to Lemmas 5.6, 5.7 and
Theorem 5.8 in [23], we can get the following stability theorem:

Theorem 12 (Stability Theorem) Let the above Claims 2 - 5 assumed, and
{¢,:’ O }:/:1 be the solution of (29) subject to the initial value ¢, . Then there exist

two positive constants c and d =d (cl,cz,d, s, 7) , such that, for At <d , we have

1 OAt At
ooy 2ol + 2 [,

ant
(Lz)+ ¥||¢h”l’a(L2(l"R))

el (ot (Sl e, o
+||f"12(L2) + ||g"12(L2(1'R)) + At"azg||12(L2(rR))}'
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4. Error Estimate Theorem

Now, we turn to derive a priori error estimate in Z*>-norm for the solutions of
(29). In order to state error estimates, we need two following Lagrange interpo-
lation operators ([29] [30]) IT,: c’ (ﬁ) - th ,and B, :C° (f_l) - W,,/ .

Lemma 13. There exist positive constants K, and K, , independent of h,
and h, respectively, such that

k+1-s
<K

Iy - Vg s =00 Yy e (Q)NC Q). (0)
and

|Bo -0, <K.h o], .m=0.1, Voe H* (Q)nC"(Q). (41)

1+1°

Let ¢, =¢; —-11,¢",n, =¢" -11,¢", 6, =0, —Po",p, =c"—P,oc".

Corresponding to A"Y? and F""?, we introduce a bilinear form A"
on H;D (Q)XH(div;Q)XH%D (Q) and a linear form FV? on H}D (Q) for
n=0,---,N—1 as follows

dr

1\ T 1 1 1 1
+(div(Fe 2] o 20X, 2,1//}+[(r¢ Z}Xe 2,1;/}
R
+a det(Fe ZJ o Lw| ,

g

1 1 N !
JTnH/Z((//)E[f 20X, Z,Wj-i-{det(ﬂ zj g 2:‘//]

If ¢ and 0 =AV¢ are the solutions of (1), we have for n=0,---,N -1
A2 (¢’ UaW) — Frf2 (l//), Vye H}D (Q) (43)

dpY"2 il FER R R
An+1/2(¢,o-,'//)5 (—j oXe z,l// + F; 2 o 20Xe Z,Vl//

(42)

T'r

We decompose ¢,,0, as
A}:H—VQ (eh > eh W ) = (ﬁﬂ“ﬂ - ‘7:’”]/2 )(l//h ) + AZH/Q (77]7 PV )

n+l/2 n+l/2 (44)
+(.A - A )(¢,O‘,l//h),

where y, V.

In order to estimate the terms on the right-hand side of (44), we adopt the
following lemmas.

Lemma 14. [23] Assume the above Claims 2 - 5 hold, and that the coefficients
of the problem (1) satisfy veC' (W (Q))nC (W (Q))nC* (L (Q)),
V|r =0, AeW>(Q), reW>*(Q) and that ||V|| At<1/2. Let the

CO(WL‘”(Q))

solution of (43) satisty ¢peZ’, VopeZ°, ¢|FR eC? (L2 (FR)). Then, for each

1 1
n+— n+—
n=0,1,---,N -1, there exist two functions & *:Q—>R and & 2:T', >R,
such that
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(.A"H/Z _A;+1/2)(¢’ O',l//) _ (§1n+2’l//j +(§2”+2 ,V/J , (45)

VH—l rH—l
Vy e H;D (Q). Moreover, & >el*(Q), & >el’(I';) and the following
estimates hold:

n

WL
g’

<& (80) (141, +lels +lral.2),

1
n+—

(46)
&’

<& (8 (lo e, + bl )

where ¢, denotes a constant independent of Af.

