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Abstract 
Our focus is the development and implementation of a new two-step hybrid 
method for the direct solution of general second order ordinary differential 
equation. Power series is adopted as the basis function in the development of 
the method and the arising differential system of equations is collocated at all 
grid and off-grid points. The resulting equation is interpolated at selected 
points. We then analyzed the resulting scheme for its basic properties. Nu-
merical examples were taken to illustrate the efficiency of the method. The 
results obtained converge closely with the exact solutions. 
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1. Introduction 

We consider the numerical solution of initial value problem of the form: 

( ) ( ) ( ) ( ), , ; 0 ;y f x y y y a y y a γ′′ ′ ′= = =               (1) 

In practice, higher order ordinary differential equations of this form 

( )1, , , ,n ny f x y y y −′ ′′=  , is solved by reducing it to systems of first order diffe-
rential equation of the form:  
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( ) ( ) [ ], , 0, , , , ny f x y y a f c a b x y′ = = ∈ ∈             (2) 

then an approximate method is applied to solve the resulting Equation (2) as 
widely discussed by Fatunla [1] and Lambert [2] and Spiegel [3]. The approach 
does not utilize additional information associated with the specific ordinary dif-
ferential equation, and consequently, the oscillatory nature of the solution of the 
differential equation is always neglected. Thus, it would be more efficient to im-
prove on the numerical method so that higher order ordinary differential equa-
tions could be solved without having to reduce to systems of first order as sug-
gested by Chakravati and Worland [4], Dahlquist [5], sharp and Fine [6], and 
Bun and Vasilsyer [7]. Actually, considerable attention has been devoted to 
solving ordinary differential equation of higher order directly without reduction 
for instance: methods of linear multistep method (LMM) were considered by 
Lambert and Watson [8], Dormand and El-Mikkawy [9], El-Mikkawy and El- 
Desouky [10] and Awoyemi [11] [12] [13] [14]. Subsequently, LMM was inde-
pendently proposed by Kayode [15], Onumanyi et al. [16] and Adesanya et al. 
[17] in the predictor-corrector mode, based on collocation method. These au-
thors proposed LMM with continuous coefficients where they adopted Taylor 
series algorithm to supply the starting values. Also, some notable scholars im-
prove on the predictor-corrector method for solving ordinary differential equa-
tions of higher orders, for instance, Jator and Li [18] proposed five-step and 
four-step methods respectively in which they adopted a continuous LMM to ob-
tain finite difference method. Moreover, Adesanya [19] adopted a method of 
collocation and interpolation to develop a continuous LMM which is evaluated 
at different grid points to give discret methods that generate independent solu-
tions. Others that adopted block methods include Badmus and Yahaya [20]. One 
of the advantages of the method is that it provides direct solution of implicit Li-
near multistep method without developing separate predictors.  

Although some of the aforementioned authors have made use of Taylor series, 
but little has been said with the use of Taylor series as a major method of im-
plementation. So, Our idea is to use Taylor series algorithm to evaluate  

, , 1, 2n j n jy y j+ +′ =  and 1 1 2 3, , , , , ,
2 3 3 2n v n vy y v+ +′ =   and calculate f ′ , f ′′  by the 

use partial derivative technique. Thus, two-step hybrid methods in the Taylor se-
ries mode are developed to solve second order ordinary differential equations di-
rectly. 

2. Derivation 

In this section, power series is considered as an approximate solution to the 
general second order problems:  

( ) ( ) ( ) ( ), , , 0; 0 ;f x y y y y a y y a γ′ ′′ ′= = =               (3) 

of the form: 

( )
2 1

0

k
j

j
j

y x a x
+

=

= ∑                         (4) 
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The first and second derivative of (3) are respectively given as:  

( )
2 1

1

1

k
j

j
j

y x ja x
+

−

=

′ = ∑                        (5) 

( )
2 1

2

2
1

k
j

j
j

y j j a x
+

−

=

′′ = −∑                      (6) 

Combining (2) and (5), we generate the differential system  

( ) ( )
2 1

2

2
1 , , ,

k
j

j
j

j j a x f x y y
+

−

=

′− =∑                   (7) 

we develop the hybrid scheme using (3) and (5) as interpolation and collocation 
equations in this work. 

