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Abstract 
Genotype x environmental interaction (GxE) can lead to differences in per-
formance of genotypes over environments. GxE analysis can be used to ana-
lyze the stability of genotypes and the value of test locations. We developed an 
Rlanguage program (RGxE) that computes univariate stability statistics, de-
scriptive statistics, pooled ANOVA, genotype F ratio across location and en-
vironment, cluster analysis for location, and location correlation with average 
location performance. Univariate stability statistics calculated are regression 
slope (bi), deviation from regression (S2

d), Shukla’s variance (σi
2), S square 

Wricke’s ecovalence (Wi), and Kang’s yield stability (YSi). RGxE is free and 
intended for use by scientists studying performance of polygenic or quantita-
tive traits over multiple environments. In the present paper we provide the 
RGxE program and its components along with an example input data and 
outputs. Additionally, the RGxE program along with associated files is also 
available on GitHub at https://github.com/mahendra1/RGxE,  
http://cucurbitbreeding.com/todd-wehner/publications/software-sas-r-project/  
and http://cuke.hort.ncsu.edu/cucurbit/wehner/software.html. 
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1. Introduction 

Genotype x environmental interaction (GxE) refers to the modification of ge-
netic factors by environmental factors, and to the role of genetic factors in de-
termining the performance of genotypes in different environments. GxE can 
occur for quantitative traits of economic importance and is often studied in 
plant and animal breeding, genetic epidemiology, pharmacogenomics and con-
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servational biology research. The traits include reproductive fitness, longevity, 
height, weight, yield, and disease resistance.  

Selection of superior genotypes in target environments is an important objec-
tive of plant breeding programs. A target environment is a production environ-
ment used by growers [1] [2] [3] [4] [5]. In order to identify superior genotypes 
across multiple environments, plant breeders conduct trials across locations and 
years, especially during the final stages of cultivar development. GxE is said to 
exist when genotype performance differs over environments. Performance of 
genotype can vary greatly across environment because of the effect of environ-
ment on trait expression. Cultivars with high and stable performance are diffi-
cult to identify, but are of great value [6] [7]. 

Since it is impossible to test genotypes in all target environments, plant 
breeders do indirect selection using their own multiple-environment trials, or 
test environments. GxE reduces the predictability of the performance of geno-
types in target environments based on genotype performance in test environ-
ments [8]. An important factor in plant breeding is the selection of suitable test 
locations, since it accounts for GxE and maximizes gain from selection [9]. An 
efficient test location is discriminating, and is representative of the target envi-
ronments for the cultivars to be released. Discriminating locations can detect 
differences among genotypes with few replications. Representative locations 
make it likely that genotypes selected will perform well in target environments 
[9]. 

The analysis of variance (ANOVA) is useful in determining the existence, size 
and significance of GxE. In order to determine GxE for a group of elite cultivars, 
genotypes are often considered to be fixed effects and environments random. 
However, for the purpose of estimating breeding values using best linear un-
biased prediction (BLUP), genotypes are considered to be random and environ-
ments fixed. Some statisticians consider genotypes random effect, provided that 
the objective is to select the best ones [10]. If GxE is significant, additional sta-
bility statistics can be calculated. 

Several statistical methods have been proposed for stability analysis. These 
methods are based on univariate and multivariate models. The present paper 
focuses on univariate models for the analysis of stability measured using R pro-
gramming, so a brief description of each stability measure is provided below. 

The most widely used methods are univariate stability models based on re-
gression and variance estimates. According to the regression model, stability is 
expressed in terms of the trait mean (M), the slope of regression line (bi) and the 
sum of squares for deviation from regression ( )2

dS . High mean of a genotype 
performance is a precondition of stability. The slope (bi) of regression indicates 
the response of genotype to the environmental index, which is derived from the 
average performance of all genotypes in each environment. If bi is not signifi-
cantly different from unity, the genotype is adapted in all environments. A bi 

greater than unity describes genotypes with higher sensitivity to environmental 
change (below average stability), and greater specificity of adaptability to high 
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yielding environments. A bi less than unity provides a measure of greater resis-
tance to environmental change (above average stability), and therefore increas-
ing specificity of adaptability to low yielding environments. 

The variance parameters that measure stability statistics include stability eco-
valence ( )2

iW  proposed by [11], stability variance ( )2
iσ  proposed by [12], and 

yield stability (YSi) proposed by [13].  
Ecovalence stability index ( )2

iW  of a genotype is its contribution to the GxE 
squared and summed across all environments. Since the value of 2

iW  is ex-
pressed as a sum of squares, a test of significance for Wi

2 is not available. [12] 
proposed an unbiased estimate ( )2

iσ  of the variance of GxE plus an error term 
associated with genotype. Shukla’s stability variance ( )2

iσ  is a linear combina-
tion of Wricke’s ecovalence ( )2

iW . Shukla’s stability statistic measures the con-
tribution of a genotype to the GxE and error term, therefore a genotype with low 
σi

2is regarded as stable. According to [13], Wi
2 and σi

2 are equivalent in ranking 
genotypes for stability. 

The [14] stability statistic (YSi) is a nonparametric stability procedure in 
which both the mean (M) and [12] stability variance ( )2

iσ  for a trait are used 
as selection criteria. This method gives equal weight to M and 2

iσ . According to 
this method, genotypes with YSi greater than the mean YSi are considered stable 
[14] [15] [16].  

Genotype F ratio for each test location and correlation of test location with 
average location are important measures of location value. When the mean of all 
genotypes are equal, then the F ratio will be close to 1. If analysis of variance is 
run by location, then high genotype F ratio indicates high discriminating ability 
for that location. High and significant value of Pearson correlation of each loca-
tion with the mean of all locations indicates strong representation of mean loca-
tion performance. 

