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Abstract 
L-Deprenyl is selective and irreversible monoamine oxidase B inhibitor, known 
to have neuroprotective properties. Putrescine, one of polyamine, is thought 
to be important in the neuronal cell damage associated with various type of 
excitatory neurotoxicity. We examined the effects of L-deprenyl on the 
changes in putrescine level and neuronal damage after transient global ische-
mia in gerbils. Male Mongolian gerbils weighing 65 - 75 g were used in the 
experiment. Global ischemia was induced by occlusion of common carotid 
arteries for 3 min to observe neuronal injury in hippocampal pyramidal cells. 
L-Deprenyl group was given 10 mg/kg of L-deprenyl intraperitoneally imme-
diately after, 3 h and 6 h after global ischemia. Treated animals were processed 
in parallel with ischemic animals receiving saline as a vehicle and with sham- 
operated controls. Hippocampal putrescine level was increased by global 
ischemia and inhibited by L-deprenyl treatment. In histological findings, 
counts of viable neurons were made in the pyramidal cell layer of the hippo-
campal CA1 area 3 days after ischemic insult. The number of viable neurons 
in the pyramidal cell layer of CA1 area was significantly increased in animals 
treated with L-deprenyl compared to vehicle-treated ischemic animals (p < 
0.05). In terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick 
end-labeling (TUNEL) assay, semiquantitative analysis of dark-brown neu-
ronal cells was made in the hippocampal CA1 area. There was also a signifi-
cant difference in the degree of TUNEL staining in the hippocampal CA1 area 
between vehicle-treated and L-deprenyl-treated animals (p < 0.05). These data 
show L-deprenyl is effective as a prophylactic treatment for neuronal injury 
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when it is administrated before ischemia but a further study need to know the 
effects of administration of L-deprenyl after ischemia and at given times after 
reperfusion. 
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1. Introduction 

The naturally occurring polyamines in mammalian cells are putrescine (PU), 
spermidine (SD), and spermine (SM) that play an essential role in the process of 
cellular growth, development, and differentiation [1] [2]. Endogenous polya-
mines have multiple effects in the central nervous system and have been sug-
gested to be neurotransmitters or neuromodulators [3]. Various kinds of stress-
ful stimuli including stresses, seizures, excitotoxic conditions, and traumatic 
brain injuries increase the polyamines responses [4]-[10]. The changes in brain 
polyamine levels after brain ischemia have been studied [11] [12] [13] and po-
lyamines, especially putrescine is thought to be important in the generation of 
brain edema, blood-brain barrier breakdown and neuronal cell damage asso-
ciated with various type of brain injury including brain ischemia and trauma [4] 
[5] [6] [11] [12] [14]. Strategies including the inhibition of polyamine metabol-
ism have been reported to have neuroprotective effect against ischemic neuronal 
injury [6] [11] [15]. 

L-Deprenyl (Selegiline) is a selective an irreversible inhibitor of monoamine 
oxidase-B (MAO-B) [16] [17] and a useful form of adjunct therapeutic drug to 
levodopa in the symptomatic treatment of Parkinson’s disease [18]. And it has 
several other characteristics, which are independent of its action on MAO-B, in-
clude antioxidant action, induction of scavenger enzyme activity, and this may 
partially explain the described neuroprotection of L-deprenyl [19] [20] [21] [22]. 
L-Deprenyl is known to reduce the neurodegeneration in nigrostriatal dopamine 
system after chronic administration and recover the neurological symptoms of 
Alzheimer’s disease [23] [24]. In addition, L-deprenyl showed anticonvulsive ef-
fect against various seizure models in mice [25]. However, the protective effect 
of L-deprenyl on the ischemic neuronal damage is controversial. This study was 
conducted to investigate whether L-deprenyl can attenuate the changes in PU 
level and neuronal damage following transient global ischemia in gerbils. 

2. Materials and Methods 
2.1. Animals and Drug Administration 

Male Mongolian gerbils (Meriones ungiculatus) weighing 65 - 75 g (10-week 
old) were used in this study. These animals were housed in laboratory cages and 
maintained on a 12-h light-dark cycle, with ad libitum access to food and water 
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throughout the study period. The gerbils were treated with L-deprenyl (10 m/kg, 
i.p., purchased from RBI Laboratories, Natick, MA, USA). L-Deprenyl group 
was given 10 mg/kg of L-deprenyl intraperitoneally immediately after, 3 h and 6 
h after global ischemia. L-Deprenyl was dissolved in normal saline. In the 
ischemic control groups, the vehicle (normal saline, i.p.) was administered to 
gerbils according to the same schedule of L-deprenyl. 