0.7 g

Lemma 15. [23] Assume the above Claims 2 - 5 hold, and that the coefficients

of the problem (1) satisty veC'(W>* (Q))nC' (W' (Q)), feZ?, ge
c? (L2 (T )) and ||v||
1

() At <1/2 . Then, for each n=0,1,---,N—1, there
1
exist function &, *:Q—>R and &, *:T, > R, such that

1 1
(]:ﬂ+1/2 _]_—thrl/Z)(l//):[é;‘*z’wj_{_{gg’”'z’y/J , VV/EHI(Q) (47)
T'r
1 1
Moreover, 2:;7 e}(Q), 5;5 e ’(I'y) and the following estimates hold:

1

g’ S‘N’I(A’)z 171,z -
1 (48)

n+— ~ 2
S’ <6 (At) ||g||C2(L2(FR)) ’
oz

where ¢, denotes a constant independent of Af.
Now, we turn to bound the third term on the right-hand side of (44).

Lemma 16. Assume the above Claims 2 - 5 hold, and that the coefficients of
the problem (1) satisty ¢eC° (CO (5_2)) NC’ (H"“ (Q)) NH' (H" (Q)) and
¢,At <1/2. There exists

A (1, ppre)

< %”C&:” +(cop)ox;

) (%(Cp;’,(f@: )]
Vrep' s (Vg )o x| o, [ 5|
+% e +ef (1 + Atdivw™! ) 2& +0, (O[TAI(UZ ey )FR j (49)

2 2 2 2 2
+cAt(||9”|| + +”\/;e;f +H«/;e,’j“ o )
L

1 g 2
~7-272k
+cK; h¢ "

1
+_
8

n+l

+clle,

0n+1

2
+a

n
€

%%
o

Al

1 n
) +A_t||¢||iz(ﬂl,tn+l;]_,k+l) + At||¢

Lz(t" ,t"” ;Hk

2
~r-27121 n+l
+cK3h,

n
o e,

2
+CAt
1+1

>

K2
0:{5: Scientific Research Publishing
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with ¢=max{L,(cc, +1)/45.,c,c;/4.¢,}, & apositive constant.

Proof, From the definition of 4", we have

An+1/2 (nh’ph’ n+1)

={77:H =1 0 Xy ’eZHJ*'(p;:H +p, 0 X} ’Ale;u]

At 2
+%((L”PZ)0X2,VeZ+I )+%((Vdivvn )O X, n+1) (50)
+[r77:+1 (;’7;)0){2 ,e}’:”};_a{ﬂ;m +n) (1;Atdivv”” ) ’e;,ﬂ}

Tr

=L +L+L+1,+1+1.

From the arguments of Lemma 4.1 in [24], we get similarly the bounds of the

above terms /,,/,,/, as the followings:

_(1+er)(1+2¢ ) KB { B

ot 250 +||¢||LZ +1;Hk+l)]

' 2At

(51)

n+l 2

e, ,

1
+_
2

k+1

Issa[ (fn,,,fe,,)j [ I‘ZN (1+c1At)c3j K2

2c +cAt c,At
+( 16 3 (‘

Nrei]
rer! +(\/;e;')0Xz.

alt 1 , ., a
200, 2

. a{clAt(Z +aAr) 14204+ (Ar) j o

“\/—enﬂ

) (52)

2
el (1 + Atdivy™! )
0.x

(53)

k+1

4 2

. (ZClAt(i-i- ¢Ar) " Z|2

ory

To estimate /,, we divide it into three parts
=%[(Cp;“,cafl)—(Cp;,CH,:’)]+121 ‘1, (54)
where
I, %[(c/a:,ce:)—%((c/);)oX;;(ce:)oX;)}
Lo ={((cop)exz.conz)(or +0;0x7) |

Using the transformation y = X} (x), we have
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L, :% IQ(I—det((F£ )'1 (x))j(cp;;)(x).(ceh")(x)dx

M o] o) "
4 i 141
Now, we replacein [,, equality C(XZ (x)) =C(x)-D"(x), where

D I VC ( (x s)) 1(x)ds, ae. xeQ, (56)

with |D,;' (x)| < ¢/, At, and the function Y} (x,-): [t",t"“} —Q is defined by
Yy (x,s)=x— (t”” —s) v"(x). Thus, we get

1= ((Cot)e x2.CO1" - DOy + (07 ) X7 )

<[(cep)

Moreover, we have

(57)

’ +%Hce,y+1 +(cay)

[ +<parf

2
“(Cph" ) o Xl <(1+cAt)e,K kY ||o
||Dt9,f+1 "< cle, (At)2
By considering together from (54) to (58), we can state