Our objective was to develop an Rlanguage program (RGxE) that gives an 
output for genotype stability and location value using univariate models, de-
scriptive statistics, genotype F ratio across location and environment, cluster 
analysis for location, and location correlation with average location perfor-
mance. In addition to the RGxE program, [17] provided a SAS program 
(SASGxE) that computes multivariate stability statistics using R program along 
with univariate stability statistics and location value using SAS programming. 
These multivariate stability statistics include the additive main effects and mul-
tiplicative interaction (AMMI) model, and genotype main effects plus GxE 
(GGE) model. RGxE uses R software (version 3.1.3 and higher). RGxE is freely 
available, annotated, and intended for scientists studying performance of poly-
genic or quantitative traits under different environmental conditions. In the 
present paper we provide the general features of RGxE program and along with 
the functionality of each module and their outputs. A supplemental file is pro-
vided with the RGxE program, instructions for the user-enetered fields required 
in RGxE program, interpretation of univariate stability statistics, example input 
data, and output from example input data. The RGxE program along with asso-



M. Dia et al. 
 

1675 

ciated files is also available on GitHub at https://github.com/mahendra1/RGxE, 
http://cucurbitbreeding.com/todd-wehner/publications/software-sas-r-project/ 
and http://cuke.hort.ncsu.edu/cucurbit/wehner/software.html. 

2. General Features and Functionality of the RGxE Program 
2.1. Overview of the RGxE Program 

RGxE is a user friendly and annotated R program that will allow user to analyze 
genotype stability and evaluate test location value of balanced mult-location rep-
licated trial data. This program generates output (.csv or .txt) into the same 
folder from where it reads input dataset and Console window of helper applica-
tion “R studio” [18] of R statistical software [19]. A schematic representation of 
RGxE is presented in Figure 1. Below are the key components of RGxE program 
which user can independently run. 

2.2. Installing and Loading Packages 

RGxEuses dplyr [20], tidyr [21], broom [22], agricolae [23], lme4 [24], afex 
[25], cluster [26], and grDevices [19] packages. The dplyr, tidyr, broom, agri- 

 

 
Figure 1. Overview of overall process of RGxE program for genotype stability and location value. 

https://github.com/mahendra1/RGxE
http://cucurbitbreeding.com/todd-wehner/publications/software-sas-r-project/
http://cuke.hort.ncsu.edu/cucurbit/wehner/software.html
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colae, lme4, afex, cluster, and grDevices packages are available from the Com-
prehensive R Archive Network (CRAN), therefore they can be installed as any 
other packages, by simply typing: 
install.packages("dplyr") 

install.packages("tidyr") 

install.packages("broom") 

install.packages("agricolae") 

install.packages("lme4") 

install.packages("afex") 

install.packages("cluster") 

install.packages("grDevices") 
Once installed, the packages have to be loaded before they can be used. This 

can be done through the library() or require() command, as shown 
below. 
library(tidyr) 

library(dplyr) 

library(sqldf) 

library(lme4) 

library(afex) 

library(broom) 

library(agricolae) 

library(cluster) 

library(grDevices) 

2.3. Input Data and Validation 

RGxE starts with user-entered field to read input data. Instructions on user ene-
tered fields are presented in Supplemental Material. The user is required to set 
current working directory using setwd(), which is input data file location, and 
pass input data file name. RGxE requires an input data file in .csv (comma sepa-
rated value) format. Highlighted fields are user entered in the code shown below 
for Windows and iOS (Mac) operating system, respectively. 
setwd("E:/PhD Research Work/PhD Articles") 

#### For Windows user #### 

tempa<- read.csv("RGxEInputData2_2016_02_15.csv", header 

= TRUE) 

#### For iOS or Mac user #### 

file.name <- "E:/PhD Research Work/PhD  

Articles/RGxEInputData2_2016_02_15.csv"  

out.name <- "E:/PhD Research Work/PhD  

Articles/GxEROutput.csv" 

tempa<- read.csv(file.name) 

The input data file is comprised of column names including YR (year), LC 
(location), RP (replication), CLT (cultigen or genotype), and dependent variable 
(Trait). Sample input data is presented in Supplemental Material. User is re-
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quired not to change the column names as program takes same variable name 
for the analysis. Dependent variable in example input data is yield (Mg∙ha−1) of 
watermelon. Hereafter, a word “genotype” is used to indicate cultigen, cultivar, 
variety or genotype. RGxE validates the structure of input data, with below ar-
guments, so that correct column types (numeric, logical, factor, or character) are 
used for statistical analysis. 
tempa$YR<- as.factor(tempa$YR) 

tempa$RP<- as.factor(tempa$RP) 

tempa$LC<- as.factor(tempa$LC) 

tempa$CLT<- as.factor(tempa$CLT) 

tempa$Trait<- as.numeric(tempa$Trait) 

To access the structure of data, the str() command can be used. 
str(tempa) 

'data.frame': 400 obs. of 5 variables: 

$ YR   : Factor w/ 2 levels "2009","2010": 1 1 1 1 1 1 

1 1 1 1 ... 

$ LC   : Factor w/ 5 levels "CI","FL","KN",..: 3 3 3 3 

3 3 3 3 3 3 ... 

$ RP   : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 

1 1 1 1 1 ... 

$ CLT  : Factor w/ 10 levels "CalhounGray",..: 3 1 9 2 

5 4 7 10 6 8 ... 

$ Trait: num 56.2 74.2 32.6 74.2 64.8 ... 

Top 6 rows of example input data can be viewed using head() command. 
head(tempa) 

    YR LC RP                CLT  Trait 

1 2009 KN  1EarlyCanada 56.236 

2 2009 KN  1CalhounGray 74.167 

3 2009 KN  1        StarbriteF1 32.601 

4 2009 KN  1CrimsonSweet 74.167 

5 2009 KN  1GeorgiaRattlesnake 64.794 

6 2009 KN  1           FiestaF1 70.907 

2.4. Genotype Stability Statistics 
2.4.1. Analysis of Variance (ANOVA) 
In multi-location replicated trial data, combined ANOVA is performed with the 
objectives to identify the significance of different effects; estimate and compare 
mean for levels of fixed factors; and estimate the size of genotype and GxE va-
riance components. The ANOVA model comprises four factors: genotype 
(CLT), location (LC), year (YR), and replication or block (RP) nested within lo-
cations and year. The response of the genotype i in the location j, year k and rep-
lication r is presented as: 

( )Response

Error
i j k r j k i j

i k j k i j k ijkr

m CLT LC YC RP LC YR CLT LC

CLT YR LC YR CLT LC YR

= + + + + ∗ + ∗

+ ∗ + ∗ + ∗ ∗ +
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where m = grand mean. Depending on the objectives of the analysis, the geno-
type, location and year are defined as random or fixed effect, which gives five 
different ANOVA models (Table 1). The genotype is random when the aim is to 
estimate variance components, genetic parameters, genetic gains expected from 
selection or different breeding strategies etc. Conversely, genotype is fixed factor 
when aim is to make comparison of test material for selection or recommenda-
tion. Similarly, location is considered as random when the main interest is to es-
timate variance components for sites that are representative of the relevant pop-
ulation within target region. Location is fixed when interest is to make explicit 
comparison of one level another and each location represents a well-defined area 
with relative to crop management. The year and replication are usually treated as 
random factor. 