2.2. Surgery for Transient Global Ischemia 

Gerbils were sacrificed 3 days after global ischemia. Gerbils were anesthetized 
with isoflurane (3% for induction and 1.5% for maintenance) with N2O (70%) 
and oxygen (30%). In the supine position, a midline ventral incision of 2 cm was 
made in the neck. Both common carotid arteries were exposed, separated care-
fully from the vagus nerve and vein and occluded for 3 min with micro-clips 
[26]. Blood flow during the occlusion and reperfusion after removal of the clips 
was confirmed visually and the incision was closed. The rectal temperature was 
monitored and maintained at 37˚C ± 0.5˚C with a feedback-controlled thermo-
regulator (CMA, Stockholm, Sweden) and an incandescent light was placed over 
the head from the induction of anesthesia until 3 h after ischemia. In the sham- 
operated group, the neck incision was made only to expose both common caro-
tid arteries without occlusion. Other procedures were identical to those of other 
groups. 

2.3. Polyamine Extraction and High Performance Liquid  
Chromatography (HPLC) Analysis 

The animals were sacrificed 6, 12, 24, or 72 h after ischemia for polyamine ex-
traction. The brains were removed rapidly from the skull and dissected for sepa-
ration of the hippocampus. The extraction procedure was carried out in ice- 
chilled conditions. Derivation and HPLC analysis of polyamines were based 
upon the previous method [9]. Each brain sample was homogenized with a glass 
tissue homogenizer in 10 volumes of ice-chilled 0.4 M perchloric acid containing 
2 mM disodium EDTA and 1,8-diaminooctane 4 × 10−5 M as an internal stan-
dard. The homogenate was centrifuged at 12,000 g for 10 min, at 4˚C and 100 µl 
of the supernatant was evaporated by a vacuum drier. The dried tissue was dis-
solved in 100 µl of 1 M sodium bicarbonate then deprived with 300 µl of 4-flu- 
oro-3-nitrobenzo-trifluoride (FNBT) reagent (a mixture of 10 µl of FNBT and 
one ml of dimethyl sulfoxide) at 60˚C for 20 min. At the end of derivation, 40 µl 
of 1 M histidine in 1 M sodium bicarbonate was added to the reaction mixture 
then the derivation continued for another 5 min to scavenge excess FNBT. After 
cooling the mixture in an ice basket, the N-2’-nitro-4’-trifluoromethylphenyl de-
rivatives of polyamines were extracted twice with 2 ml of 2-methylbutane. After 
centrifugation (3000 g for 10 min), the organic phase was evaporated and the re-
sidue was reconstituted with 1.0 ml of methanol. The 20 µl of the methanol solu-
tion was applied to the isocratic reversed phase HPLC system (Gilson Medical 
Electronics, France), then the separation of NTP-polyamines was accomplished 
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by elution of acetonitrile-water (80:10, v:v) mobile phase at the flow rate of 1.0 
ml/min within 30 min. The eluent was monitored by UV/VIS detector set at 242 
nm and a MicrosorbTM C18 column (5 µM, 4.6 mm × 25 cm, Rainin instrument 
Co., Woburn, USA) was used. 

2.4. Histology 

The gerbils were sacrificed 72 h after ischemic insult. They were deeply anesthe-
tized with ether and perfused transcardially with cold heparinized phosphate- 
buffered saline (PBS, pH 7.2) and 10% formalin in PBS. The brains were re-
moved from the skull and fixed in the same fixative for 24 h. Thereafter the 
brains were embedded in paraffin and representative coronal sections (6-µm 
thick), which included the dorsal hippocampus, were obtained using a rotary 
microtome. Tissue sections were stained with hematoxylin and eosin. The hip-
pocampal CA1 damage was determined by counting the surviving pyramidal 
neurons. The mean number of CA1 pyramidal neurons per millimeter for both 
hemispheres in a section of dorsal hippocampus was calculated for each group of 
the gerbils. 

