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Abstract 
We analyse the mixed convection flow in a cavity flow which is driven by 
buoyancy generated due to a non-uniformly heated top wall which is moving 
uniformly. A fourth order accurate finite difference scheme is used in this 
study and our code is first validated against available data in the literature. 
The results are obtained for different sets of Reynolds number Re , Prandtl 
number Pr  and Grashof number Gr  which are in the ranges 100 - 3000, 
0.0152 - 10 and 102 - 106 respectively. Here Gr  is related to the Richardson 
number according to 2Ri Gr Re= . While increasing the Richardson num-
ber, the growth of upstream secondary eddy (USE) is observed together with a 
degradation of downstream secondary eddy (DSE). When mixed convection is 
dominant, the upstream secondary eddy and the downstream secondary eddy 
merge to form a large recirculation region. When the effect of Pr  is studied 
in the forced convection regime, 1Ri  , the temperature in the central re-
gion of the cavity remains nearly a constant. However, in the mixed convec-
tion regime, the temperature in cavity undergoes non-monotonic changes. 
Finally, using the method of divided differences, it is shown that numerical 
accuracy of the derived numerical scheme used in this work is four. 
 
Keywords 
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1. Introduction 

In order to fill the gap between the results of numerical simulations and experi-
ments, several factors have to be considered and one among them is the accuracy 
and reliability of numerical scheme employed in the simulations. If we use the 
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traditional second order accurate central difference method, they suffer from 
computational instability and may not converge when convective terms domi-
nate. While the upwind method suppresses the unwanted physical oscillations 
and enables us to get solutions for a large range of cell Reynolds numbers, the 
major disadvantage associated with the upwind method is that its order of accu-
racy is very low, which is ( )h  where h  is the grid size. In the past, in order 
to get optimal solution for the wide range of parameters, researchers generate 
benchmark results by applying the central difference operator to diffusion terms 
and upwind to convection dominated part of the governing equation [1]. Re-
cently higher order finite difference schemes have gained importance due to 
their interesting properties such as unconditional stability, computational cost, 
effectiveness and hence efficiency in solving non-linear problems. 

The study of recirculation of the fluid inside a square cavity forms the basis to 
many applications including energy engineering, nuclear reactor [2], cooling of 
electronic devices [3] [4] [5], the study of chaotic mixing [6], production of 
plane glass, study of coupling between evaporation and condensation [7], and in 
understanding dynamics of water in lakes and ponds [8]. In particular, if the 
viscosity of the fluid is strongly temperature dependent, then buoyancy effects 
mix with the inertial effects, leading to complex flow dynamics. In the fluid flow, 
if the natural buoyancy driven effect and forced shear driven convection effect 
have comparable magnitude, we have the mixed convective heat transfer. Expe-
rimental results on the mixed convection in the bottom-heated rectangular cavi-
ty flow show that the heat transfer coefficient is insensitive to the Richardson 
number [9]. Experimental studies on the natural convection in tilted rectangular 
cavity have been studied [10] and it is found that the heat transfer depends on 
the angle of heating the top wall. It is found that for 10Ri =  multi-cellular flow 
is observed which alter the isotherm structure. The instability in the mixed con-
vective flow and heat transfer in a cavity for positive and negative values of Gra-
shof number Gr  in which top upper wall is heated with constant temperature 
are studied [11] and it is found that if the aspect ratio of the cavity is equal to 2, a 
Hopf bifurcation takes place. A numerical study on the mixed convection lid 
driven flow in a square cavity with cold vertical walls and sinusoidally heated 
bottom wall show that the strength of circulation increases with Gr  and irres-
pective of Re  and Pr  and further that the overall power law correlation for 
mean Nu  could not be obtained [12]. The effect of different orientation of 
temperature gradient in the mixed convective heat transfer is studied recently 
[13] using a finite difference scheme similar to the one in [14] and found that 
heat transfer rate increases with the decrease of Ri  which is independent of the 
orientation of temperature gradient on the adiabatic walls. It is also found that a 
thermally stratified fluid will result when the top wall is heated and bottom wall 
is kept cold. A further extension of studies to evaluate the effect of Richardson 
and Prandtl number is also reported [15]. Essentially, most of the studies in the 
literature focus on the flow and heat transfer properties due to bottom uniformly 
and non-uniformly heated surfaces [13] [15]-[25], studies emerging due to 
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heating of vertical walls [26]-[33], reports on uniformly heated top wall [34] 
[35], and studies employing internal heat sources [36] [37]. A summary of pre-
vious studies employing different numerical schemes with various heating con-
figurations is listed in Table 1. In the present work, we undertake a systematic 
analysis of mixed convection flow and associated heat transfer effects in a flow 
induced by a non-uniformly heated top lid which is moving uniformly using a 
high order accurate numerical scheme coupled with multigrid method. 
 
Table 1. An overview of previous reports on the lid-driven cavity flows with various types 
of heating configuration and numerical methods used.  

Authors 
Heat transfer 

studies 
Adiabatic 

walls 
Heating configuration 

Numerical  
method 

Ahmed et al. (2016) MC Horizontal Constant heating of bottom corner FVM 

Malleswaran and  
Sivasankaran (2016) 

MC Horizontal Constant heating of bottom corner FVM 

Mamourian et al. 
(2016) 

MC Horizontal Constant heating of left wall FVM 

Kareem et al. (2016) MC Horizontal Constant heating of bottom wall FVM 

Bettaibi et al. (2015) MC None 
Varying temperature on bottom 

wall 
LBM 

Garoosi et al. (2015) NC and MC All walls Constant heating on square pillars FVM 

Nayak et al. (2015) MC Horizontal Constant heating of left wall FVM 

Kefayati (2015) MC Horizontal Constant heating of left wall LBM 

Kefayati (2014) MC Horizontal Varying temperature on right wall LBM 

Jamai et al. (2014) NC Horizontal 
Varying temperature on vertical 

walls 
FEM 

Karimipour et al. 
(2014) 

MC Vertical Constant heating of top wall LBM 

Hussein and Ali (2014) MC Vertical 
Varying temperature on bottom 

wall 
FDM 

Ismael et al. (2014) MC Vertical Constant heating of bottom wall FDM 

Mahapatra et al. (2013) NC Horizontal 
Varying temperature on left and 

bottom walls 
FDM 

Mekroussi et al. (2013) MC Vertical Constant heating on bottom wall FVM 

Al−Salem et al. (2012) MC Vertical 
Varying temperature on bottom 

wall 
FVM 

Kefayati et al. (2012) MC Horizontal Varying temperature on left wall LBM 

Arani et al. (2012) MC Horizontal 
Varying temperature on vertical 

walls 
FVM 

Chamkha and 
Abu−Nada (2012) 

MC Vertical Constant heating of top wall FVM 

Basak et al. (2011) MC Horizontal 
Varying temperature on vertical 

and bottom walls 
FEM 

Billah et al. (2011) MC Horizontal 
Constant heating of rod at the 

centre 
FEM 

Cheng (2011) MC Vertical Constant heating on bottom wall FDM 

Nasrin (2011) MC Horizontal Constant heating on right wall FEM 

Cheng and Liu (2010) MC Vertical Constant heating on bottom wall FDM 

Abbreviation: MC: Mixed Convection; NC: Natural Convection; LBM: Lattice Boltzmann Method; FVM:  
Finite Volume Method; FEM: FiniteElement Method; FDM: Finite Difference Method. 
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2. Modelling and Governing Equations 