Different combinations of random and fixed effects in ANOVA model have 
implications for the expectations of mean square (MS) values with the possible 
modification of the error term to be adopted in the F test. Therefore, sometimes 
the F test is not as straightforward as the ratio between two mean squares.  

RGxE computes five different cases of ANOVA:  
• case 1: CLT, YR, LC and RP–all random 
• case 2:CLT, YR and LC – fixed; RP–random 
• case 3:CLT–fixed; LC, YR and RP–random 
• case 4: LC–fixed; CLT, YR and RP–random 
• case 5: CLT and LC–fixed; YR and RP–random 

For random effect RGxE computes estimates of variance components using 
lmer() function of lme4 package. The significance of random effects is com-
puted using likelihood ratio test to attain p-values. Likelihood is the probability 
of the data given a model. The logic of the likelihood ratio test is to compare the 
likelihood of two models with each other. The model without the factor that you 
are interested in (null model) is compared with model with the factor that you 
are interested in (full model) using anova() function. It gives a Chi-Square  

 
Table 1. ANOVA models including the factors genotype (CLT), location (LC), year (YR), and replication (RP) for multi-location 
replicated trials across years in a randomized complete block design.   

Source of variation DF 
Fixed vs. random effects 

Case 1 Case 2 Case 3 Case 4 Case 5 

CLT g − 1 Random Fixed Fixed Random Fixed 

LC l − 1 Random Fixed Random Fixed Fixed 

YR y − 1 Random Fixed Random Random Random 

RP(LC*YR) (r − 1)ly Random Random Random Random Random 

CLT*LC (g − 1)(l − 1) Random Fixed Random Random Fixed 

CLT*YR (g − 1)(y − 1) Random Fixed Random Random Random 

LC*YR (l − 1)(y − 1) Random Fixed Random Random Random 

CLT*LC*YR (g − 1)(l − 1) (y − 1) Random Fixed Random Random Random 

Pooled error (r − 1)(g − 1)ly      
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value, the associated degrees of freedom and p-value. According to Wilk’s theo-
rem, the negative two times the log likelihood ratio of two models approaches a 
Chi-Square distribution with k degrees of freedom, where k is number of ran-
dom effects tested. RGxE create user defined anova_lrt() function to com- 
pute likelihood ratio test and it is stored in ANOVA model Case I code.  

The type III sum of squares (SS), MS, Fvalue of fixed effects are computed by 
fitting model in anova() function of lme4 package. The significance (p-value) 
of fixed effects is computed using mixed() function of afex package. The 
mixed() function computes type III like p-values using default method via 
Kenward-Roger approximation for degrees of freedom.  

To identify each experimental unit (EU) uniquely a distinct value must be as-
signed to EU. RGxE assign a distinct value to each combination of replication 
(RP) nested within location (LC) x year (YR) and use this new term (RPid) in 
model. After installing and calling packages, user can independently compute 
five different ANOVA models while feeding input data (tempa) in below code. 
User friendly output is generated in “data.frame” class using dplyr and tidyr 
packages. 
#####################################################

################### 

##                ANOVA: Compute analysis of variance                 

## 

#####################################################

################### 

#Generate unique id for replication for anova 

tempa$RPid<-as.factor(paste(tempa$YR, tempa$LC, tem-

pa$RP, sep=".")) 

#####################################################

################### 

###         ANOVA Case 1: CLT, YR, LC and RP - All Random            

### 

#####################################################

################### 

#full model 

fit.f1<-lmer(Trait~ 1 + (1|YR)  + (1|LC) + (1|CLT) + 

(1|YR:LC) +  

          (1|YR:CLT) + (1|LC:CLT) + (1|YR:LC:CLT) +   

          (1|RPid), data=tempa) 

#model summary 

summary1 <- summary(fit.f1) 

#variance of random factors 

variance<- as.data.frame(summary1$varcor) 

#drop rownames 

rownames(variance) <- NULL 

variance1 <- variance %>% select (-var1, -var2) %>%  
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rename(sov=grp, Variance=vcov, stddev=sdcor) 

#Type 3  test of hypothesis 

#Type III Wald chisquare tests 

anova(fit.f1, type="III") 

#Type 1  test of hypothesis 

anova(fit.f1, type="marginal", test="F") 

#model fitness 

anovacase1 <- plot(fit.f1,  

main="Model fitness Case 1: CLT, YR, LC and RP - All 

Random", xlab="Predicated Value", ylab="Residual") 

#LRT - likelihood ratio test for computing significance 

of random effect  

#create function (anova_lrt) for Likelihood ratio test, 

where parameters 

#a=outputdatasetname; example-anova1r 

#b=full model name; example-fit.f1 

#c=reduced model name; example-fit.f1r 

#d=effect name; example- "RPid", NOTE: call it in 

quotation 

anova_lrt<- function (a,b,c,d){ 

#level of significance 

  a <-anova(b,c) 

#convert anova into data frame 

  a <- data.frame(a) 

#convert rownames into column 

a$name<- rownames(a) 

# droprownames 

rownames(a) <- NULL 

  a <- a %>% filter(name=="b") %>% 

mutate(sov=d) %>% select(sov, Pr_Chisq =  

starts_with("Pr..Chisq.")) 