1< cpinca) oS5+ eeme [k o

(2cl+clAt e, At (

41 (58)
2

n+l
o[

(59)

. Jor [ +lexl )+ SJeer +(car)e x|

Similar arguments, 7.e. Lemma 5.4 in [23] lead to

”(L”pﬁ )
H(Vdivv" o )

Using these inequalities, /; and 7, can be bounded as follows

<(1+ clAt)c1 aKin! "

i1’

(60)

(1 +oAt) i Kok o

41

- (1+cAr) el Ko hY
T 4

< (l+clAt)c1 czK h "
‘T 4

2
|11 45
oLl
141 4

(61)

o .

Gathering (50), (51), (52), (53), (59), and (61) together, we complete the
proof.

We now turn to estimate ¢/"' and o] . From the definition of A/** and

A" we see
A’:m/z (eh,O'h,eZ“) _ A n+l/2 (77h 2y eh ) (ﬁnﬂ/z —.7:“1/2)(6,':“)

n+/2 +1/2 n+l (62)
(.A A )(¢,0',eh )

From Lemma 11, we obtain the lower bound for (62)

%%
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n+l/2 n+l
A, (eh9o-h’eh )

=0 glal el el + e

2 0 2
n+l n n n+1 n n
e = <>XRK||€+—4 0" + 0,0 X7

1
+ —_—
2At

Jrej™ +(rej )o X}

(il
=3 =(ller [ +
S\l

2
+cAt(Hx/;eZ” +Hx/;e,’,”1

2
[
2 (04 2 (63)
+

et + e (14 Atdive™!
Ll e )

1
+_
4

0,0z

2

2 n 2 n 2 n+l
Vil )+ eaer]f +enefves

)

n+l
€

2 n
+ale

By jointly considering the lower bound (63), the upper bounds given in

Lemmas 14 - 16, we deduce

o gl + Sl + el + e

2
0.7z

"y ||0,;’ ||2 ) + cAt”e,j ||2 + cAt”Ve;j“
z’rk )}+a, (%(Cp;,CH,:’ )j
vo S () o r.at), |

sl s

2

n+l
€

i alP
s{3llel
2
2
+cAt(“\/;eZ“ +Hx/;e,’,’”

2
n
+ale;

2

o ) (64)

2
k+1

2 n
+ale

" cAt("a" [+

0.0k
1 2
At

99
ot

+ 2K ht {

! n
) + E"¢"iz(t"’tn+l;[{k+l) + At ||¢

Lz(tn’th;Hk

2 2

- 2
+CAt "e}':+1 " +c
+1

n+l
€

+eKIh |o"

!

I

2 2 2

1

s
S

1

Vl+2
S

L

YH~2
&

L

2
+
0.

+ + +§;2

0.0 g

Analogous computations to those developed in Lemma 16 give

Sentcon)s 2o | < Slear

[+1

2

+%H\/;e}{ ,

2

N s
2

(65)

||¢/

k+1

S (Vrnf el )=

alt 2

T(Iy,{,e,{ )FR <aco Kb At ||¢j

2 alt
+ —_—
k+1 1 6

¥ j=0,N.

e
0,z

Putting (65) into (64), multiplying (64) by Af, summing it about time form
t=0 and t=¢", taking the initial values ¢ =T1,4’,0, = F,c° and using dis-
crete Gronwall’s inequality, we can derive the following error estimate:

Theorem 17 (Error Estimate) Let Claims 2 - 5 be assumed. Let ¢ Z’ N
C'(H*'(Q))nH'(H" (Q)) be the solution of (1) with V¢ e Z°,
¢|FR eZ(Iy), {¢;,a}l’}il be the solution of (29) subject to the initial values
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¢ =
hyh

¢>"c

I1 h¢0,a,? =P,c". Then there exists a positive constant ¢ independent of
and At such that

1 OAt
T B L S
¥ g
Sch;f "¢”11l H* +||¢"c° HHH +Ch<lr "O-"c0 H (66)
) e )

S (T e 7 I W V) B Ty
3
+ C(At)z (”¢"z3,rk + ||g"z3,rk )

aAt
(22) + 16 "¢ —4, "1‘”(L2(FR))
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