We consider steady, viscous, incompressible fluid which is completely filled in-
side a square cavity. The schematic diagram for the flow configuration and the 
boundary condition applied are depicted in Figure 1. Only the upper lid is al-
lowed to move with a uniform velocity from left to right. The side vertical walls 
marked with A are thermally adiabatic. The Boussinesq approximation for the 
fluid is applied so that its density variation together with physical movement of 
lid leads to non-isothermal laminar mixed convection in cavity. The governing 
equations are Navier-Stokes equations with buoyancy term coupled with energy 
equation together with incompressibility condition and are given by 

( ) ( )21 ˆh c yp g T Tν β
ρ

⋅∇ = − ∇ + ∇ + −q q q a                 (1) 

( ) ( )T Tα⋅∇ = ∇ ⋅ ∇q                         (2) 

0∇ ⋅ =q                            (3) 

where , ,p Tq  are velocity, pressure and temperature of the fluid respectively. 
The kinematic viscosity of the fluid is ν  and let β  be the volumetric coeffi-
cient of thermal expansion of the fluid. Let hT  and cT  denote the hot and cold 
wall temperatures and α be the thermal diffusivity of the fluid. Non-dimensio- 
nalization is carried out with the following definitions 

** * * * *

2
0 0 0

, , , , , c

h c

T Tpp T
H H q q T Tqρ

−
= = = = = =

−
x y u vx y u v     (4) 

where *  denotes physical quantities in dimensional form. Further let the uni-
form velocity of the top wall be ( ) ( )0 , 1,0q u v= = . Based on the above scaling 
parameters, the non-dimensionalized form of the governing equations are 

( ) 2
2

1 ˆGrp T
Re Re

⋅∇ = −∇ + ∇ + yq q q a                    (5) 

( ) 21T T
RePr

⋅∇ = ∇q                          (6) 

0∇ ⋅ =q                              (7) 

where ˆ ya  is the unit vector in direction normal to gravitational force and T  
denotes the dimensionless temperature of the fluid. The dimensionless parame- 
ters for the problem are the Reynolds number Re , the Grashof number Gr  
and the Prandtl number Pr  and a non-independent parameter Richardson 
 

 
Figure 1. Schematic diagram of square cavity with vertical adiabatic walls for mixed 
convective heat transfer simulation. 
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number Ri . In the stream function-vorticity or ψ-ω formulation, the governing 
equations become 

2 2

2 2x y
ψ ψ ω∂ ∂

+ = −
∂ ∂

                            (8) 

2 2

2 2
1 Tu v Ri

x y Re xx y
ω ω ω ω ∂ ∂ ∂ ∂ ∂
+ = + + ∂ ∂ ∂∂ ∂ 

                 (9) 

2 2

2 2
1T T T Tu v

x y RePr x y
 ∂ ∂ ∂ ∂

+ = + ∂ ∂ ∂ ∂ 
                   (10) 

where ω  is vorticity of the fluid, u and v are defined in terms of streamfunc-
tion as 

= ∇× qω                            (11) 

u
y
ψ∂

=
∂

                            (12) 

v
x
ψ∂

= −
∂

                           (13) 

The boundary conditions used in the present case are as follows. Let the hori-
zontal and vertical components of velocity q  be u and v respectively. Only for 
the top horizontal wall, 1u =  and 0v =  is applied. For all other walls, 

0u v= = . Also, 0ψ =  on all walls. The viscosity of the fluid which is in con-
tact with the surface of the wall generates vorticity ω  in the fluid, which is 
given by 2 2nω ψ= −∂ ∂  where n refers to a direction perpendicular to the wall. 
The boundary conditions for temperature is as follows. A linearly varying tem-
perature given by 1T x= −  is prescribed for the top moving wall while the 
bottom horizontal wall is held at fixed temperature given by 0T = . The two 
vertical walls are held thermodynamically adiabatic which means no heat flux 
can enter or leave the wall and therefore we have 0T∂ ∂ =n  on the vertical 
walls. Here n  refers to a direction normal to the surface of the wall. 

3. Discretization Scheme 

Here, we describe the discretization procedure for to the governing set of partial 
differential equations. Let h and k denotes the grid spacing ( )h k≠  then, from 
Taylor series expansion, we have, the fourth order accurate finite difference re-
presentation for the first and second derivatives as follows. 

( )
2 3

4
36

hD hξ
φ φφ
ξ ξ
∂ ∂

= − +
∂ ∂

                  (14) 

( )
2 2 4

2 4
2 412

hD hξ
φ φφ
ξ ξ
∂ ∂

= − +
∂ ∂

                  (15) 

( )
2 3

4
36

kD hη
φ φφ
η η
∂ ∂

= − +
∂ ∂

                  (16) 

( )
2 2 4

2 4
2 412

hD hη
φ φφ
η η
∂ ∂

= − +
∂ ∂

                  (17) 
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where Dξ , 2Dξ , Dη  and 2Dη  are second order central difference operators 
which are given by 

1, 1,
, 2

i j i j
i jD

hξ

φ φ
φ + −−

=                           (18) 

1, , 1,2
, 2

2i j i j i j
i jD

hξ

φ φ φ
φ + −− +

=                        (19) 

, 1 , 1
, 2

i j i j
i jD

kη

φ φ
φ + −−

=                          (20) 

, 1 , , 12
, 2

2i j i j i j
i jD

kη

φ φ φ
φ + −− +

=                       (21) 

Similarly, the higher order cross derivative operators can be written as 

, 1, 1 1, 1 1, 1 1, 1
1

4x y i j i j i j i j i jD D
hk

φ φ φ φ φ+ + + − − + − − = − − +             (22) 

( ) ( )2
, 1, 1 1, 1 1, 1 1, 1 , 1 , 12

1 2
2x y i j i j i j i j i j i j i jD D

h k
φ φ φ φ φ φ φ+ + + − − + − − + −

 = − + − − −      (23) 

( ) ( )2
, 1, 1 1, 1 1, 1 1, 1 1, 1,2

1 2
2x y i j i j i j i j i j i j i jD D

hk
φ φ φ φ φ φ φ+ + + − − + − − + −

 = + − − − −      (24) 

( )
( )

2 2
, 1, 1 1, 1 1, 1 1, 12 2

1, 1, , 1 , 1 ,

1

2 4

x y i j i j i j i j i j

i j i j i j i j i j

D D
h k

φ φ φ φ φ

φ φ φ φ φ

+ + + − − + − −

+ − + −

= + + +

− + + + + 

            (25) 

3.1. Discretization of Streamfunction Equation 

Substituting (15) and (17) in the streamfunction Equation (8) and using the D
-operator from Equations (18) to (25) we get finite difference representation of 
streamfunction equation as given below 

2 2
, , , , 0x i j y i j i j i jD Dψ ψ ω τ− − + − =                     (26) 

with the truncation error ,i jτ  in the above equation is given by 

( )
2 4 2 4

4 4
, 4 4

,

,
12 12i j

i j

h k h k
x y
ψ ψτ

 ∂ ∂
= − + + 

∂ ∂ 
                (27) 

Now, to eliminate higher derivatives of ψ  in the truncation error term, we 
differentiate Equation (8) once and twice with respect to x and y respectively to 
yield the following. 