  # return the result 

return(a) 

} 

#null model for YR 

fit.f1y<-lmer(Trait~ 1 + (1|LC) + (1|CLT) + (1|YR:LC) + 

(1|YR:CLT) +  

                (1|LC:CLT) + (1|YR:LC:CLT) + (1|RPid), 

data=tempa) 

#level of significance 

#call function anova_lrt 

anova1y <- anova_lrt(anova1y,fit.f1,fit.f1y,"YR") 

#null model for LC 

fit.f1l<-lmer(Trait~ 1 + (1|YR) + (1|CLT) + (1|YR:LC) + 
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(1|YR:CLT) +  

                (1|LC:CLT) + (1|YR:LC:CLT) + (1|RPid), 

data=tempa) 

#level of significance 

#call function anova_lrt 

anova1l <- anova_lrt(anova1l,fit.f1,fit.f1l,"LC") 

#null model for CLT 

fit.f1c<-lmer(Trait~ 1 + (1|YR) + (1|LC) + (1|YR:LC) + 

(1|YR:CLT) +  

                (1|LC:CLT) + (1|YR:LC:CLT) + (1|RPid), 

data=tempa) 

#level of significance 

#call function anova_lrt 

anova1c <- anova_lrt(anova1c,fit.f1,fit.f1c,"CLT") 

#null model for YR:LC 

fit.f1yl<-lmer(Trait~ 1 + (1|YR) + (1|LC) + (1|CLT) + 

(1|YR:CLT) +  

                 (1|LC:CLT) + (1|YR:LC:CLT) + (1|RPid), 

data=tempa) 

#level of significance 

#call function anova_lrt 

anova1yl <- anova_lrt(anova1yl,fit.f1,fit.f1yl,"YR:LC") 

#null model for YR:CLT 

fit.f1yc<-lmer(Trait~ 1 + (1|YR)  + (1|LC) + (1|CLT) + 

(1|YR:LC) +   

                 (1|LC:CLT) + (1|YR:LC:CLT) +  (1|RPid), 

data=tempa) 

#level of significance 

#call function anova_lrt 

anova1yc <- anova_lrt(anova1yc,fit.f1,fit.f1yc,"YR:CLT") 

#null model for LC:CLT 

fit.f1lc<-lmer(Trait~ 1 + (1|YR)  + (1|LC) + (1|CLT) + 

(1|YR:LC) +  

                 (1|YR:CLT) +  

                 (1|YR:LC:CLT) + (1|RPid), data=tempa) 

#level of significance 

#call function anova_lrt 

anova1lc <- anova_lrt(anova1lc,fit.f1,fit.f1lc,"LC:CLT") 

#null model for YR:LC:CLT 

fit.f1ylc<-lmer(Trait~ 1 + (1|YR)  + (1|LC) + (1|CLT) + 

(1|YR:LC) +  

                  (1|YR:CLT) +  

                  (1|LC:CLT) + (1|RPid), data=tempa) 

#level of significance 
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#call function anova_lrt 

anova1ylc <-  

anova_lrt(anova1ylc,fit.f1,fit.f1ylc,"YR:LC:CLT") 

#null model for RP 

fit.f1r<-lmer(Trait~ 1 + (1|YR) + (1|LC) + (1|CLT) + 

(1|YR:LC) +  

                (1|YR:CLT) +  

                (1|LC:CLT) + (1|YR:LC:CLT), data=tempa) 

#level of significance 

#call function anova_lrt 

anova1r <- anova_lrt(anova1ylr,fit.f1,fit.f1r,"RPid") 

#Merge anova and level of significance 

anova1 <- bind_rows(anova1y, anova1l)%>%  

bind_rows(anova1c)%>% 

bind_rows(anova1yl)%>% bind_rows(anova1yc)%>% 

bind_rows(anova1r)%>% 

bind_rows(anova1lc)%>%bind_rows(anova1ylc) 

anova1 <- as.data.frame(anova1) 

#Merge final output 

anova_randall<- variance1%>% left_join(anova1 , by 

="sov") 

anova_randall$Pr_Chisq[anova_randall$stddev == 0] <- NA 

#Print final output 

print(anova_randall) 

sov  VariancestddevPr_Chisq 

 YR:LC:CLT  49.72994  7.051946 8.894184e−03 

    LC:CLT    0.00000  0.000000             NA 

RPid  73.91368  8.597306 4.145811e−07 

    YR:CLT    0.00000  0.000000             NA 

     YR:LC   57.81311  7.603494 7.872463e−02 

       CLT  111.69687 10.568674 1.386709e−03 

        LC  699.56950 26.449376 9.083568e−03 

        YR     0.00000  0.000000             NA 

  Residual 327.52638 18.097690             NA 

Where sov = source of variance, stddev = standard deviation, Pr_Chisq 
= Chi-Square probability 

In this example, the estimate of variance of random effects location x genotype 
(LC:CLT), year x genotype (YR:LC) and year (YR) is zero. It represent overfit-
ted model, meaning model is more complex than the data can support. Random 
effect variance estimated as zero is common with those random effects that have 
too few or small number of levels. The alternate option is to use Markov Chain 
Monte Carlo (MCMC) simulation using MCMCglmm package to get probabili-
ty of random effects.   

Fitness of ANOVA model for case 1 can be plotted using command 
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print(anovacase1), where x-axis is model predicted value and y-axis is re-
sidual value (Figure 2). The uniform distribution of fitted residuals on both side 
of the reference line (value = 0) confirms the goodness of fit.  

The best linear unbiased predictor (BLUP) of random effects can be extracted 
using ranef() function of lme4 package. BLUPs are estimates of random ef-
fects. They allow us to account environmental factors in our model and missing 
data; and can be used for making selection. BLUP tend to “shrunk” towards the 
population mean relative to their fixed effects estimates. RGxE computes BLUP 
of individual genotypes and generate user friendly output in “data.frame” 
class using dplyr and tidyr packages (see below code). 
#Compute BLUP for CLT 

#BLUP - Best linear unbiased predictor 

randeffect1 <- ranef(fit.f1) 

#BLUP for clt 

BLUP_CLT <- as.data.frame(randeffect1$CLT) 

#convert rownames into column 

BLUP_CLT$genotype<- rownames(BLUP_CLT) 

#drop rownames 

rownames(BLUP_CLT) <- NULL 

#rename variable name 

BLUP_CLT <- BLUP_CLT %>% select(genotype,Blup =  

starts_with("(Intercept)")) 

#return estimate of fixed effect from full model summary 

to compute BLUP 

fixestimate1 <- as.data.frame(summary1$coefficients) 

#compute BLUP value 

BLUP_CLT1 <- BLUP_CLT %>% 
 

 

Figure 2. Residual plot for Case 1 of ANOVA model where genotype, location, year and 
replication are treated as random effect. 
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mutate(Blup = Blup + fixestimate1$Estimate) 

#final output for BLUP for cultivars 

BLUP_CLT1 <- as.data.frame(BLUP_CLT1) 

#Print final output 

print(BLUP_CLT1) 

genotypeBlup 

CalhounGray 76.255 

CrimsonSweet 62.535 

EarlyCanada 59.840 

            FiestaF1 77.283 

GeorgiaRattlesnake 70.710 

              Legacy 68.417 

Mickylee 61.300 

Quetzali 58.744 

         StarbriteF1 83.422 

SugarBaby 51.169 

Where BLUP = best linear unbiased predictor 
Similarly, remaining four cases of ANOVA model can be independently 

computed using code presented in Supplemental Material.   