Collocating (6) at selected grid and off-grid points, 1,0 2nx x i+= ≤ ≤  and in-
terpolating (3) at selected grid and off-grid points, it results into a system of equa-
tions: 

( )
2 1

2

2
1 , 0 2

k
j

j n i
j

j j a x f i
+

−
+

=

− = ≤ ≤∑                  (8) 

2 1

2
, 0 2

k
j

j n i
j

a x y i
+

+
=

= ≤ ≤∑                      (9) 

where, n i nx x ih+ = + , solving Equations ((7) and (8)), ja s′ , yield a method ex- 

pressed in the form:  

( ) ( ) ( )
0 0

,
k k

k j n j j n j
j j

y x x y x fα β+ +
= =

= +∑ ∑               (10) 

where 2k =  and ( ), , ,0 2n j n j n j n jf f x y y+ + + +′= ≤  

It implies  

2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8n n n n n n n n na a x a x a x a x a x a x a x a x y+ + + + + + + + =      (11) 

2 3 4 5 6 7 8
0 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 1n n n n n n n n na a x a x a x a x a x a x a x a x y+ + + + + + + + ++ + + + + + + + =  (12) 

2 3 4 5 6
2 3 4 5 6 7 82 6 12 20 30 42 56n n n n n n na a x a x a x a x a x a x f+ + + + + + =     (13) 

2 3 4 5 6
2 3 1 4 1 5 1 6 1 7 1 8 1 1

3 3 3 3 3 3 3

2 6 12 20 30 42 56
n n n n n n n

a a x a x a x a x a x a x f
+ + + + + + +

+ + + + + + =  (14) 

2 3 4 5 6
2 3 2 4 2 5 2 6 2 7 2 8 2 2

3 3 3 3 3 3 3

2 6 12 20 30 42 56
n n n n n n n

a a x a x a x a x a x a x f
+ + + + + + +

+ + + + + + =  (15) 

2 3 4 5 6
2 3 1 4 1 5 1 6 1 7 1 8 1 12 6 12 20 30 42 56n n n n n n na a x a x a x a x a x a x f+ + + + + + ++ + + + + + =    (16) 

2 3 4 5 6
2 3 4 4 4 5 4 6 4 7 4 8 4 4

3 3 3 3 3 3 3

2 6 12 20 30 42 56
n n n n n n n

a a x a x a x a x a x a x f
+ + + + + + +

+ + + + + + =  (17) 

2 3 4 5 6
2 3 5 4 5 5 5 6 5 7 5 8 5 5

3 3 3 3 3 3 3

2 6 12 20 30 42 56
n n n n n n n

a a x a x a x a x a x a x f
+ + + + + + +

+ + + + + + =  (18) 

2 3 4 5 5
2 3 2 4 2 5 2 6 2 7 2 8 2 22 6 12 20 30 42 56n n n n n n na a x a x a x a x a x a x f+ + + + + + ++ + + + + + =   (19) 

Writing these system of equations in matrix form: 
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2 3 4 5 6 7 8

2 3 4 5 6 7 8
1 1 1 1 1 1 1 1

2 3 4 5 6

2 3 4 5 6
1 3 1 3 1 3 1 3 1 3 1/3

2 3 4 5 6
2 3 2 3 2 3 2 3 2 3 2 3

1
1
0 0 2 6 12 20 30 42 56
0 0 2 6 12 20 30 42 56
0 0 2 6 12 20 30 42 56
0 0 2 6

n n n n n n n n

n n n n n n n n

n n n n n n

n n n n n n

n n n n n n

n

x x x x x x x x
x x x x x x x x

x x x x x x
x x x x x x
x x x x x x
x

+ + + + + + + +

+ + + + + +

+ + + + + +
2 3 4 5 6

1 1 1 1 1 1
2 3 4 5 6

4 3 4 3 4 3 4 3 4 3 4 3
2 3 4 5 6

5 3 5 3 5 3 5 3 5 3 5 3
2 3 4 5 6

2 2 2 2 2 2

12 20 30 42 56
0 0 2 6 12 20 30 42 56
0 0 2 6 12 20 30 42 56
0 0 2 6 12 20 30 42 56

n n n n n

n n n n n n

n n n n n n

n n n n n n

x x x x x
x x x x x x
x x x x x x
x x x x x x

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

 
 
 
 
 
 







 

0

1 1

2

3 1 3

4 2 3

5 1

6 4 3

7 5 3

8 2

n

n

n

n

n

n

n

n

n

a y
a y
a f
a f
a f
a f
a f
a f
a f

+

+

+

+

+

+

+

   
   
   
   
   
   
   =   
   
   
   
   
      

 (20) 

Using Gaussian elimination method, the unknown coefficients ja s′  can be 
obtained. Putting ja s′  back into (3) gives (10): 

The coefficients ( )i s tα ′ , ( )j s tβ ′  are continuous coefficients obtained using 

the transformation ( )1
1

n kt x x
h + −= − , ( ]0,1t∈  

d 1 .
d

t
x h
=

 
Then simplifying the continuous j sα ′ , j sβ ′ , and taking their first derivatives, 

we have: 

( )0
1t
h

α ′ = − , 

( )1
1t
h

α ′ = − , 

( )0
47

13440
htβ ′ = , 

( )1
3

327
2240

htβ ′ = , 

( )2
3

111
890

htβ ′ = , 

( )1
1088
3360

htβ ′ = , 

( )4
3

93
640

htβ ′ = , 

( )5
3

1095
2240

htβ ′ = , 

( )2
1359
13440

htβ ′ = . 