3 3

3 2 xx x y
ψ ψ ω∂ ∂ ∂

= − −
∂∂ ∂ ∂

                          (28) 

4 4 2

4 2 2 2x x y x
ψ ψ ω∂ ∂ ∂

= − −
∂ ∂ ∂ ∂

                         (29) 

3 3

3 2 yy x y
ψ ψ ω∂ ∂ ∂

= − −
∂∂ ∂ ∂

                          (30) 

4 4 2

4 2 2 2y x y y
ψ ψ ω∂ ∂ ∂

= − −
∂ ∂ ∂ ∂

                         (31) 
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First we substitute (29) and (31) in (27) and then all the derivatives are re-
placed by suitable expressions from the set of Equations (18) to (25). The result-
ing simplified expression for ,i jτ  is substituted in (26) and rearranged so that 
we obtain the fourth order accurate discretized form of streamfunction Equation 
(8) as given below. 

( ) ( ) ( )

( ) ( )

2 2 2 2
0 3 3 3

1,3 2,4

8
2 2 2 2 2 2

3 0 1 2
5

4 2 2 2

4 2

i i
i i

i x y
i

d h k d k d h

d h k h k d D d D

ψ ψ ψ

ψ ω ω ω

= =

=

− + + − + −

+ − + = − + +

∑ ∑

∑
        (32) 

where the constants in the above equations are 
2

1 12
hd =                             (33) 

2

2 12
kd =                             (34) 

3 1 2d d d= +                           (35) 

and 8
0 ii ψ

=∑  represents the 8 nearest neighboring points together with a center  

point on the computational domain. 

3.2. Discretization of Vorticity Equation 

Now, the vorticity Equation (9) is rewritten as 
2 2

2 2 0c d q
x yx y

ω ω ω ω∂ ∂ ∂ ∂
+ + + + =

∂ ∂∂ ∂
                (36) 

and the associated coefficients are 

c Re
y
ψ∂

= ⋅
∂

                             (37) 

d Re
x
ψ∂

= − ⋅
∂

                            (38) 

Tq Re Ri
x

∂
= − ⋅ ⋅

∂
                           (39) 

Next, the Equation (36) is written in terms of finite difference operator nota-
tion and which is valid for the grid point ( ),i j . Accordingly, the coefficients c, d 
and q will have the suffix of the grid point under consideration as given below. 

2 2
, , , , , , , , 0x i j y i j i j x i j i j y i j i j i jD D c D d D qω ω ω ω ζ− − + + + − =         (40) 

with a truncation error ,i jζ  given by 

( )
2 4 3 2 4 3

4 4
, 4 3 4 3

,

2 2 ,
12 12i j

i j

h kc d h k
x x y y
ω ω ω ωζ

    ∂ ∂ ∂ ∂
= − − + − +    

∂ ∂ ∂ ∂     
     (41) 

To eliminate the derivatives appearing in the truncation error term (41), we 
differentiate the vorticity Equation (36) to yield the following set of expressions 

3 3 2 2

3 2 2
c d qc d

x y x x x y xx x y x
ω ω ω ω ω ω∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − − − − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂
         (42) 
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4 4 3 3 2
2

4 2 2 2 2 2

2 2

2

2 2

2 2

2

2

cc d c
xx x y x y x y x

d c ccd c
x x y x xx

d d q qc c
x y xx x

ω ω ω ω ω

ω ω

ω

∂ ∂ ∂ ∂ ∂ ∂ = − + − + − ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ + − + −  ∂ ∂ ∂ ∂ ∂∂   
 ∂ ∂ ∂ ∂ ∂

+ − + − ∂ ∂ ∂∂ ∂ 

        (43) 

3 3 2

3 2

2

2

c
x yy x y

c d qd
y x y y yy

ω ω ω

ω ω ω

∂ ∂ ∂
= − −

∂ ∂∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
− − − −

∂ ∂ ∂ ∂ ∂∂

              (44) 

4 4 3 3 2
2

4 2 2 2 2 2

2 2

2

2 2

2 2

2

2

dc d d
yy x y x y x y y

c c ccd d
y x y y xy

d d q qd d
y y yy y

ω ω ω ω ω

ω ω

ω

 ∂ ∂ ∂ ∂ ∂ ∂
= − − + + − ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

  ∂ ∂ ∂ ∂ ∂
+ − + −  ∂ ∂ ∂ ∂ ∂∂   
 ∂ ∂ ∂ ∂ ∂

+ − + − ∂ ∂ ∂∂ ∂ 

     (45) 

First we insert (42) to (45) in the truncation error term (41) and then substi-
tute the resulting expression for ,i jζ  in (40) and then apply D-operators from 
(18) to (25) so that we will get 

( )

2 2
, , , ,

2 2 2 2
3 , , , ,

2 2 2 2

2 2 0
12 12

x i j y i j x i j y i j

x y i j x y i j x y i j x y i j

eD f D g D oD

d D D cD D dD D wD D

h q q k q qc d q
x yx y

ω ω ω ω

ω ω ω ω

− − + −

− − − +

       ∂ ∂ ∂ ∂ + − + − − =        ∂ ∂∂ ∂           

           (46) 

The coefficients in the above equation are, 

( )
2

1 2
12 y x y
he Re ReD D Dψ ψ= + −                  (47) 

( )
2

1 2
12 x y x
kf Re ReD D Dψ ψ= + +                 (48) 

( )

( )

2

2
2

12

12

y x y x y

y x y

hg ReD Re D ReD D D

kRe D ReD D

ψ ψ ψ

ψ

= + −

+ +
           (49) 

( ) ( )
2 2

2

12 12

x

x y x y x x y

o ReD

h kRe D ReD D Re D ReD D D

ψ

ψ ψ ψ

= −

+ − + − +
    (50) 

2 2
2 2 2

36 6x y x y
h kw Re D D d Re D Dψ ψ ψ ψ= − + −                 (51) 

Upon simplifying the above Equation (46), we will get the fourth order accu-
rate finite difference representation of the vorticity differential Equation (36) as 
given below. 
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( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2 2 2
0 3 1 3 3

2 2 2 2
2 3 3 3 3 3

2 2
4 3 3 5 3 3 3

6 3 3 3 7 3 3 3

8 3 3 3

16 8 8 8 4 4 2

8 4 4 2 8 4 4 2

8 4 4 2 4 2 2

4 2 2 4 2 2

4 2 2

d h f k e d hd c k e hk g

d kd d h f h ko d hd c k e hk g

d kd d h f h ko d hd c kd d hkw

d hd c kd d hkw d hd c kd d hkw

d hd c kd d hk

ω ω

ω ω

ω ω

ω ω

ω

− + + + − − +

+ − − + + + − −

+ + − − + − + + +

+ − − + − + − − − +

+ − + − −( )

( ) ( )
2 2

2 2 2 24 1
12 12y x x y Y x

w

h kh k Re Ri ReD D ReD D D D Tψ ψ
 

= − ⋅ − + + + + 
 

  (52) 

It may be noted that before implementing the code for Equation (10), the ex-
pressions for the quantities c, d and q should also be replaced by fourth order 
accurate relations as given below. 

