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Abstract 
This research paper represents a numerical approximation to non-linear 
two-dimensional reaction diffusion equation from population genetics. Since 
various initial and boundary value problems exist in two-dimensional reac-
tion-diffusion, phenomena are studied numerically by different numerical 
methods, here we use finite difference schemes to approximate the solution. 
Accuracy is studied in term of 2L , L∞  and relative error norms by random 
selected grids along time levels for comparison with exact results. The test 
example demonstrates the accuracy, efficiency and versatility of the proposed 
schemes. It is shown that the numerical schemes give better solutions. More-
over, the schemes can be easily applied to a wide class of higher dimension 
nonlinear reaction diffusion equations with a little modification. 
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1. Introduction 

Let us consider a population distributed in a linear habitat, such as shore line, 
which occupies with a uniform quantity of density [1]. If at any point of the 
habitat, a mutation occurs, which happens to be in some degree, however, slight, 
advantageous to survival, in the totality of its effects [1] [2]. We may expect the 
mutant gene to increase at the expense of all allelomorph or allelomorphs 
previously occupying the same set of points [2] [3]. This process will be first 
computed in the neighbourhood of the occurrence of the mutation and later, as 
the advantageous gene is diffused into the surrounding population, in the 
adjacent portions of its range [3]. Supposing that this range to be long compared 
with the distances separately, the sites of offspring from these of their parents, 
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there will be advancing from origin, a wave of increase in the gene frequency [4]. 
Let us consider the following possible postulates of above phenomena. 

Let p  be the frequency of the mutant gene, and q  is its parent allelomorph 
and we suppose, it is only the allelomorph parent [4] [5]. Let m  be the 
intensity of the selection in favour of the mutant gene, supposing independence 
of p . Let us suppose that the rate of diffusion per generation across any 
boundary may be equated to xk p− ∂  at that boundary, x  being the 
coordinate measuring position in the linear habitat [5]. Then p  must satisfy 
the differential equation,  

t xxp kp mpq= +                          (1) 

where t  represents time in generation, where constant k  is coefficient of 
diffusion analogous which is used in physics. 

2. Governing Equation  

Many complicated natural phenomena, such as the spreading of bushfire and 
epidemics, and the non-linear evolution of a population in a two dimensional 
habitat [6] [7] [8] [9], (in which the balance of reaction and diffusion are 
concerned) can be modelled by a two dimensional reaction-diffusion equation  

( ) ( )
( ) ( )

t xx yy

t

u u u f u

u u f u

α

α

= + + 


= ∇ ⋅ ∇ + 

β

β
                    (2) 

where u  is a dimensionless temperature or population density, tu  is the rate 
of increase of u  with time t , ∇  is the gradient operator in two dimensional 
space, β  is a constant second order tensor measuring the diffusivity of the 
media, and ( )f u  is a non-linear function of u  representing the effect of 
reaction or multiplication. Also µ  represents reactive constant after diffusion 
occurs. Assuming 1β  and 2β  are the principal values of β  as in Equation 
(2) and x and y are coordinates along the principle axes, Equation (2) can be 
written as  

( )1 2 1t xx yyu u u u uβ β α= + + −                    (3) 

3. Exact Solution  

To derive the exact solution of the given system in Equation (3), we assume the 
exact solution of the two dimensional non-linear reaction diffusion equation is 
[10] [11] [12] [13],  

( )
2

π π, , 20 80 sin sin
2 2

πWhere  
2

Dt x yu x y t y e

D β

    = + −          
= − 

           (4) 

4. Numerical Methods  

We consider the numerical solution of the non-linear Equation (3) in a finite 



S. Hasnain et al. 
 

185 

domain ( ){ }, ,x y a x b c y dΩ = < < < < . The first step is to choose integers n 
and m to define step sizes ( )h b a n= −  and ( )k d c m= −  in x and y di- 
rections respectively. Partition the interval [a, b] into n equal parts of width h 
and the interval [c, d] into m equal parts of width k. Place a grid on the rectangle 
R by drawing vertical and horizontal lines through the points with coordinates 

( ),i jx y , where ix a ih= +  for each 0,1,2,i n=   and jy c jk= +  for each 
0,1, 2,j m=   also the lines ix x=  and jy y=  are grid lines, and their 

intersections are the mesh points of the grid. For each mesh point in the interior 
of the grid, ( ),i jx y , for 1,2, , 1i n= −  and 1,2, , 1j m= − , we apply dif- 
ferent algorithms to approximate the numerical solution to the problem in 
Equation (3) also we assume , 0,1, ,Nt Nt N= =   where t is the time.  