2.5. Terminal Deoxynucleotidyl Transferase-Mediated dUTP Nick 
End-Labeling (TUNEL) Staining 

Histochemical staining for TUNEL was performed with a kit (Roche Diagnostic 
Co., USA). Tissue sections were deparaffinized in xylene and hydrated in a se-
quence of ethanol washes followed by a final wash in phosphate-buffered saline 
(PBS). Nuclei of tissue sections were stripped of proteins by incubation with 
proteinase K (20 µg/ml in 10 mM Tris/HCl, at 37˚C) for 15 minutes. The slices 
were then washed in distilled water and PBS and incubated in 0.3% hydrogen 
peroxide to remove endogenous peroxidases. After equilibration, each section 
was incubated with 50 µl of TUNEL mixture (5 µl of terminal deoxynucleotidyl 
transferase (TdT) and 45 µl of fluorescence-labeled nucleotide) for 60 min at 
37˚C. The sections were treated with horseradish peroxidase conjugated an-
ti-fluorescence antibodies. After a detection of double strand breaks in genomic 
DNA with 2,3’-diaminobenzidine tetrahydrochloride (DAB) (0.5 mg/ml in 50 
mmol/L Tris-HCl buffer, pH 7.4) as a substrate for the peroxidase. 

2.6. Statistics 

Statistical analysis was performed using ANOVA followed by Scheffe’s post-hoc 
test and significance refers to results where p < 0.05 was obtained. 

3. Results 
3.1. Effect of Forebrain Ischemia on Polyamine Levels in the  

Hippocampus 

The changes in the hippocampal polyamine levels were examined 6 h, 12 h, 24 h 
or 72 h after ischemia. The PU level was significantly increased at 12 h, 24 h, or 
72 h after ischemia (respectively, p < 0.05). The PU level was highest 12 h after 
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ischemia compared with the sham-operated group (Figure 1(a)). 
The hippocampal SD level also did not show significant changes compared 

with the sham-operated group (Figure 1(b)). The hippocampal SM levels were 
not also significantly changed after ischemia (Figure 1(c)). 
 

 
Figure 1. Polyamine (a) Putrescine; (b) Spermidine; and (c) Spermine) profiles of gerbil 
hippocampus in global ischemia (6 h, 12 h, 24 h, or 72 h after reperfusion). Polyamine le-
vels are given in nmol/g wet tissue. N = 7, respectively. Statistically significant differences 
compared to sham-operated group are indicated by *p < 0.05, **p < 0.01. Conc: concen-
tration. 
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3.2. Effect of Administration of L-Deprenyl in the Changes of  
Polyamine Levels 

Administration of L-deprenyl attenuated the increases of the hippocampal PU 
levels at 12 h after ischemia (p < 0.05, Figure 2(a)). Administration of L-de- 
prenyl did not change the SD or SM levels in the hippocampus following ische-
mia (Figure 2(b) and Figure 2(c)). 
 

 
Figure 2. Changes of putrescine (a); spermidine (b) or spermine (c) levels in gerbil hip-
pocampus after global ischemia and effect of L-deprenyl administration. Polyamine levels 
are given in nmol/g wet tissue. N = 7, respectively. Statistically significant differences 
compared to saline-treated group are indicated by *p < 0.05. Conc: concentration. 
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3.3. Histological Changes 

Histological examination of the nervous system demonstrated marked cell dam-
age in the hippocampal CA1 region in the gerbils treated with a vehicle when 
compared with the sham-operated group (Figure 3(a) and Figure 3(b)). CA1 
pyramidal neurons showed pyknosis, eosinophilia, karyorrhexia, and chromo-
some condensation in the vehicle-treated group (Figure 3(b)). This neuronal 
cell damage was inhibited by L-deprenyl administration. Administration of L- 
deprenyl administered after ischemic insult significantly reduced neuronal 
damage (p < 0.05, Figure 3(c) and Figure 3(d)). 

3.4. TUNEL Staining 

In sham-operated group, there were no TUNEL staining positive cells in the 
hippocampal CA1 area (Figure 4(a)). Numerous cells in the hippocampal CA1 
area were strongly positive for TUNEL staining after global ischemia and ve-
hicle-treated group (Figure 4(b)). The number of normal viable cell in the glob-
al ischemia and L-deprenyl-treated group was more than that in the global 
ischemia and vehicle-treated group (Figure 4(c)). For semi-quantification, L- 
deprenyl adminstration significantly decrease the TUNEL staining-positive cells 
in compared with vehicle-treated group (Figure 4(d), *P < 0.05). 
 