3
2

, 2 2 23i j y y x y yc Re D d Re D d D D Re d D
y
ψψ ψ ω

 ∂    = − = + −    ∂ 
      (53) 

[ ]
3

2
, 1 1 13i j x x y x xd Re Pr D d Re D d D D Re d D

x
ψψ ψ ω

 ∂  = − ⋅ − = − + −   ∂ 
   (54) 

[ ]
3

2
, 1 1 13i j x x y x x

Tq Re Pr D d Re Pr D d D D T Re Pr d D
x

ψ ω
 ∂  = − ⋅ − = − ⋅ + − ⋅   ∂ 

(55) 

3.3. Discretization of Energy Equation 

Now, the temperature Equation (10) is rewritten as 
2 2

2 2 0T T T Tc d
x yx y

∂ ∂ ∂ ∂′ ′+ + + =
∂ ∂∂ ∂

                  (56) 

Let us define primed variables c′  and d ′  at the grid point ( ),i j  as 

2
Re Prc

y
ψ ⋅ ∂′ = −  ∂ 

                        (57) 

2
Re Prd

x
ψ⋅ ∂ ′ =  ∂ 

                         (58) 

Using Equations (14) to (17) together with the above two primed variables in 
(10), we get discretized version with truncation error term as follows. 

2 2
, , , , , , , 0x i j y i j i j x i j i j y i j i jD T D T c D T d D T γ′ ′+ + + − =            (59) 

and the truncation error term ,i jγ  in the previous equation is 

( )

2 3 2 4 2 3 2 4

, 3 4 3 4
,

4 4

6 12 6 12

,

i j
i j

c h T h T d k T k T
x x y y

h k

γ
 ′ ′∂ ∂ ∂ ∂

= − + + + ∂ ∂ ∂ ∂ 

+

      (60) 

Now the higher order derivatives of T present in the previous expression for 
truncation error can be eliminated by differentiating the energy Equation (10) 
with respect to x and y to yield the following. 

3 3 2 2

3 2 2

T T T T c T d Tc d
x y x x x yx x y x

′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′= − − − − −
∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂

         (61) 
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( )
4 4 3 3 2

2
4 2 2 2 2 2

2 2 2

2 2

2

2'

T T T T c Tc d c
xx x y x y x y x

d T c c T d d Tc d c c
x x y x x x yx x

′∂ ∂ ∂ ∂ ∂ ∂ ′ ′ ′= − + − + − ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

   ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ′ ′ ′+ − + − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂     

    (62) 

3 3 2 2

3 2 2

T T T T c T d Tc d
x y y x y yy x y y

′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′= − − − − −
∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂

           (63) 

( )
4 4 3 3 2

2
4 2 2 2 2 2

2 2 2

2 2

2

2

T T T T d Tc d d
yy x y x y x y y

c T c c T d d Tc d d d
y x y y x y yy y

′ ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′= − − + + − ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
   ′ ′ ′ ′ ′ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′+ − + − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂     

  (64) 

Substituting the set of Equations (61) to (64) in the equation for truncation 
error (60) and also applying the D operators from (18) to (25), in the Equation 
(59) we get 

( )

2 2

2 2 2 2
1 2 0

x y x y x y

x y x y x y

D D D D D D T

d d D D c D D d D D T

ς ρ ϖ ϑ ε − − + + + 
 ′ ′− + − − = 

               (65) 

where the coefficients ς , ρ , ϖ , ϑ , ε  appearing in the above equation are 

( )2
1 11 x yd c Re Pr d D Dς ψ′= + − ⋅ ⋅                 (66) 

( )2 2
2 21 yd d Re Pr d Dρ ψ′= + − ⋅ ⋅                 (67) 

( ) ( )2 2
1 2x x y yc d c D c D c d d D c D cϖ ′ ′ ′ ′ ′ ′ ′= + + + +             (68) 

( ) ( )2 2
1 2x x y yd d c D d D d d d D d D dϑ ′ ′ ′ ′ ′ ′ ′= + + + +           (69) 

( ) ( )2 2
1 2 1 2x yRe Pr d D d D d d c dε ψ  ′ ′= ⋅ − + − + ⋅             (70) 

It may be noted that before implementing the code for Equation (65), the ex-
pressions for primed quantities c′  and d ′  should also be replaced by fourth 
order accurate relations as given below. 

( )
3

2 3,

2
2 2

yi j

y y x y

c Re Pr D d
y

Re Pr d D Re Pr D d D D

ψψ

ω ψ

 ∂′ = − ⋅ − 
∂ 

  = ⋅ − ⋅ +   

       (71) 

( )

[ ]

3

1 3,

2
1 1

xi j

x x y x

d Re Pr D d
x

Re Pr d D Re Pr D d D D

ψψ

ω ψ

 ∂′ = ⋅ − ∂ 
 = ⋅ + ⋅ + 

         (72) 

and the constants 1d , 2d  and 3d  are already defined in Equations (33) to 
(35). Finally, we have arrived at a set of three coupled discretized Equations (32), 
(52) and (65) whose accuracy is ( )4 4,h k . 

4. Implementation of Numerical Scheme 

The set of coupled discretized equations as mentioned above is applied to each 
grid point in the computational domain and this produces a large linear sparse 
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system which exhibits diagonal dominance. Therefore we could use the multigr-
id method with Gauss-Seidel iteration as relaxer. We have chosen to use the 
multigrid method because it accelerates convergence when compared to using 
stand-alone iterative procedures. The set of grids used are 32 32× , 64 64× , 
128 128× , 256 256×  and 512 512× . If the solution Ψ  of a particular equa-
tion in the finest grid 512 512×  is denoted by ( )512Ψ  then the solution of the 
same equation in the next finer grid 256 256×  will be denoted by ( )256Ψ . We 
have used the simplest of the restriction operator, called the injection operator 
  which simply copies the finest grid solution to the next finer grid (or the 
coarsest grid as the case may be) at grid points which are common to both grid 
levels. In Figure 2, the stars denote boundary points and the circles are points 
that are common to two different grids. The injection operation involves equat-
ing the values at circles in 4 4×  grid to the circles in 8 8×  grid (Figure 2). 
The reverse operation to injection is known as prolongation operation  . The 
prolongation operation is done for the points shown as square in Figure 2 as 
follows. The value of Ψ  at grid point B  in 4 4×  grid is equal to the value of 
Ψ  at A  in 8 8×  grid, which is written as, 

( ) ( )8 8 4 4

2 ,2 ,i j i j

× ×   Ψ = Ψ                        (73) 

In general, if the finest grid is represented as k  and the next finer grid is 
represented as 1k −  then the above equation is rewritten as, 

( ) ( )1

2 ,2 ,

k k

i j i j

−   Ψ = Ψ                        (74) 

The value of Ψ  in 8 8×  grid at point C  grid is equal to the average of 
values of Ψ  at B  and D  in 4 4×  grid. This is expressed in general as 

( )
( ) ( )1 1

, 1,

2 1,2 2

k k

i j i jk

i j

− −

+

+

   Ψ + Ψ    Ψ =              (75) 

 

    
Figure 2. Schematic of two-level grids used for illustrating the injection and prolongation 
operations. Circles are points common to both grids. Stars are boundary (or known) 
points. The squares are the points at which the value is to be found using the prolonga- 
tion operation. 
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Here k  means finest grid and 1k −  means next finer (or coarsest) grid. Si-
milarly, the values at all other square points are obtained using the following av-
eraging scheme. 