4.1. Second Order Implicit Scheme 

We apply Crank Nicolson implicit finite difference scheme to Equation (3),  
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         (5) 

4.2. Computationally Efficient Implicit Scheme 

In search of a time efficient alternate, we analysed the naive version of the 
Crank-Nicolson scheme for the two dimensional equation, and find out that 
scheme is not time efficient [14] [15] [16] [17] [18]. To get high time efficiency, 
the common name of Alternating Direction Implicit (ADI) method, can be used. 
The derivation to ADI scheme, we have following steps;  

ADI formulation: Peaceman-Rachford algorithm: 

Introduce an FTCS scheme for the first time step 1
2

n= + , of the form  
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in the compact form, above equation can be seen as:
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Now let us consider the second time step,  
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The trick used in constructing the ADI scheme is to split time step into two, 
and apply two different stencils in each half time step, therefore to increment 
time by one time step in grid point , we first compute both of these stencils are 
chosen such that the resulting linear system is block tridiagonal [19] [20] [21] 
[22]. To obtain the numerical solution, we need to solve a block non-linear 
tridiagonal system at each time step. We have done this by using Newton’s 
iterative method.  

Algorithm 1: 
The non-linear system in Equations (6) and (7), can be written in the form:  

( ) 0R W =                              (8) 

where ( ) ( )1 1 1 1 1 1
1 2 3 2 1 1 2 2, , , , ,  , , , , , ,t n n n n n n

n m mR r r r r W u v u v u v+ + + + + += =   and  

1 2 3 2, , , , nr r r r  are the non-linear equations obtained from the system (6 and 7). 
The system of equations, is solved by Newton’s iterative method using the 
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following steps  
1) Specify ( )0W  as an initial approximation.  
2) For 0,1,2, .k =   until convergence achieve.  

• Solve the linear system ( )( ) ( ) ( )( ) ,k k kA W W R W∆ = −   
• Specify ( ) ( ) ( )1k k kW W W+ = + ∆ ,  
where ( )( )kA W  is ( )m m×  Jacobian matrix, which is computed analytically 
and ( )kW∆  is the correction vector. In the iteration method solution at the 
previous time step is taken as the initial guess. Iteration at each time step is 
stopped when ( )( )kR W Tol

∞
≤  with Tol is a very small prescribed value. The 

linear system obtained from Newton’s iterative method, is solved by Crout’s 
method. Convergence done with iterations along less CPU time [23].  

Algorithm 2: 
Clearly, the system is tridiagonal and can be solved with Thomas algorithm. 

The dimension of J is n m× . In general a tridiagonal system can be written as,  

1 1 1, with 0i i i i i i i na x b x c x S a c− ++ + = = =  

above system can be written as in a matrix-vector form,  

Ju S=  

where J  is a coefficient matrix (Jacobean Matrix), which is known, comes 
from Newton’s iterative method. Right hand side is column vector which is 
known. Our main goal is to find the resultant vector u . Now we have  
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technique is explained in the following steps,  
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By equating both sides of the Ju S= , we get the elements of the matrices L  
and U . The computational tricks for the implementation of Thomas algorithm 
are shown in results, taken from a specific examples.  

5. Error Norms  

The accuracy and consistency of the schemes is measured in terms of error 
norms specially 2L  and L∞  [23] [24] [25] [26] which are defined as:  
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1 1

ecact Approximation ecact Approximation
2 2 1

2ecact Approximation
, ,

relative 2exact
,

2

max

Error

log Error Error
Rate

log

m

j j
i m j

m

j j
j

i j i j
i j

i j
j

h h

L u u u u

L u u u u

u u

u

h h

∞ ∞ ≤ ≤ =

=

= − = −

= − = −

−
=

=

∑

∑

∑∑

∑

( )( )2


















       (9) 

6. Results  

Numerical computations have been performed using the uniform grid. Table 1 
& Table 2 represent results at different grids and time level using Crank 
Nicolson implicit scheme. We fixed some parameters such as time step 

0.0001,k =  1 2 1β β= =  and 1 2 1 4β β= = . Scheme convergence viewed 
through 2L , L∞ , relative error norms [27] [28] [29] [30]. Table 3 & Table 4 
represent results at different grids and time level using ADI implicit scheme, 
keeping fixed parameters as we did before. In Table 5, we get results using ADI  

 
Table 1. Estimates of results using Crank Nicolson with some fixed parameters such as 

0.0001k = , 1t =  at different grids and [ ] [ ], 10 10a b = − . Error magnifies through 2L , 

L∞  and relativeError . 