        
Figure 3. Protective effect of L-deprenyl on global ischemia-induced neuronal damage in hippocampal CA1 area of gerbil. 
Hippocampal CA1 pyramidal neurons in sham-operated group (n = 7) (a); Hippocampal CA1 pyramidal neurons in glob-
al ischemia and vehicle administration group (n = 10) (b); Hippocampal CA1 pyramidal neurons in global ischemia and 
L-deprenyl administration (n = 10) (c); Remarkable reduction in the number of viable neurons at the 3 days after the 
ischemic episode when compared with sham-operated controls. Administration of L-deprenyl attenuated the ischemic 
neuronal injuries (d); After transient global ischemia, there are remarkable reduction of surviving neurons in gerbil hip-
pocampus when compared with sham-operated controls (*P < 0.05). Significant increase of surviving neurons in CA1 area 
is observed in DPN animals when compared with Veh (#P < 0.05). Data are presented as the mean ± S.E.M. Sham: 
Sham-operated animals, Veh: vehicle-treated animals, DPN: L-deprenyl treated animals. Scale bar = 50 µm. 
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Figure 4. Effect of L-deprenyl on TUNEL staining in the hippocampal CA1 subsector 3 days after transient global 
ischemia in gerbil. Hippocampal CA1 pyramidal neurons in sham-operated group (n = 7) (a); Hippocampal CA1 py-
ramidal neurons in global ischemia and vehicle administration group (n = 10) (b); Hippocampal CA1 pyramidal neu-
rons in global ischemia and L-deprenyl administration (n = 10) (c); Remarkable increase in the number of TUNEL 
staining (+)-cells at the 3 days after the ischemic episode when compared with sham-operated controls. Administration 
of L-deprenyl attenuated the TUNEL staining (+)-cells (D). Significant decrease of TUENL staining (+)-cells in CA1 
area is observed in L-deprenyl-treated animals when compared with vehicle-treated animals (*P < 0.05). Data are pre-
sented as the mean ± S.E.M. Veh: vehicle-treated animals, DPN: L-deprenyl-treated animals. Scale bar = 50 µm. 

4. Discussion 

L-Deprenyl, also named selegiline, is selective and irreversible inhibitor of mo-
noamine oxidase B (MAO-B) widely used in the management of Parkinson's 
disease (PD). L-Deprenyl is known to have neuroprotective properties, including 
antioxidant, anticonvulsant actions. 

Degeneration of nigrostriatal dopaminergic neurons is the major pathogenic 
substrate of PD. Inhibitors of monoamine oxidase B (MAO-B) have been used in 
the treatment of PD and at least one of them, i.e., L-deprenyl, also displays anti-
oxidant activity. Dopamine (DA) autoxidation produces reactive oxygen species 
implicated in the loss of dopaminergic neurons in the nigrostriatal pathway. But 
there is little report that L-deprenyl has neuroprotective effect against delayed 
neuronal injury in global ischemia. 

These results show L-deprenyl is effective as a prophylactic treatment for 
neuronal injury when it is administered before ischemia but a further study need 
to know the effects of administration of L-deprenyl after ischemia and at given 
times after reperfusion. 

4.1. Effects of Administration of L-Deprenyl on the Changes of  
Polyamine Level in Gerbil Brain Regions after Transient 
Global Ischemia 

It is suggested that polyamines released from necrotic neurons into the extracel-
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lular compartment bind to the NMDA receptor of cells located in close vicinity 
and thus render neurons vulnerable to subtoxic levels of excitotoxins. Several 
researchers examined the changes in brain polyamine levels after focal or global 
ischemia [6] [11] [13]. Various kinds of stimuli or stresses such as seizures, ex-
citotoxicity, and traumatic brain injury modify the ornithine decarboxylase 
(ODC), the regulatory enzyme in the polyamine biosynthesis [4] [5] [10] [27]. 
These changes may be related to modifications of intracellular calcium ion fluxes 
because polyamines increase the cytosolic amino acids. Some authors have 
shown discrepancies between ODC activity and the concentration of polyamine 
[28], a finding suggesting that the latter might be more useful than the former. 

In this study, PU levels in cortex and hippocampus increased after transient 
global ischemia. These changes in PU levels bear a strong similarity to those de-
scribed by Paschen et al. [13]. The diamine precursor of polyamines, PU is nor-
mally in low level and long lasting accumulation of PU may be harmful [13]. An 
association between brain damage and high PU levels in the ischemic brain has 
also been found previously suggesting a role for PU in mediating the ischemic 
damage. ODC and polyamines are thought to be important in the generation of 
edema and neuronal cell loss associated with cerebral ischemia [13]. Baskaya et 
al. [5] suggested that polyamines may play a role in posttraumatic brain edema 
formation particularly in brain regions. 