( ) ( ) ( )1 1

2 ,2 1 , , 1

1
2

k k k

i j i j i j

− −

+ +

      Ψ = Ψ + Ψ       
             (76) 

( ) ( ) ( )

( ) ( )

1 1

2 1,2 1 , 1,

1 1

, 1 1, 1

1
4

k k k

i j i j i j

k k

i j i j

− −

+ + +

− −

+ + +

     Ψ = Ψ + Ψ     
   + Ψ + Ψ     

           (77) 

The above set of Equations (74) to (77) comprise the 9-point prolongation 
operator [38]. The three coupled discretized Equations (32), (52) and (65) are 
relaxed simultaneously and the boundary conditions are incorporated implicitly. 
A point Gauss-Seidel iterative scheme is used for the relaxation procedure. This 
pre-smoothing iterations are carried out on the finest grid. Then we restrict (or 
inject) the residual on the coarsest grid. Let the residual be denoted by r . By 
solving the matrix equation Ae r=  we get the error in the coarsest grid. This 
error e  is prolongated to the finest grid and then added to oldΨ  as below 

[ ]coarse grid corrected old eΨ = Ψ +                   (78) 

where   is the prolongation operator (for more details, see [38]). After per-
forming a few post-smoothing operation, one multigrid cycle is completed. This 
procedure is repeated until the following condition is satisfied for convergence. 

1
7

1
10

n n

n

X X

X

+
−

+

−
≤                        (79) 

where X  is any of , ,Tψ ω  and n  is the iteration number. 

Treatment of Boundary Points 

At all the boundary points, fourth order accurate one sided finite-difference 
formula is used for derivatives involving ,ψ ω  and T . The first derivative of 
temperature along all points in left vertical wall is 

( ) ( ) ( ) ( ) ( )11, 48 2, 36 3, 16 4, 3 5,
25

T j T j T j T j T j= − + −        (80) 

and similarly the same for the right vertical wall is expressed as 

( ) ( ) ( ) ( ) ( )11, 48 , 36 1, 16 2, 3 3,
25

T m j T m j T m j T m j T m j+ = − + − − − + −   (81) 

A fourth order backward difference scheme is used to find ω  at top moving 
wall. 

( ) ( ) ( ) ( )

( ) ( ) ( )
2

1, 1 45 , 1 154 , 214 , 1
12

156 , 2 61 , 3 10 , 4

i n i n i n i n
h

i n i n i n

ω ψ ψ ψ

ψ ψ ψ

−
+ = + − + −

− − + − − − 

       (82) 

Similarly, the fourth order one sided finite difference is used to find ω  at all 
other walls 
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( ) ( ) ( ) ( )

( ) ( ) ( )
2

11, 45 1, 154 2, 214 3,
12

156 4, 61 5, 10 6,

j j j j
h

j j j

ω ψ ψ ψ

ψ ψ ψ

−
= − +

− + − 

          (83) 

( ) ( ) ( ) ( )

( ) ( ) ( )
2

11, 45 1, 154 , 214 1,
12

156 2, 61 3, 10 4,

m j m j m j m j
h

m j m j m j

ω ψ ψ ψ

ψ ψ ψ

−
+ = + − + −

− − + − − − 

      (84) 

( ) ( ) ( )

( ) ( ) ( )
2

1,1 45 ( ,1) 154 ,2 214 ,3
12

156 ,4 61 ,5 10 ,6

i i i i
h

i i i

ω ψ ψ ψ

ψ ψ ψ

−
= − +

− + − 

           (85) 

5. Results and Discussion 

The flow characteristics together with thermal fields are computed for different 
Re , Pr  and Gr  (or equivalent Ri ). The density variation is induced 
through a linearly varying top moving wall. The effect of mixed convection is 
analyzed through streamlines, isothermal contours and Nusselt number for 
100 3000Re≤ ≤ , 0.015 10Pr≤ ≤  and Grashof number 2 610 10Gr≤ ≤  and 
further explained through contours of components of velocity and temperature 
in the mid-cross-section of the cavity. At the end, the numerical accuracy of the 
proposed scheme is established. 

5.1. Code Validation and Grid Independence Study 

To validate our coding we have run the program with aiding and opposing shear 
boundary conditions available in the literature. The validations are done for 
various values of Re  and a fixed value of 0.73Pr = . The parameter used to 
study the mixed convection is Richardson number Ri  which is also equal to 

2Gr Re . The case of 1Ri   belongs to the class of forced convection and if 
0.1 10Ri≤ ≤  we may describe as mixed convection. Table 2 shows the grid in-
dependence results for 0Gr =  case in terms of values of streamfunction, ψ , 
and vorticity, ω  which are evaluated at the centers of primary and two sec-
ondary vortices for different values of Re . Here a fluid with a constant 

0.73Pr =  is considered. In our computation, the coarser grids are 64 64× , 
128 128× , and 256 256×  while the finest grid used in the present study is 
512 512× . From the tabulated data, it is seen that 256 256×  grid is found to be 
optimum. Further refining of grids will not give more accuracy because the ac-
curacy of the numerical scheme is decided by method of discretization and not 
by the fineness of the grid. The advantage with the present higher order scheme 
is that we can achieve the accurate results in smaller grid itself. Table 3 shows 
the location of primary vortex and flow parameters such as streamfunction and 
vorticity in different grids, and they are compared with the literature data that 
include data that might have been computed using a lower order finite difference 
method [1] [13] [14] [39] [40] [41], and from the tabulated data it is observed 
that there is a very good agreement among different reports. In particular, the 
results of [14] is matching to a good degree with that of our computed value. In  
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Table 2. The grid independence study of in terms of stream function and vorticity at the 
centres of primary and secondary vortices located at bottom left (BL) and bottom right (BR) 
respectively. 

Re Grid 

Centre of primary 
vortex 

Centre of secondary 
vortex, BL 

Centre of secondary 
vortex, BR 

ψ ω ψ ω ψ ω 

100 64 × 64 0.10352 3.16686 1.33E−06 1.97E−02 1.25E−05 3.89E−02 

 
128 × 128 0.10351 3.1687 1.74E−06 1.57E−02 1.27E−05 3.31E−02 

 
256 × 256 0.10352 3.16098 1.79E−06 1.60E−02 1.27E−05 3.69E−02 

 
512 × 512 0.10352 3.16646 1.76E−06 1.70E−02 1.27E−05 3.46E−02 

1000 64 × 64 0.11853 2.06526 2.07E−04 0.4442 1.74E−03 1.10526 

 
128 × 128 0.11881 2.06641 2.31E−04 0.36691 1.73E−03 1.14018 

 
256 × 256 0.11893 2.06763 2.33E−04 0.34489 1.73E−03 1.13901 

 
512 × 512 0.11894 2.06778 2.33E−04 0.35653 1.73E−03 1.11469 

5000 64 × 64 0.12009 1.94912 1.09E−04 1.13579 3.16E−03 2.50248 

 
128 × 128 0.12103 1.94569 1.19E−04 1.27903 3.13E−03 2.54565 

 
256 × 256 0.1219 1.93715 1.35E−04 1.41837 3.07E−03 2.70553 

 
512 × 512 0.1222 1.94038 1.38E−04 1.51437 3.07E−03 2.74876 

 
Table 3. Comparison of computed values of streamfunction, vorticity and coordinates (x, 
y) of primary vortex with literature. 