2.4.2. Descriptive Statistics 
A new additional variable environment (ENV) is created and quality check of 
missing value is performed in dataset “tempa2” using dplyr package. Environ-
ment is location-year combination, which is highlighted is below code. RGxE va-
lidates structure of dataset “tempa2” as it serves input data for descriptive and 
other statistics (Figure 1). 
#Compute environment - Location by year combination 

tempa2 <- tempa %>% 

mutate (ENV = paste(LC,YR, sep='-')) %>% 

  #remove missing records 

na.omit() 

#validate data 

tempa2$YR <- as.factor(tempa2$YR) 

tempa2$RP <- as.factor(tempa2$RP) 

tempa2$LC <- as.factor(tempa2$LC) 

tempa2$CLT <- as.factor(tempa2$CLT) 

tempa2$ENV <- as.factor(tempa2$ENV) 

tempa2$Trait <- as.numeric(tempa2$Trait) 

Top 6 rows of input data ‘tempa2’ can be viewed using head() command.  
head(tempa2) 

    YR LC RP                CLT  TraitRPid     ENV 

1 2009 KN  1EarlyCanada 56.236 2009.KN.1 KN-2009 

2 2009 KN  1CalhounGray 74.167 2009.KN.1 KN-2009 

3 2009 KN  1        StarbriteF1 32.601 2009.KN.1 KN-2009 

4 2009 KN  1CrimsonSweet 74.167 2009.KN.1 KN-2009 
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5 2009 KN  1GeorgiaRattlesnake 64.794 2009.KN.1 KN-2009 

6 2009 KN  1           FiestaF1 70.907 2009.KN.1 KN-2009 

Descriptive statistics including count, minimum (min), maximum (max), 
mean, sum, median, variance (var), standard deviation (sd), and coefficient of 
variation (cv) are computed using dplyr package. Using tidyr package results of 
descriptive statistics are transposed in user friendly layout so that researchers 
can interpret them easily (see Supplemental Material for descriptive statistics 
outputs). RGxE generates following descriptive statistics.  
• Trait mean over genotype and environment 
• Trait mean and sd over genotype and year 
• Trait mean, cv, sd and sum over genotype and location 
• Trait mean, sd, and sum over genotype, location and year 
• Trait mean over genotype, location and replication 
• Trait mean over location and year 
• Trait mean over location and replication 
• Trait count, min, max, mean, sum, median, var, and sd over location 
• Trait count, min, max, mean, sum, median, var, and sd over year 
• Trait count, min, max, mean, sum, median, var, and sd over genotype 
• Trait count, min, max, mean, sum, median, var, and sd over environment  

2.4.3. Univariate Stability Statistics  
Among univariate stability statistics, RGxE generates output of regression slope 
(bi), deviation from regression (S2

d), Shukla’s sigma (σi
2), ssquares, Wricke’s 

ecovalence (Wi) and Kang’s statistics (YSi). RGxE regresses the response of ge-
notype against the environmental index to compute regression slope (bi), devia-
tion from regression (S2

d), T-test on regression slope (H0: bi = 1) and F-test on 
deviation from regression (H0: S2

d = 0). The level of significance of T-test and 
F-test is computed using lm() function of R [19], and dplyr and tidyr packages. 
The level of significance at 0.05, 0.01 and 0.001 is represented by “*”, “**”, “***”; 
respectively. Environmental index is average performance of all genotypes in 
each environment. Stability.par() function of agricolae package is used 
to compute Shukla’s sigma (σi

2), ssquares, Wricke’s ecovalence (Wi) and Kang’s 
statistics (YSi). For selection of stable genotype, user can independently compute 
univariate stability statistics while feeding required input data (tempa2) in be-
low code. Top 6 rows of input data “tempa2” is presented in section 4.2 de-
scriptive statistics. 
#####################################################

################### 

##    Compute univariate stability statistics -  

regression analysis   ## 

#####################################################

################### 

#Compute regression (slope) and deviation from  

regression 

#compute environmental index 
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dsterm<- tempa2 %>%  

group_by (ENV, RP, YR, LC) %>% 

summarize (ENVTrait = mean(Trait,na.rm=FALSE)) 

dst02 <- tempa2 %>% 

left_join(dsterm, by=c("ENV", "RP")) %>% #Left join on 

multiple columns 

arrange (CLT) %>% 

rename (YR= YR.x, LC = LC.x ) 

#fit model 

fit_model<- dst02 %>%  

group_by(CLT) %>% #group regression analysis by cultivar  

do (model=lm(Trait~ENVTrait + ENV + RP, data=.)) 

#parameter estimates 

paramlm<- as.data.frame(fit_model %>% tidy(model)) 

glancelm<- as.data.frame(fit_model %>% glance(model)) 

augmentlm<- as.data.frame(fit_model %>% augment(model)) 

outmsed<- lapply(fit_model$model, anova) #anova output 

outmsed2 <- as.data.frame(do.call(rbind, outmsed)) 

#convert list into data.frame 

#convert rownames into column 

outmsed2$SOV <- rownames(outmsed2) 

# droprownames 

rownames(outmsed2) <- NULL 

#remove numeric values from string of rownames using 

function gsub 

outmsed2 <- outmsed2 %>% mutate(SOV = gsub("\\d+","",SOV))  

#extract unique cultivar name and merge to outmsed2 

dataset 

genotypes<- dst02 %>% select(CLT) %>% distinct (CLT) %>% 

arrange(CLT) 

#Stack 4 times to match number of rows with outmsed2 

dataset 

genotypes1 <- genotypes %>%bind_rows(genotypes) %>%  

bind_rows(genotypes) %>% bind_rows(genotypes) %>% 

arrange(CLT) 

#attach list of cultivars to outmsed2 

outmsed3 <- as.data.frame(outmsed2 %>%  

bind_cols(genotypes1)) 

