
American Journal of Operations Research, 2011, 1, 73-83
doi:10.4236/ajor.2011.13011 Published Online September 2011 (http://www.SciRP.org/journal/ajor)

Copyright © 2011 SciRes. AJOR

Higher Order Iteration Schemes for Unconstrained
Optimization

Yangyang Shi1, Pingqi Pan2
1Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology,

Delft, The Netherlands
2Department of Mathematics, Southeast University, Nanjing, China

E-mail: shiyang1983@gmail.com, panpq@seu.edu.cn
Received August 3, 2011; revised August 20, 2011; accepted September 19, 2011

Abstract

Using a predictor-corrector tactic, this paper derives new iteration schemes for unconstrained optimization. It
yields a point (predictor) by some line search from the current point; then with the two points it constructs a
quadratic interpolation curve to approximate some ODE trajectory; it finally determines a new point (correc-
tor) by searching along the quadratic curve. In particular, this paper gives a global convergence analysis for
schemes associated with the quasi-Newton updates. In our computational experiments, the new schemes us-
ing DFP and BFGS updates outperformed their conventional counterparts on a set of standard test problems.

Keywords: Unconstrained Optimization, Iteration Scheme, ODE Method, Quasi-Newton Update,

Convergence Analysis

1. Introduction

Consider the unconstrained optimization problem

 min ,nf x x R (1)

where : nf R  R is twice continuously differentiable.
Let kx be the k-th iteration point. We will denote

values of ()f x and its gradient at kx by kf and kf ,
respectively.

Optimization problems are usually solved by iteration
methods. The line search widely used in unconstrained
optimization is a kind of iteration scheme for updating
iterates. Such a scheme, by which one obtains the next
iterate 1kx  from a current iterate kx , is of the follow-
ing form:

1 =k k ,kx x p  (2)

where k and p  are termed search direction and step-
size, respectively. k is usually determined as a descent
direction with respect to the objective

p
()f x , and  by

exact or inexact line searches, so that the objective value
decreases after the iteration.

For instance, the famous Newton method uses the
scheme with search direction

  12= ,k kp f


   kf

where 2
kf is the Hessian matrix of ()f x at kx , and

stepsize = 1 .
The quasi-Newton methods are reliable and efficient

in solving the unconstrained optimization problems.
Saving explicit calculations of the second order deriva-
tives and solution of a system of linear equations,
quasi-Newton methods achieved a great degree of popu-
larity since the first paper of Davidon [1,2]. He used

= ,k kp H fk 

where kH is some approximation to the inverse Hes-
sian matrix   12

kf


 .
The next approximate inverse Hessian matrix 1kH  ,

is obtained by updating kH by rank-one or rank-two
matrix. To this end, all quasi-Newton updates require

1kH  for satisfying the so-called quasi-Newton equa-
tion:

1 = ,k k kH y s (3)

where 1 k=k ky f f  and 1 k=k ks x x  .
Various quasi-Newton updates were proposed in the

past. The important modification of Davidon’s work by
Fletcher and Powell [3] (the DFP algorithm) was the first
and successful one. It was then surpassed by the BFGS
update (as accepted as the best quasi-Newton method)
[4-8] proposed independently by Broyden, Fletcher,
Goldfarb and Shanno. These updates theoretically guar-
antee all kH to be positive definite; therefore, the asso-

74 Y. Y. SHI ET AL.

ciated k is a descent direction, and the objective de-
creases if

p
 is determined by some line search.

There are other iteration schemes that appear differ-
ently from the conventional ones. The so-called ODE
methods use the following initial value problem:

 

  0

d
=

d
d 0 =

x
p x

t
x






 (4)

Assume that satisfies certain conditions, and
hence the preceding defines a trajectory.

()p x

Arrow, Huwicz and Uzawa [9] used () = ()p x f x
and . The associated trajec-
tories might be called steepest descent curve and Newton
curve respectively [10]. In this way, in fact, one could
obtain many curves corresponding to existing uncon-
strained optimization methods.