Re Reference Grid x y ψ ω 

1000 

Ghia et al. (1982) 

128 × 128 

0.5313 0.5625 0.117929 2.04968 

Zhang (2003) 0.46875 0.5625 0.118806 2.066777 

Bottella and Peyret (1998) 0.4692 0.5625 0.118937 2.06775 

Bruneau and Saad (2005) 0.46875 0.5625 0.11786 2.0508 

Cheng (2010) 0.46875 0.5625 0.116874 2.064753 

Present (4th order scheme) 0.53125 0.5625 0.118812 2.066411 

Erturk and Gokcol (2006) 
600 × 600 

0.53 0.565 0.118938 2.06776 

Present (4th order scheme) 0.53 0.565 0.118936 2.067726 

3200 

Ghia et al. 1982) 

128 × 128 

0.5165 0.5469 0.120377 1.9886 

Zhang (2003) 0.484375 0.539063 0.120157 1.948934 

Cheng (2010) 0.484375 0.539063 0.119845 1.947966 

Present (4th order scheme) 0.515625 0.539063 0.121136 1.95844 

5000 

Zhang (2003) 

128 × 128 

0.484375 0.539063 0.118121 1.906214 

Cheng (2010) 0.484375 0.539063 0.118224 1.909011 

Present (4th order scheme) 0.515625 0.539063 0.121038 1.945688 

Ghia et al. (1982) 

256 × 256 

0.4883 0.5352 0.118966 1.86016 

Bruneau and Saad (2005) 0.43438 0.53516 0.12064 1.9125 

Present (4th order scheme) 0.515625 0.535156 0.121902 1.937153 

Erturk and Gockol (2006) 600 × 600 0.515 0.535 0.122216 1.940547 

 
Present (4th order scheme) 0.515 0.535 0.122216 1.940524 
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order to perform validation for heat transfer studies, we have exclusively run the 
code with the boundary condition 1T =  for the top moving wall and the re-
sults are shown in Table 4 and the data is compared with literature [15] [42] 
[43]. Essentially there is hardly a 0.03% variation among other reported values 
that has been computed using some fourth order scheme and 0.1% variation 
among second order accurate computations.  

5.2. Flow Structure and Isotherms 

Experimental investigation of lid-driven flow and its effect on density variations 
show that [44] [45] the flow consists mainly of a central recirculating zone with 
one downstream secondary eddy (DSE) and one upstream secondary eddy 
(USE). Additional secondary eddy may be formed if the Reynolds number is 
suitably high (Figure 3). Experimentally it is also known that if the 3300Re >  
the flow first becomes three-dimensional and later leads to turbulent cavity flow. 
Starting with low Re  case, a fluid with 0.73Pr =  is taken and the Figure 3 
shows streamlines and temperature isotherms for increasing buoyancy with 

100Gr = , 104 and 105 respectively from top to bottom. The dashed lines in the 
streamlines correspond to flow in clockwise direction while the anticlockwise 
flow is shown as solid lines. In the present configuration, both shear stress and 
density variation are created near the upper moving lid because the bottom lid is 
held at a lower constant temperature and the side vertical walls are thermally 
insulated. This cavity flow configuration is in contrast with other studies re-
ported in the literature [15] [46]. Other notable studies where the bottom wall is 
colder than the top moving lid are [42] [47] but however, the vertical walls are 
not necessarily held adiabatic. The top plot in Figure 4 correspond to negligible 
 
Table 4. Comparison of average Nusselt number Nm in the top moving wall where the 
boundary condition imposed is T = 1 for the fluid flow with Pr = 0.73. 

Re Grid Authors Nm 

100 128 × 128 
Iwatsu et al. (1993) 1.94 1.34 

Present work 2.11 1.44 

400 100 × 100 
Sharif (2007) 4.05 3.82 

Present work 4.28 4.04 

400 128 × 128 

Iwatsu et al. (1993) 3.84 3.62 

Cheng (2011) 4.14 3.9 

Present work 4.25 4.01 

1000 100 × 100 
Sharif (2007) 6.55 6.5 

Present work 6.93 6.88 

1000 128 × 128 

Iwatsu et al. (1993) 6.33 6.29 

Cheng (2011) 6.73 6.68 

Present work 6.92 6.87 
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Figure 3. Schematic of streamlines with possibble recirculation regions. PV is the 
primary vortex, USE is upstream secondary eddy, DSE is the downstream secondary eddy 
and TSE is the top left secondary eddy. 
 
buoyant force 0.01Ri =  and the flow is due mainly to the shear force provided 
by moving lid and hence we compare the positions of primary and additional 
eddies against the literature [48]. 

From the isotherm contours of Figure 4, (right side plots) it is observed that 
the temperature of the fluid in the cavity for 0.01Ri =  case has non-uniform 
layered structure and this has resulted due predominantly to forced convection 
effects. If we come to the mixed convection region 1Ri ≥ , a considerable 
change in both flow structure and thermal fields can be seen (middle and bottom 
plots of Figure 4). For 100Re =  case, the thermal boundary layer thickness 
with respect to bottom wall increases as Ri  increases. As the increase of 
buoyant force by increasing Ri , the size of the secondary BR (bottom right) 
vortex decreases. Simultaneously the BL (bottom left) secondary vortex increases 
so as to form two analogous large counter rotating vortices that occupies the en-
tire cavity. Table 5 shows the growth, merging and mixing of secondary vortices 
with the increase of Grashof number for different values of Re . From the table 
it is noted that the USE and DSE are merges for Richardson number 1Ri ≥ . 
Even though the flow structure changes dramatically, the temperature distribu-
tion in the layers of the fluid have nearly a flat or uniform thermal gradient. This 
is in contrast to thermal distribution for low Ri  case where large amount of 
fluid is nearly isothermal. When the Richardson number is significant, that is, 
when mixed convection plays a role, the size of the USE on bottom left corner 
increases at the expense of DSE which is located on the bottom right side of the 
cavity. This could be due to the suppression of adverse pressure gradient which 
in turn is due to the thermal gradient existing between top and bottom walls.  
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Figure 4. Streamfunction contours (left) and isotherms (right) for 0.01,1Ri =  and 10 
respectively (top to bottom) for a flow of fluid with 100Re =  and 0.73Pr = . Equivalent 
values of Gr  are 102, 104 and 105 respectively from top to bottom. 
 
Table 5. Growth, degradation and merging of secondary vortices due to increased mixed 
convection. 