#transpose outmsed3 

outmsed4 <- outmsed3 %>%  

select (CLT, SOV, MS = starts_with("Mean")) %>%  #rename 

variables 

filter (SOV != "RP")  

#transpose MS values 
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MSDS <- outmsed4 %>%  

spread (SOV, MS) %>% #transpose using library tidyr 

arrange (CLT) 

#Transpose degress of freedoms for F-test 

FDS3 <- outmsed3 %>% 

filter (SOV != "RP")%>% 

select (CLT, SOV, Df) %>% 

spread (SOV, Df) %>% #transpose using library tidyr 

rename (DF_ENVTrait = ENVTrait, DF_Residuals = Resi-

duals,  

          DF_ENV = ENV) 

#Subset parameters - paramlm dataset 

REGCOEFGS <- paramlm %>% 

filter (term == "ENVTrait") %>% 

select (-statistic, -p.value) 

#Test and level of significance of regression and 

deviation from regression 

#Merge MSDS, FDS3, REGCOEFGS 

slope<- MSDS %>% inner_join (REGCOEFGS, by = "CLT") %>%  

inner_join (FDS3, by = "CLT") %>% 

rename (MSE = Residuals, LREGMS=ENVTrait, DEVLMS = ENV,  

          BI= estimate, STDERR = std.error) 

#test significance levels 

slope1 <- slope %>% 

mutate (T_H01 = (BI-1)/STDERR , #Null Hypothesis for slope 

= 1 

          PT_H01 = 2*pt(-abs(T_H01), DF_Residuals), 

          F_DEVREG=DEVLMS/MSE, #NULL HYPOTHESIS:  

PREDICTED-ACTUAL = 0  

          PF_HO0= 1-pf(F_DEVREG, DF_ENV, DF_Residuals))  

#add legend for level of significance 

slope2 <- slope1 %>%  

mutate (SIG_SLOPE = ifelse(PT_H01 <= 0.001, "***", 

ifelse(PT_H01 <= 0.01, "**", 

ifelse(PT_H01 <= 0.05, "*","")))) %>% 

mutate (SIG_DEVREG = ifelse(PF_HO0 <= 0.001, "***", 

ifelse(PF_HO0 <= 0.01, "**", 

ifelse(PF_HO0 <= 0.05, "*","")))) 

#final regression output 

options(digits=5) 

univariate2 <- slope2 %>% 

mutate (SLOPE = paste(BI,SIG_SLOPE, sep=""),  

          DEVREG = paste(DEVLMS,SIG_DEVREG, sep="") ) %>% 

select (CLT,SLOPE, DEVREG ) 



M. Dia et al. 
 

1688 

#####################################################

################### 

#   Compute univariate stability statistics - shukla, 

ecovalence, YS   # 

#####################################################

################### 

#Compute Shukla, WrickeEcovalense, Kangs YS 

repno<- tempa2 %>%  

summarise (total_rep = n_distinct(RP)) #count total  

number of rep 

dstgl<- tempa2 %>%  

group_by (CLT, LC) %>% 

  #Summarize genotype performance across locations  

summarize (Trait = mean(Trait,na.rm=FALSE))  

dstgl1 <- dstgl %>% 

spread (LC, Trait) #transpose values 

#convert into data frame so that row containing structure 

information is deleted 

dstgl2 <- as.data.frame(dstgl1)  

#create rownames 

rownames(dstgl2) <- dstgl2[ ,1] 

shukla<- dstgl2[,-1] 

#compute MS error term 

tempa3 <- glm(Trait ~ LC + YR + LC:YR + RP %in% (LC:YR) 

+ CLT + CLT:LC +  

                CLT:YR + CLT:LC:YR, family = gaussian , 

data= tempa2 ) 

#model summary 

summary1 <- summary.glm(tempa3) 

#Error SS 

error_ss<- as.data.frame(summary1$deviance) 

error_ss1 <- error_ss %>% 

  #rename variable 

select (Deviance = starts_with("summary"), every-

thing()) 

#Error DF 

error_df<- as.data.frame(summary1$df.residual) 

error_df1 <- error_df %>% 

  #rename variable 

select (Df = starts_with("summary"), everything()) 

#MS of error 

mse1 <- as.data.frame(error_ss1/error_df1) 

mse<- mse1 %>% 

  #rename variable 
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rename (MS = Deviance) 

# MSError is used populated from ANOVA 

univariate1a <- stability.par(shukla, rep=  

repno$total_rep , MSerror=mse$MS,  

alpha=0.1, main="Genotype") 

#pool results into individual columns 

univariate1b <- univariate1a$statistics 

#create column genotype from rownames 

univariate1b$genotype <- rownames(univariate1b)  

rownames(univariate1b) = NULL #remove rownames 

names(univariate1b) [3] <- "significane_sigma"   # 

rename duplicate name dot   

names(univariate1b) [5] <- "significane_s2"   # rename 

duplicate name dot  

names(univariate1b) [2] <- "sigma"   # rename 

names(univariate1b) [4] <- "ssquare"   # rename 

univariate1c <- univariate1a$stability 

#create column genotype from rownames 

univariate1c$genotype <- rownames(univariate1c)  

rownames(univariate1c) = NULL #remove rownames 

names(univariate1c) [8] <- "legend"   # rename varia-

ble ... to legend 

#Merge  

univariate1d <- univariate1b %>% 

inner_join (univariate1c , by = "genotype") %>%  

  # deselect all columns between Yield and Stab.rating 

select (-Yield: -Stab.rating) %>%  

  # arrange the column order for final output 

select (CLT=genotype, Mean, sigma,  

significane_sigma, ssquare,  

          significane_s2, Ecovalence,YSi, legend)  

#Final stability statistics 

#Merge Univariate2 and Univariate1d 

univariate<- univariate2 %>% 

inner_join(univariate1d, by = "CLT") %>% 

mutate (SIGMA=paste(sigma,significane_sigma, ""), 

          SIGMA_SQUARE=paste(ssquare,significane_s2, 

""), 

YS_Kang =paste(YSi,legend, "")) %>% 

select (Genotype = CLT, Mean, SLOPE, DEVREG, SIGMA,  

SIGMA_SQUARE,Ecovalence, YS_Kang) 

print(univariate) 