  12 () ()f x f x


  ()p x =

Pan [11-13] generalized the steepest descent curve and
Newton curve by setting () = () ()p x x A x , where

()x is called ratio factor and ()A x direction matrix.
He suggested some concrete ratio factors and direction
matrices, and showed that under certain conditions, the
objective value decreases strictly along the associated
trajectory, the limit point of which is just an optimum.

ODE methods treat the optimization problem in the
view of trajectory. They use numerical methods to ap-
proximately calculate associated trajectory, and finally
approach the limit point of the trajectory. When Euler's
approach is applied in the ODE method, standard itera-
tion schemes are obtained. In fact the standard iteration
schemes are originally derived in the direction of de-
creasing the objective function value instead of trajectory.
Euler's approach is only of the first order precision. So it
is possible to apply higher order approach to mimic the
trajectory to get higher order iteration scheme than the
standard one.

In this paper, we derive new iteration schemes along
this line. In view of the importance of DFP and BFGS
methods, we will focus on iteration schemes with respect
to these methods.

The paper is organized as follows. Section 2 derives
new iteration schemes. Section 3 offers the convergence
analysis. Section 4 reports encouraging computational
results with a set of problems.

2. Higher Order Iteration Scheme

Assume that kx is the current iterate. The next iterate

1kx  will be determined by approximately following the
trajectory, defined by (4). Let 1kx  be a predictor. In-
troduce notation

   1 1, .k k k k kp p x p p x   

We construct a quadratic interpolation curve, locally
approximating the trajectory as follows:

  2= k k ,kx t a t b t c  (5)

where satisfy the following conditions: , ,k k ka b c
2 =k k k k k ka t b t c x  ,

,

 (6a)

2 =k k k ka t b p (6b)

2
1 1 =k k k k k ka t b t c x 1,     

1.

 (6c)

12 =k k k ka t b p   (6d)

Set 1 , so = 0kt 


1(0) = kx x 
1=k kb p

. From (6a)-(6d), it is eas-
ily to draw that  =kc, and 1kx 

1
1=

2
k k

k k k

p p
t x x







 , (7a)

1=
2

k k
k k

p p
a t  

.



 (7b)

Pre-multiplying the both sides of (7a) by ,
we obtain an approximate 1k , furthermore, have an
approximate solution of (6a)-(6d).

 1

T

k kx x  
t 

   
 

1 1

2

1

= ,
4

T

k k k k k k
k

k k

p p x x p p
a

x x

 



  



  


1

1,

 (8)

1= , =k k k kb p c x   (9)

where  1k kx x   denotes 2-norm of the vector
 1k kx x   .

The unconstrained optimization problem (1) can get a
approximate solution by solving the following one-di-
mension minimization problem:

   2min = , 0.k k kt f a t b t c t    (10)

To solve such problem, we apply the inexact line
search rule, furthermore, we modify the sufficient decent
condition

    ,T
k k k k kf x tp f x tp f    (11)

in this way:

     2 ,T
k k k k k kf a t b t c f c tb f c     (12)

where (0,1)  .

2.1. Modified Inexact Line Search Algorithm

The conventional backtracking inexact line search [14]
operates in this way. At the beginning we set . The
algorithm will stop if t satisfies the sufficient decent
condition. Otherwise, the algorithm will continue with

ˆ=t t

t t .
A modified backtracking inexact line search algorithm

Copyright © 2011 SciRes. AJOR

Y. Y. SHI ET AL.

75

was obtained by applying the expression (12) as the suf-
ficient decent condition in backtracking line search algo-
rithm.

Subalgorithm 2.1 modified backtracking inexact line
search

Step 0. Given , t̂  , (0,1)  ,  ; set . ˆ=t t
TStep 1. Set if = 0ka >k k k ka f cb fT   , where con-

stant
1
ˆ

c
t

 .