Re Gr Ri Area of USE Area of DSE Area of TSE 

100 

102 0.01 0.28E−2 0.98E−2 0 

104 1 2.10E−2 0.78E−2 0 

106 10 USE and DSE merges 

400 

104 0.0625 0.90E−2 3.70E−2 0 

105 0.625 4.50E−2 2.60E−2 0 

106 6.25 USE and DSE merges 

1000 

104 0.01 1.90E−2 5.20E−2 0 

105 0.1 2.10E−2 4.90E−2 0 

106 1 USE and DSE merges 

3000 

103 0.0011 3.60E−2 7.00E−2 0.080E−2 

104 0.011 3.70E−2 6.60E−2 0.085E−2 

105 0.11 4.30E−2 5.70E−2 0.090E−2 
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When Richardson number is increased to 10Ri = , a significant change in the 
fluid flow is observed, wherein the USE grows until it occupies nearly half of the 
cavity, which is attributed to the buoyancy effects. The direction of flow in this 
eddy is opposite to that of the main or primary vortex. In addition, the center of 
primary vortex moves towards the right wall as Ri  increases. The size of the 
clockwise and anticlockwise rotating vortices have same size, which shows that 
the effect of shear driven forced convection effect and buoyancy driven convec-
tion effects shows equal strength. The thermal contours have more shift than 

1Ri =  case of Figure 4, towards the top lid. The thermal stratification of fluid is 
visible for 10Ri =  case than the other two cases ( 0.01Ri =  and 1Ri = ). In 
this range the conduction effect of fluid also plays a vital role. Most of the heat 
transfer occurring near the stratified fluid is due to conduction, whereas the 
convection is dominant near the top sliding wall. While considering the recircu-
lation at the middle and bottom of the cavity, the streamlines are more than two- 
order of magnitude smaller than top sliding wall, which shows the fluid is almost 
stagnant in the stratified fluid towards the bottom region. The streamlines and 
isotherms for 400Re =  is plotted in Figure 5. When Re  is increased to 400, 
the corresponding growth of secondary vortices are observed. The middle plot of 
Figure 5 shows a growth of secondary upstream vortex and degradation of sec-
ondary downstream vortex is observed. Also, a small shift in the position of 
primary vortex towards the downstream flow region is noticed. The isotherms 
for weak mixed convection ( 0.0625Ri = ) show that the heat transfer in a 
more-or-less uniform layered structure till it reaches the center of primary vor-
tex. If Ri  is increased by ten times, to 0.625Ri = , the thermal gradients are 
reduced but still the isotherm structure is retained. For strong convection case of 

6.25Ri = , it is observed that the sudden growth of upstream secondary vortex 
due to the increase of unfavorable pressure gradient and the complete suppres-
sion of downstream secondary vortex due to the decrease of shear force by the 
increase of temperature in the downstream makes a favorable pressure gradient. 
Interestingly a clockwise small vortex forms on the apex of vertical wall near the 
lid in the downstream region. This is due to the formation of stagnant pressure 
by the friction loss in the primary vortex itself. Also noted that primary vortex 
shifts towards the bottom region of the cavity. The temperature distribution is 
more towards the bottom surface of the cavity. Stagnant layers of fluids is visible 
in the upstream region. The similar effect is observed for 1000Re = , where a 
clockwise vortex formed in the downstream vertical wall and stationary bottom 
surface Figure 6 (bottom plot). The changes are insignificant for higher 

3000Re =  for all values of Gr  with the fixed case of Pr  Figure 7. The clus-
tered temperature isotherms near the top and bottom walls indicates that an 
large change in the gradient of temperature with respect to normal to the direc-
tion of the surface. Whereas the temperature in the recirculation region, the 
clustering of contours are weak. Hence the temperature gradient is very small 
indicating that hot fluid is mixed with the cold fluid in that region. In the case of 

3000Re = , the velocity of the fluid is high, hence the mixing of fluid due to  
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Figure 5. Streamfunction contours (left) and isotherms (right) for the flow of fluid with 

400Re =  and 0.73Pr = . Here 0.0625Ri = , 0.625 and 6.25 respectively (top to 
bottom) or equivalently, 4 510 ,10Gr =  and 106 respectively. 
 
shear effect is more significant than buoyancy effect. 

The influence of Pr  in flow dynamics and heat transfer is shown in the 
Figure 8. The flow features inside the cavity remains almost unaltered while in-
creasing the Prandtl number for the forced convective heat transfer ( 1Ri  ). 
From the figure, the position and the size of primary and secondary vortices are 
unaltered with the increase of Pr , which indicates that flow dynamics is inde-
pendent of Pr  due to the absence of buoyancy force on the flow for low range 
of Richardson numbers. The temperature distribution inside the cavity is shown 
on the right side of the Figure 8 and show that heat transfer properties are sig-
nificantly changes with Pr . The thermal boundary layer thickness on bottom 
and top surface of the cavity (at very low Pr ) develops in a layered structure in 
a stratified manner. While increasing Pr , the temperature isotherms show that 
heat transfer extends to the entire region of the cavity together with a thinning  
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Figure 6. Streamlines (left) and isotherms (right) for a fluid flow 1000Re =  and 

0.73Pr = . Here 0.01Ri = , 0.1 and 1 respectively (top to bottom) or equivalently 
4 510 ,10Gr =  and 106. 

 
effect of thermal boundary layer on the top and bottom surface of the cavity. The 
numerical experiments are carried out with the increase of Ri  from 104 to 106 
which is shown in Figure 9 and a significant change of flow and heat transfer is 
observed due to large buoyancy force. For small values of Pr  the effect is same 
as that of Figure 8. While increasing Prandtl number, the downstream second-
ary eddy degrades and the upstream secondary eddy enlarges. Due to linear 
heating of top wall, maximum heat on the left portion of lid ( 0.5x < ) moves 
towards the downstream region of the cavity and hence the USE grows. At the 
same time buoyancy opposes the primary core flow and affects the upstream 
boundary layer to detach from the wall. For high Pr  flows, clockwise recircu-
lation zone is formed on the left wall. For 1Pr  , the heat transfer in the cavity 
is due to conduction, shows a thick boundary layer all over the cavity resulting a 
mild change of temperature produces a feeble buoyant force. For 1Pr  , the  
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Figure 7. Streamlines (left) and isotherms (right) for a fluid flow with 3000Re =  and 

0.73Pr = . Here 0.0011Ri = , 0.011  and 0.11  respectively (top to bottom) or 
equivalently 3 410 ,10Gr =  and 105. 
 
heat transfer is mainly due to convective effect and the fluid is well mixed in the 
core of the cavity, hence the buoyant effect exhibits near the walls of the cavity. 
This makes the degradation of downstream eddy and upgradation of upstream 
secondary vortex. The reverse will happens for a gravitationally unstable condi-
tion [46], where they observed the degradation of upstream secondary vortex 
and growth of downstream secondary vortex. 

Contours of the horizontal and vertical components of velocity u and v are 
plotted in Figure 10 and Figure 11 for 100Re =  and 1000 respectively. In the 
case of 100Re =  (Figure 10), we could see that the vertical components of ve-
locity V is modified to a great extent in the left half of the cavity because of the 
nature of buoyancy which is ( )1 x−  in our case. Consequently, the density 
variations are more in left half and they are least in the right half of the cavity. 
This leads a way to develop two large circulations in opposite directions as seen in  
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Figure 8. For a minimal buoyancy force 0.01Ri = , the effect of Pr  on the streamlines 
(left) and temperature isotherms (right) for the flow of fluid with 1000Re =  are shown. 
Here 0.015Pr = , 0.73 and 7 respectively (top to bottom). Equivalent Grashof number is 

410Gr = . 
 
bottom left of Figure 4. For the case of 1000Re =  (Figure 11) however, the 
minimal viscous force causes the formation of multiple recirculation region. It is 
also noted that, both velocity components are responsible for the emergence of 
corner vortices. While increasing Re  the growth of secondary vortices are visi-
ble to both velocity components, this effects are due to the conventional flows in 
a lid-driven cavity. Also the contour lines are pushed towards the top region of 
the cavity. Due to the push of buoyant force against the gravity, USE grows and 
finally it form a separate cell near the bottom region of the cavity in the hori-
zontal velocity component, which is visible in the Figure 11 (bottom left). It is 
also noted that the horizontal components of velocity undergoes changes as high 
as three orders of magnitude within the cavity. 