Genotype  Mean SLOPE  DEVREG      SIGMA   SIGMA_SQUARE 

EcovalenceYS_Kang 
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CalhounGray 77.349 1.32  124.67      61.35 ns   15.76 ns    

279.75     10 + 

CrimsonSweet 62.013 1.36  1450.04*** 439.12 ns  567.99 ns   

1488.64      4 

EarlyCanada 59.000 0.32* 686.25*    253.23ns  285.37 ns    

893.77      2    

          FiestaF1 78.498 1.58  657.87     300.29 ns  

385.99 ns   1044.35     11 + 

GeorgiaRattlesnake 71.151 0.92  220.06      52.21 ns   

44.86 ns    250.52      8 + 

            Legacy 68.588 1.13  428.07     287.39 ns  

262.49 ns   1003.10      7 + 

Mickylee 60.632 0.59  705.48*    188.11 ns  195.13 ns    

685.37      3   

Quetzali 57.775 0.97  96.53       82.81 ns   86.10 ns    

348.42      1 

       StarbriteF1 85.360 1.29  221.14     157.24 ns   

78.37 ns    586.61     12 +  

SugarBaby 49.307 0.50* 332.18*    264.19ns  308.43 ns    

928.84     -1 

Where SLOPE = regression slope, DEVREG = deviation from regression, 
SIGMA = Shukla’s sigma, SIGMA_SQUARE = ssquares, Ecovalence = 
Wricke’s ecovalence, YS_Kang = Kang’s statistics, ns = non-significant, + = 
indicate stable genotype according to Kang’s stability statistics 

2.5. Location Value Statistics 

Input data “tempa2” is used to calculate genotype F ratio across location and 
environment; correlation of location with average location performance; and lo-
cation cluster analysis. 

2.5.1. Genotype F Ratio across Location and Environment;  
and Correlation among Location and Average Location 

RGxE computes analysis of variance by location using lm() function to get the 
genotype F values across location. When the mean of all genotypes are equal 
then the F ratio will be close to 1. The high genotype F value indicates high dis-
criminating ability for that location. Similarly, Pearson’s test of correlation of 
locations with average location is computed using cor.test() function of R 
built in stats package [19]. Function cor.test() provide level of significance 
of correlation and the level of significance at 0.05, 0.01 and 0.001 is represented 
by “*”, “**”, “***”; respectively. RGxE generates user friendly output for geno-
type F ratio across location and environment; and correlation of location with 
average location performance using dplyr and tidyr packages as shown in below 
code. 
#####################################################

################# 
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##      Compute location statistics - genotype F ratio 

across       ## 

##         location and environment; location correlation           

##  

#####################################################

################# 

#Location values 

#F-value of genotype across location 

#fit model 

fit_modellc<- tempa2 %>%  

group_by(LC) %>% #group regression analysis by location 

do (model1=lm(Trait~CLT + YR + CLT:YR + RP%in%YR , 

data=.)) 

#parameter estimates 

paramlmlc<- as.data.frame(fit_modellc %>% tidy(model1)) 

glancelmlc<- as.data.frame(fit_modellc %>%  

glance(model1)) 

augmentlmlc<- as.data.frame(fit_modellc %>%  

augment(model1)) 

outmsedlc<- lapply(fit_modellc$model1, anova) #anova 

output 

#convert list into data.frame 

outmsedlc2 <- as.data.frame(do.call(rbind, outmsedlc))  

#convert rownames into column 

outmsedlc2$SOV <- rownames(outmsedlc2) 

#drop rownames 

rownames(outmsedlc2) <- NULL 

#remove numeric values from string of rownames using 

function gsub 

outmsedlc2 <- outmsedlc2 %>% mutate(SOV =  

gsub("\\d+","",SOV))  

#extract unique location name and merge to outmsedlc2 

dataset 

location<- dst02 %>% select(LC) %>% distinct (LC) %>% 

arrange(LC) 

#Extract gentype F value for each location 

locvalue<- outmsedlc2 %>%  

filter(SOV == "CLT") %>% 

select (FRatioGenotype = starts_with("F value")) %>% 

bind_cols (location) %>% select (LC, FRatioGenotype) 

locvalue<- as.data.frame (locvalue) 

#Correlation between location and average location for 

each genotype  

#compute genotype mean at each location  
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glcmean1 <- tempa2 %>%  

group_by (CLT, LC) %>% 

summarize (glcmean = mean(Trait,na.rm=FALSE)) %>% 

as.data.frame(select (CLT, LC, glcmean)) 

#compute genotype mean across all location -average 

location 

gmean1 <- tempa2 %>%  

group_by (CLT ) %>% 

summarize (gmean = mean(Trait,na.rm=FALSE)) %>% 

as.data.frame(select (CLT, gmean)) 

#merge location mean with average location for each 

genotype 

lgmean<- glcmean1 %>% 

left_join(gmean1, by="CLT") %>% 

arrange(LC) %>% select (-CLT) 

#compute correlation with level of significance 

lcgcorr<- lgmean %>% 

group_by(LC) %>% 

do(tidy(cor.test(.$glcmean, .$gmean, method =  

c("pearson")))) 

lcgcorr1 <- lcgcorr %>% 

select (LC, Corr_Value = starts_with ("estimate"),  

Pvalue = starts_with("p.value")) 

#post process correlation value 

lcgcorr2 <- lcgcorr1 %>% 

mutate (SIG_CORR = ifelse(Pvalue<= 0.001, "***", 

ifelse(Pvalue<= 0.01, "**", 

ifelse(Pvalue<= 0.05, "*","")))) 

#concatenate p value symbol with correlation value 

lcgcorr3 <- lcgcorr2 %>% 

mutate (LocCorrelation=paste(Corr_Value,SIG_CORR, 

sep="")) %>% 

select (LC, LocCorrelation) 

lcgcorr3 <- as.data.frame(lcgcorr3) 

#Final location value table for output 

#compute location mean 

Locmean<- tempa2 %>% 

group_by (LC ) %>% 

summarize (Trait = mean(Trait,na.rm=FALSE))%>% 

select (LC, Mean = starts_with("Trait")) 

Locmean<- as.data.frame(Locmean) 

#merge all location value outputs for print 

LocationValue<- Locmean %>% 

inner_join (locvalue, by = "LC") %>% 
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inner_join(lcgcorr3, by = "LC") %>% 

rename (Location = LC) 

print(LocationValue) 

Location    Mean FRatioGenotypeLocCorrelation 

       CI  61.040         4.1804 0.95*** 

FL 100.153         2.2579   0.86** 

       KN   63.786         4.6964       0.90*** 

       SC  82.685         6.8813  0.88*** 

       TX  27.173         2.9966  0.89*** 

WhereFRatioGenotype = genotype F ratio, LocCorrelation 

= correlation of location with average location  

#####################################################

################### 

###              F-value of genotype across environmen                

## 

#####################################################

################### 

#fit model 

fit_modelen<- tempa2 %>%  

group_by(ENV) %>% #group regression analysis by location 

do (model2=lm(Trait~CLT + RP , data=.)) 