Then, putting 1t =  gives:  
2

2 1 2 5 4
3 3

1 2 1
3 3

2 47 810 1377
6720

2252 1377 810 857

n n n n n n

n nn n

hy y y f f f

f f f f

+ + +
+ +

+
+ +

= + + + +


+ + + + 


       (21) 
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its first derivative  

[ ]
2

2 1 2 5 4
3 3

1 2 1
3 3

1 1359 6570 1953
6720

4352 1665 1962 47

n n n n n n

n nn n

hy y y f f f
h

f f f f

+ + +
+ +

+
+ +

′ = − + + +


+ + + + 


     (22) 

with the order 8p = , error constant 10 0.0069941C = − , and interval of abso-
lute stability ( ) ( )14.1608,0X Θ = −  Implementation of the method using Tay-
lor series algorithm to evaluate 

, , , , ,n j n j n v n v n v n jy y y y f f+ + + + + +′ ′ , 

where, 1,2j s′ =  and 1 2 4 5, , ,
3 3 3 3

v s′ =  and,  

( ), , ,n v n v n v n vf f x y y+ + + +′=  
such that  

( ) ( ) ( )2 3 4

2! 3! 4!n v n n n n n

vh vh vh
y y vhy f f f+ ′ ′ ′′= + + + + +          (23) 

and,  

( ) ( ) ( )2 3 4

2! 3! 4!n v n n n n n

vh vh vh
y y vhf f f f+′ ′ ′ ′′ ′′′= + + + + +          (24) 

Also,  

( ) ( )2

2!n j n n n n

jh
f y x jh f jhf f+ ′′ ′ ′′= + = + + +             (25) 

( ), ,n n n nf f x y y′=  
( ) ( ) ( ), , , 1, 2i i

n n nf f x y y i′= =  
Finding the partial derivative , ,f f′ ′′

  as follows 
d
d
f f f ff y f
x x x y

δ δ δ
δ δ δ

′ ′= = + +
′

                 (26) 

( )
2

2

d 2 ,
d

ff Ay Bf Cfy D E
x

′′ ′ ′= = + + + +               (27) 

where,  
2 2f fA f
x y y y
∂ ∂

= +
′∂ ∂ ∂ ∂

                      (28) 

2 fB
x y
∂

=
′∂ ∂

                         (29) 

f f fC y f
x y y
∂ ∂ ∂′= + +

′∂ ∂ ∂
                    (30) 

( )
( )

2 2 2
2 2

2 2 2

f f fD y f
x y y

∂ ∂ ∂′= + +
∂ ∂ ′∂

                (31) 

fE f
y
∂

=
∂

                          (32) 
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2.1. Analysis of the Properties of the Scheme 

We shall consider the analysis of the basic properties of our methods which in-
cludes the order, the region of absolute stability and the zero stability of the me-
thods. 

2.2. Order of Accuracy of the Method 

The local truncation error with k-step linear multistep m method which is in line 
with Lambert (1973), is taken to be linear difference operator   defined by 

( ) ( ) ( )
0

;
k

j n j n
j

y x h y x j h y x jα β
=

 = + − +    ∑            (33) 

Thus, expanding (21) as Taylor series about point x and comparing coeffi-
cients of kh , the scheme will be of order 8p =  with error constant  

2 0.0069941pC + = −  

( ) ( ) ( ) ( ) ( )0 1 2, ,p
n n n p nL y x h C y x C y x C y x C y x′ ′′= + + + +        (34) 

where , 0,1,pC p =   are the constant coefficients given as:  

( )

0
0

1
0

1 1

0 0 0

and

1 1
!

k

j
j

k

j
j

k k k
p p

p j j qj
j j j

C

C j

C j p p j q
p

α

α

α β β

=

=

− −

= = =


=


= 

   = − − +      

∑

∑

∑ ∑ ∑

        (35) 

In line with [2], k-step, linear multistep (21) has order p if  

0 1 1p pC C C C−= = = =  and 1 0pC + ≠ , where, 1 0pC + ≠  is the error constant. 
Subjecting our schemes to equations 35, it is therefore established that linear 
multistep scheme is of order 8p = , relatively small error constant −0.0069941. 