 1 2 1β β= =  1 2 1 4β β= =  

Time = t x 2L  L∞  relativeL  2L  L∞  relativeL  

1 21 × 21 0.0639 0.0109 0.0099 0.0531 0.0109 0.0097 

 51 × 51 0.0313 0.0059 0.0043 0.0213 0.0051 0.0031 

 101 × 101 0.0112 0.0017 0.0009 0.0115 0.0021 0.00099 
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Table 2. Estimates of results using Crank Nicolson with some fixed parameters such as 
0.0001k = , grid 61 61= ×  at different time level and [ ] [ ], 10 10a b = − . Error magnifies 

through 2L , L∞  and relativeError . 

 1 2 1β β= =  1 2 1 4β β= =  

Grid t 2L  L∞  relativeL  2L  L∞  relativeL  

61 × 61 0.2 0.0791 0.0692 0.0543 0.0789 0.0670 0.0512 

 0.4 0.0998 0.0891 0.0753 0.0990 0.0881 0.0615 

 0.6 0.1386 0.0993 0.0991 0.1189 0.0987 0.0899 

 
Table 3. Estimates of results using ADI scheme, such as 0.0001k = , 1t =  at different 
grids and [ ] [ ], 10 10a b = − . Error magnifies through 2L , L∞  and relativeError . 

 1 2 1β β= =  1 2 1 4β β= =  

Time = t x 2L  L∞  relativeL  2L  L∞  relativeL  

1 21 × 21 0.0304 0.0211 0.0069 0.0344 0.0209 0.0063 

 51 × 51 0.0110 0.0073 0.0037 0.0210 0.0079 0.0033 

 101 × 101 0.0099 0.0051 0.00099 0.0100 0.0062 0.000891 

 
Table 4. Estimates of results using ADI scheme with some fixed parameters such as 

0.0001k = , grid 61 61= ×  at different time level and [ ] [ ], 10 10a b = − . Error magnifies 

through 2L , L∞  and relativeError . 

 Crank Scheme ADI Scheme 

Grid t 2L  L∞  relativeL  2L  L∞  relativeL  

61 × 61 0.2 0.0263 0.0231 0.0181 0.0263 0.0223 0.0171 

 0.4 0.0332 0.0297 0.0251 0.0331 0.0294 0.0205 

 0.6 0.0462 0.0331 0.0330 0.0396 0.03167 0.0890 

 
Table 5. Estimates of results using ADI and Crank Nicolson schemes, with reducing step 
size. 

 1 2 1β β= =  1 2 1 4β β= =  

Grid Step Size 2L  L∞  relativeL  2L  L∞  relativeL  

61 × 61 h 0.0197 0.0117 0.00585 0.0205 0.01897 0.00889 

 h/2 0.0027 0.0021 0.000675 0.0089 0.0051 0.000989 

 h/8 0.0012 0.00096 0.00015 0.0021 0.00099 0.00049 

 
scheme at very small step spacing to understand the importance of reducing 
steps. Rate of convergence can be seen from Table 6, which explains two implicit 
schemes. Figure 1 & Figure 2 show results for CN for different times and grids 
respectively. Figure 3 & Figure 4 show results for ADI for different times and 
grids respectively. Figure 5 gives comparison of two implicit schemes for 
reducing step spacing in x and y directions respectively. Last Figure 6 shows 
interesting results for different times. Sharp edges remove during increasing  
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Table 6. Presents results using ADI and CN schemes, with rate of convergence. 

 CN Scheme ADI Scheme 

Time t = 1 Grid 
Rate 

2L  
Rate 
L∞  

Rate

relativeL  
Rate 

2L  
Rate 
L∞  

Rate

relativeL  

1 41 × 41 2.9385 - - - - - 

 101 × 101 2.9187 1.6739 1.001 2.1131 1.0843 0.0471 

 201 × 201 1.231 1.1129 1.0009 1.0938 1.0627 0.0710 

 

 
Figure 1. Shows results using CN scheme, at different time levels, fixed some parameters as 
we mentioned in Table 1. 

 

 
Figure 2. Shows results using CN scheme, at different grids, fixed some parameters as we 
mentioned in Table 1 & Table 2. 
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Figure 3. Shows results using ADI scheme, at different grids, fixed some 
parameters as we mentioned in Table 3 & Table 4. 

 

 
Figure 4. Shows results using ADI scheme, at different time levels, fixed 
some parameters as we mentioned in Table 3 & Table 4. 

 

 
Figure 5. Shows results using ADI scheme, for two different h. See Table 5. 
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Figure 6. Shows results at different time for simple error in the concentration of the 
diffusion reaction phenomena. As we mentioned in this paper u(x, y, t) be the 
concentration of the chemical. With step-up in grid size, make significant change in error 
but incremental in time, increase error as we can see from this figure. With increase in 
time, reduce the sharp edge as we mentioned in figure by arrows. These results are very 
interesting during simulations. 
 
time level [31] [32] [33] [34]. These results are very interesting for us to 
understand the efficency of the later scheme.  
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