#parameter estimates 

paramlmen<- as.data.frame(fit_modelen %>% tidy(model2)) 

glancelmen<- as.data.frame(fit_modelen %>%  

glance(model2)) 

augmentlmen<- as.data.frame(fit_modelen %>%  

augment(model2)) 

outmseden<- lapply(fit_modelen$model2, anova) #anova 

output 

#convert list into data.frame 

outmseden2 <- as.data.frame(do.call(rbind, outmseden))  

#convert rownames into column 

outmseden2$SOV <- rownames(outmseden2) 

# droprownames 

rownames(outmseden2) <- NULL 

#remove numeric values from string of rownames using 

function gsub 

outmseden2 <- outmseden2 %>% mutate(SOV =  

gsub("\\d+","",SOV))  

#extract unique environment name and merge to outmseden2 

dataset 

environment<- dst02 %>% select(ENV) %>% distinct  

(ENV) %>% arrange(ENV) 

#Extract gentype F value for each location 
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locvalue2 <- outmseden2 %>%  

filter(SOV == "CLT") %>% 

select (FRatioGenotype = starts_with("F value")) %>% 

bind_cols (environment) %>% select (ENV, FRatioGenotype) 

locvalue2 <- as.data.frame (locvalue2) 

print(locvalue2) 

      ENV FRatioGenotype 

  CI-2009         2.4015 

  CI-2010         3.3665 

  FL-2009         2.6914 

  FL-2010         1.7231 

  KN-2009         1.9999 

  KN-2010         6.3971 

  SC-2009         2.8729 

  SC-2010         8.0454 

  TX-2009         2.5003 

TX-2010         1.4619 

Where ENV = environment, FRatio Genotype = genotype F ratio 

2.5.2. Location Cluster Analysis 
Hierarchical cluster analysis for location relatedness is computed using 
hclust() function of R built in stats package [19]. The arguments passed to 
hclust() function include Euclidean distance computed from dist() func-
tion and Ward’s method. Function dist() of R built in stats package [19] 
computes and return the distance matrix between rows of a data matrix. Tree or 
dendogram of cluster analysis is generated using plot() function, of R built in 
graphics package [19], as shown in below code. 
#####################################################

################### 

###               Compute cluster analysis of location               

### 

#####################################################

################### 

#location cluster analysis  

#Euclidean distance 

#Ward Hierarchical Clustering 

#trait mean over location 

mean_l<- tempa2 %>% 

group_by (LC ) %>% 

summarize (Trait = mean(Trait,na.rm=FALSE)) 

mean_l1 <- as.data.frame(mean_l) 

clusterdata<- mean_l1 %>% select (Trait)  

clusterdata<- na.omit(clusterdata) 

distance<- dist(clusterdata, method = "euclidean") # 
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distance matrix 

hcluster<- hclust(d=distance, method="ward.D") 

locationcluster<- plot(hcluster, labels=mean_l1$LC) # 

display dendogram 

3. Final Output 

After all computation is over, RGxE clears the Console Window of R studio then 
saves the output using sink() function along with the system date and time 
using Sys.time() function of R built in base package [19]. RGxE auto saves 
the output (output name = “RGxEOutput”) in folder which is defined in-
setwd() command in the beginning of the program. Program gives user op-
tion to save results in .csv (RGxEOutput.csv) or .txt (RGxEOutput.txt) 
format. Output, in .txt format, from sample input data generated by RGxE is 
presented in Supplemental Material. Additionally, RGxE prints the output in 
Console Window of R studio. 

4. Result Interpretation 

Interpretation of univariate stability statistics is presented in Supplemental Ma-
terial. Additionally, studies published on genotype stability [27] and location 
value [28] used SASGxE program [17], which is equivalent to RGxE program. 
Similarly, research study on stability of watermelon fruit quality traits used 
RGxE program [29]. Thus, these studies can serve as source of RGxE output in-
terpretation. Also, interpretation of RGxE and SASGxE program is available at 
available at http://cuke.hort.ncsu.edu/cucurbit/wehner/software.html. 
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Supplemental Material 

The supplemental material available online includes the RGxE program, instruc-
tions for user enetered field needed in RGxE program, independent module of 
ANOVA model case 2 to 5 (Table 1), interpretation of univariate stability statis-
tics, example input data and output from example input data generated from 
RGxE program. Additionally, interpretation of univariate and multivariate sta-
tistical analysis is provided in [17]. 

http://cucurbitbreeding.com/wp-content/uploads/2016/05/RGxE17Suppleme
nt.pdf  

List of Abbreviations 

AMMI = Additive main effects and multiplicative interaction model 
ANOVA = Analysis of variance 
BLUP = Best linear unbiased prediction 
CLT = Cultigen or genotype 
CRAN = Comprehensive R Archive Network 
CSV = Comma Separated Value 
CV = Coefficient of variation 
DF = Degrees of freedom 
ENV = Environment (location - year combination) 
EU = Experimental unit 
GGE = Genotype main effects plus Genotype x environmental interaction ef-

fect model  
GxE = Genotype x environmental interaction 
H0 = Null hypothesis 
LC = Location 
Max = Maximum 
MCMC = Markov Chain Monte Carlo 
Min = Minimum 
MS = Mean square 
RGxE = R program for the analysis of genotype stability and location value 
RP = Replication 
RPid = Replication id, which is an experimental unit 
Sd = Standard deviation 
SS = Sum of square 
Var = Variance 
YR = Year 
bi = Regression slope 

2
dS  = Deviation from regression  
2
iσ  = Shukla’s variance 

Wi = Wricke’secovalence 
YSi = Kang’s yield stability 
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