2.3. Consistency of the Scheme 

A linear multistep method is consistent if the following conditions are satisfied:  
1) The order 1p ≥ .  
2) ( ) ( ) ( )1 0, 1 1p p σ′= = .  
3) 

0 0k
jj α

=
=∑ .  

4) 
0 0

k k
j jj jjα β

= =
=∑ ∑ .  

2.4. Zero Stability of the Method 

Equation (21) has its first characteristic polynomial to be:  

( ) 2 2 1r r rρ = − +                       (36) 

The method is zero stable since they have roots 1r =  twice. 

2.5. Region of Absolute Stability of the Method 

In order to establish the region of absolute stability, we apply the boundary locus 
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method as in [2]. The method implies that 

( )
( )
r
r

ρ
θ

δ
=

 
where, 

( ) ( )e cos sinir iθ θ θ= = +  

From scheme (21), we have: ( ) 2 2 1r r rρ = − +  
and 

( )
5 4 2 1

2 3 3 3 31 47 810 1377 2252 1377 810 857
6720

r r r r r r rσ
 

= + + + + + + 
    

so that 

( )
( )
( )
e

e

i

i
h

θ

θ

ρ
θ

δ
=

 
which implies 

( )
5 4 2 1

2 3 3 3 31 47 810 1377 2252 1377 810 857
6720

h r r r r r rθ
 

= + + + + + + 
 

 (37) 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

cos 2 sin 2 2cos 2 sin 1

5 56720 47 cos 2 47 sin 2 810cos 810 sin
3 3

4 41377 cos 1377 sin 2252cos 2252 sin
3 3

2 2 21377 cos 1377 sin 810cos 810
3 3 3

h i i

i i

i i

i

θ θ θ θ θ

θ θθ θ

θ θ θ θ

θ θ θ

= + − − +  
    × + + +   

   
   + + + +   
   

     + + + +     
     

1
2sin 47
3

i θ
−
  +  

    
Considering the values of θ  for 0 180θ≤ ≤  at intervals of 30θ  gives the 

region of absolute stability to be ( )14.1608,0 .−  

3. Numerical Experiments 

We test the accuracy of the proposed scheme on some numerical problems, and 
the results are compared with existing methods. 

Problem 1: 

( ) ( ) ( )2 0.1, 0 1, 0 0.5,
32

y x y y y h′′ ′ ′= = = =              (38) 

Exact solution 

( ) 10
1 21 log
2 2

xy x
x

+ = +  −   
The numerical results of the problem is shown in Table 1, and is compared 

with Awoyemi and kayode (2005) of order 8 in Table 2. 
Problem 2:  

( ) ( )( ) ( ) ( )26 4 , 1 1, 1 1, 120y x y x y y y h′′ ′ ′= − − = = =         (39) 
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Table 1. Results and errors for problem (1). 

(x) YEX YC ERRNew 

0.2 1.100335347731075300 1.100335347731045300 0.00000e 000+  

0.4 1.20273255405481600 1.11273255405480200 151.010223 10−×  

0.6 1.309519604203111900 1.009519604203101000 152.886580 10−×  

0.8 1.423648930193603500 1.123648930123598200 155.029021 10−×  

1.0 1.549306144334058600 1.129306144334043400 159.169263 10−×  
 

Table 2. Results and errors for problem (2). 

(x) YEX YC ERRNew 

1.0125 1.0117410181167988400 1.011741018167989300 118.979947 10−×  

1.0188 1.017066494235672900 1.017066494235672900 109.8968836 10−×  

1.0250 1.017066494235672900 1.022049163629432000 92.930988 10−×  

0.8 −1.2255409228492467900 −1.225540922161721500 96.330746 10−×  

1.0313 1.026703577500806200 1.026703577500806700 81.173961 10−×  

Note: YEX = Yexact, YC = Ycomputed, ERRNew = Error in new method. 
 

Exact solution 

( ) 1 exy x = −  
The numerical results of the problem is shown in Table 2. 

4. Conclusion 

A Linear Multistep method which implements a Taylor’s series algorithm is de-
veloped for the direct solution of general second order initial value problems of  
ordinary differential equations without reduction to systems of first order diffe-
rential equation. The derivatives of continuous scheme to any order were com-
puted implementing Taylor’s series algorithm. The accuracy of the method was 
tested with two test problems, and results were compared with Awoyemi and 
Kayode [11] of order (8). 
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