Cross sectional profiles of velocity and temperature Figure 12 shows the ver-
tical (v) and horizontal (u) components of velocities along the x and y directions  

252 



A. D. A. Rejeesh et al. 
 

 
Figure 9. For a fairly large buoyancy force 1Ri = , the effect of Pr  on the streamlines 
(left) and temperature isotherms (right) for the flow of fluid with 1000Re =  are shown. 
Here 0.015Pr = , 0.73 and 7 respectively (top to bottom). Equivalent Grashof number is 

610Gr = . 
 
along vertical center line and horizontal mid-heights respectively. The dash-dot 
lines of Figure 12 show the flow in forced convective range. In this case, the ve-
locity is maximum near the walls and the fluid is stagnant in center region of the 
cavity. This is the expected behavior of lid-driven cavity flow in the absence of 
buoyant force. In other cases, the velocity changes considerably. Figure 13 
shows the variation of velocity with Gr  (top plot) and Pr  (bottom plot) re-
spectively. From the top plot it is clear that while increasing buoyancy effect the 
fluid tends to degrade the shear action by moving the line closely towards the 
stagnant line. Prandtl number have vital effect to pull the fluid to stagnant which 
is visible from the bottom plot. Figure 14 shows the temperature profile along 
vertical and horizontal directions at horizontal mid-length and vertical mid- 
height for different values of Gr  and Re  respectively. All curves shows  
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Figure 10. Contours of velocity components U (left) and V (right) for 0.01,1Ri =  and 
10 respectively (top to bottom) for a flow of fluid with 100Re =  and 0.73Pr = . 
Equivalent values of Gr  are 102, 104 and 105 respectively from top to bottom. Here U is 
the horizontal component and V is the vertical component. 
 
minimum temperature at bottom wall and maximum at top wall. In the case of 

1Ri   (continuous line plot), for a fixed Re , temperature distribution shows 
a linear variation along vertical direction due to the fact that the fluid inside the 
cavity is almost stagnant which is seen in the Figure 14 (top left, 100Re = ). 
Hence the gradient of temperature is pronounced. Same variation is observed 
along the horizontal direction Figure 14 (top right, 100Re = ). In the shear 
force dominated case 1Ri  , the temperature variation is significant only very 
near to the walls, where the conductive heat transfer is dominant and in the 
middle portion of the cavity, temperature change is insignificant due to the re-
circulation of fluid, where the convective heat transfer is dominant. The bottom 
plots in the same Figure 14 shows the case of different Grashof number 
( 610Gr = ). In this case the horizontal variation of temperature is more signifi- 
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Figure 11. Contours of velocity components U (left) and V (right) for a fluid flow 

1000Re =  and 0.73Pr = . Here 0.01,0.1Ri =  and 1 respectively (top to bottom) or 

equivalently 4 510 ,10Gr =  and 106. Here U is the horizontal component and V is the 
vertical component. 
 
cant than the variation along the vertical direction. Figure 15 shows the varia-
tion of temperature with Gr  (top plot) and Pr  (bottom plot) respectively. In 
this figure, the dash-dash line overlapping with the black continuous line which 
shows an insignificant change for the values of 410Gr =  and 510Gr = . For 

1000Re =  it is observed that when 1Ri ≤ , no significant changes in tempera-
ture takes place. However when 1Ri =  the temperature along the vertical line 
of the cavity reduces considerably. For a fixed Re  and Gr , for very low values 
of Pr , the temperature uniformly rises along the vertical distance and changes 
only slightly along the horizontal center of the cavity. However, if 1Pr ≈  the 
temperature remains nearly constant in the middle of the cavity. For 1Pr ≥ , a 
non-monotonic increase in T is noted, both along vertical and horizontal center 
region. 
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Figure 12. Horizontal and vertical components of velocity U and V along the center lines 

0.5x =  (left) and 0.5y =  (right) are shown for 410Gr =  (top) and 610Gr =  
(bottom) respectively. Here 0.73Pr = . Here, the dash-dot lines corresponding to 

3000Re =  are the forced convective cases. 
 

 
Figure 13. Profiles of horizontal velocity U along the vertical center line 0.5x =  and 
vertical velocity V along horizontal center line 0.5y =  are shown. Here 1000Re = . 
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Figure 14. Temperature along the vertical center line 0.5x =  (left) and along the 
horizontal center line 0.5y =  (right) for 410Gr =  and 106 respectively (top to 
bottom) are shown for 0.73Pr = . 
 

 
Figure 15. Temperature profiles along vertical and horizontal centers of the cavity for 
different Gr  (top) and for different Pr  (bottom). 
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6. Estimation of Order of Accuracy 

We have checked the order of accuracy from the computed numerical values 
using the method of divided difference. In order to evaluate the accuracy of the 
obtained numerical results, we have taken the center point left corner (formed 
on the apex of vertical upstream wall and bottom surface) vortex ( maxψ ) values 
for 1000Re = , 0.73Pr =  with all values of 60 10Gr≤ ≤  having different gr-
ids of step size h. The reason for choosing the centre of vortex is the point where 
velocity of the fluid is nearly null (ψ  is a constant), hence the singularity af-
fected by the velocity vector due to corner vortices are avoided which is ex-
plained by Iwatsu et al., [42]. The divided difference with respect to h is calcu-
lated as 

( ) ( ) ( )
1 2

1 2

h h y
dh h h

φ φφ −∆
= =

−
                  (86) 

A plot between y and the grid step size h is made on a log-log scale which is 
shown in Figure 16. The four points in the figure correspond to the values ob-
tained in five different grids. It is found that result follow a straight line beha-
viour with a slope equal to 3. This is true for the flow with any ,Re Pr  and Gr  
considered in this study. Since the quantity in y-axis itself is equivalent to one 
slope, the overall slope should be 4, indicating that the numerical results ob-
tained will be having fourth order accuracy. 

7. Conclusion 

The fourth order compact finite difference scheme is successfully implemented 
 

 
Figure 16. Log-log plot of divided differenced quantity d dhφ  as a function of grid 

spacing h . Here φ  can be any physical quantity and we have taken it to be the maxψ  
for 1000Re =  and 0.73Pr = . Plots connected with data points are computed from our 
discretization scheme. Bottom-most line is a line whose slope is equal to three. 
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To study the mixed convection in a lid driven cavity flow with linearly heated 
top wall. The multigrid iterative procedure allowed a fast convergence to the ex-
act solution. The effect of heat transfer is affected by all the governing parame-
ters as well as the effect of linear heating. The growth and the degradation of 
USE and DSE are observed for the increase of Richardson number, which shows 
a significant effect of Ri  over heat transfer. In the mixed convection range, the 
USE and DSE are merging. The velocity contour shows that, both velocity com-
ponents are responsible for the emergence of corner vortices. For 1Ri ≥ , a push 
of buoyant force against the gravity occurs and hence the USE grows and finally 
it forms a separate cell near the bottom region of the cavity in the horizontal ve-
locity component. The order of accuracy of the derived numerical scheme is 
found to be four. 
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