Polyamines are known to increase cytosolic calcium ion concentration [29] 
[30] and induce the release of excitatory amino acid [27]. A remarkable increase 
of the extracellular concentration of excitatory amino acids including glutamate, 
induced by cerebral ischemia leading to a large amount of calcium ion influx 
through glutamate receptor in neurons and neuronal injury [31]. PU levels par-
ticularly correlate with the density of cell necrosis [13]. PU might be a reliable 
marker for acute pathology in brain tissue injury [32]. Tissue PU increased in 
the penumbra region that developed brain edema in permanent focal cerebral 
ischemia [6]. In addition, the blockade of ODC resulted in a protective effect 
against focal or global ischemic brain damage [15] and partially antagonized the 
convulsant activity [33] suggesting that polyamine metabolism plays a role in the 
development of neuronal injuries following brain ischemia or epileptic seizure. 
In regarding the effect of L-deprenyl on the PU level, although there is no defi-
nite evidences, we can suggest two possibilities. First, L-deprenyl attenuates the 
harmful accumulation of PU by influence on the polyamine metabolism. Second, 
L-deprenyl-induced neuroprotection due to antioxidant effect or anti-apoptotic 
effect may decrease the PU response to excitotoxicity. 

In this study, SD and SM levels in the cortex and hippocampus showed no 
significant changes after ischemia. These are in agreement with results of de Ve-
ra et al. [33] and Paschen et al. [12]. In addition, L-deprenyl did not show any 
influences on the SD and SM levels. Activation of interconversion pathway en-
zymes, SD/SM N1-acetyltranseferase [34] and PA oxidase [35] which convert SM 
to SD and SD to PU, is a probable major factor in PU accumulation [36]. In ad-
dition, SD has been shown to bind to NMDA-gated calcium ionophores in-
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creasing also the affinity of [3H]-MK-801 for NMDA receptor [3] [37]. There-
fore, the reduction of SD level may be a compensatory mechanism unrelated to 
the ODC activation against ischemic insult. Tissue PU levels change to a re-
markable degree than those of SD and SM after various pathological conditions 
[4] [5] [6] [9] [12] [14] [30]. 

The results of this study suggest that administration of L-deprenyl early after 
ischemia is effective to attenuate the increase of PU levels because polyamine 
biosynthesis increased rapidly after ischemia. However, the role of polyamines, 
especially PU, in the pathogenesis of brain ischemia is not clear and needs to be 
further studied. 

4.2. Effect of Administration of L-Deprenyl against Neuronal 
Damage after Transient Global Ischemia 

The present study shows the neuroprotective effect of administration of L-de- 
prenyl against ischemic neuronal damage. Many researchers have described the 
effects of L-deprenyl in inhibition of free radical-induced lipid peroxidation and 
apoptosis in neural tissue. Recently, the antioxidant effects of L-deprenyl were 
extensively studied. L-Deprenyl protects lipid peroxidation [22] and increases 
the scavenging effect of anti-oxidant enzymes [38]. Wu et al. [39] reported L- 
deprenyl-induced facilitation of nigral neuron recovery by its anti-oxidant effect. 
In addition, L-deprenyl has been shown to protect the neuronal injury and func-
tion after exposure to beta-amyloid protein [40]. 

In transient global ischemia, neuronal damage shows mainly apoptotic path-
way in hippocampal pyramidal cell layer [41] [42]. In previous studies, L-de- 
prenyl shows anti-apoptotic effect in various neuronal damage models [43]. In 
this study animals that received L-deprenyl treatment displayed a significant de-
crease in the number of TUNEL staining positive neurons in the hippocampal 
CA1 region. 

It has been well known that oxygen radical-induced lipid peroxidation has 
been strongly suggested to play a role in ischemic neuronal damage [44] [45]. 
Recently, a variety of studies have examined the neuroprotective properties of 
antioxidants in brain ischemia [46] [47]. These results demonstrated that ad-
ministration of L-deprenyl has neuroprotective effect against transient global 
ischemia-induced neuronal injury in gerbils. L-Deprenyl attenuated the increase 
of putrescine level in the cerebral cortex and hippocampus and the neuronal 
damages in the hippocampal CA1 region after ischemia. Administration of L- 
deprenyl did not show complete neuroprotection, it seems to be a promising 
strategy for attenuation of global ischemia-induced neuronal injury. 

The present data show that the administration of L-deprenyl attenuates the 
ischemia-induced increases in PU levels and has a neuroprotective effect against 
hippocampal neuronal damage in a gerbil model of global ischemia. L-Deprenyl 
is neuroprotective against neuronal damage after transient global ischemia. 
These findings suggest that L-deprenyl may have a promise in the acute treat-
ment of stroke. 
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