Step 2. If

     2 ,T
k k k k k kf a t b t c f c tb f c     (13)

go to step 4; otherwise, go to step 3.
Step 3. t t and go to step 2.
Step 4. Terminate with . =kt t

2.2. Higher Order Iteration Schemes

The higher order iteration schemes, firstly obtain the pre-
dictor 1kx  from the current point kx by inexact line
search rule following the direction k . Then construct
the quadratic interpolation curve by the relevant infor-
mation of k

p

x and 1kx  , and calculate 1kx  satisfying
modified inexact line search rule (12). The overall steps
of the higher order iteration schemes are organized as
follows.

Algorithm 2.1 Higher order iteration schemes
Step 0. Given initial point x0, , (0,1)  d an  , set
:=k 0 ;
Step 1. If <kf  , stop.
Step 2. compute the predictor

 Call backtracking inexact line search algorithm to ob-
tain t . k

 Compute k1 =k k kx x t p 
 

.
Step 3. If 1 <f xk 

Step 4. Compute a new iteration point.
  , stop.

 Compute , ,a b c by (8) and (9). k k k

 Call subalgorithm 2.1 to get . 1kt 


 Compute 2
1 1 1=k k k k k kx a t b t  

 
:= 1k k 

c  .
Step 5. Set and go to step 1.

2.3. An Extension of the Higher Order

Iteration Scheme

The higher order iteration schemes vary with different

. In this paper we extend the higher order iteration
schemes to BFGS method, and set k . We
get the predictor 1k

()p x
=k kp H f

x  from kx , satisfying the back-
tracking inexact line search rule, in the direction .
From k

kp
x and 1kx  , we compute 1 1 1k k   .

Then by searching along the curve, we obtain the new
point

=kp H  f

1kx  . The overall steps of the variant of the itera-

tion schemes are organized as follows.
Algorithm 2.2 higher order iteration schemes using

BFGS update
Step 0. Given initial point x0; set , := 0k  , (0,1)  ,

N, 0 =H I ,  and  ;
Step 1. Compute the predictor.

 Call backtracking inexact line search algorithm to ob-
tain t . k

 Compute k1 =k k k kx x t H f   and   . 1 1=k kf f x 
 

Step 2. If  1 <f xk   , stop.

Step 3. Compute 1kH 
 .

 If T
k ky s   then 1 =kH I

 ; otherwise

1 = 1
T T T
k k k k k k k k k k k

k k T T T
k k k k k k

y H y s s s y H H y s
H H

s y s y s y

  
   
 

       
     

,
T

(14)

where 1 k=k ky f f  , =k k k ks t H f  .
Step 4. Compute the new iteration point.

 Compute , ,a b c by (8) and (9). k k k

 Call subalgorithm 2.1 to get . 1kt 


 Compute 2
1 1 1=k k k k k kx a t b t   c   .

Step 5. If 1 <fk 

Step 6. Update
 , stop.

kH .
 If 1()k modN = 0 or T

k ky s  then 1 =kH I ; oth-
erwise

1 = 1
T T T
k k k k k k k k k k k

k k T T T
k k k k k k

y H y s s s y H H y s
H H

s y s y s y

  
   
 

,
T

f

(15)

where 1=k ky f  k  , 1=k k ks x x  .

 If 1 1 1

1 1 1

<
T

k k k

k k k

f H f

f H f
  

  

  
    

 or
1 1

1

<
T

k k

k

f H

f
 






, then

set 1 =kH I .

Step 7. Set := 1k k  and go to step 1.
Note:
1) In this paper, I denotes identity matrix.
2) In step 3, we adopt a strategy to make sure that the

curvature condition >T
k ky s   is hold. So 1kH 

 is posi-
tive and 1kF 

 is a decent direction.
3) In step 4, we call the subalgorithm (2.1), in which

we set the parameter
1

=c


.

4) In step 6, we adopt a restart technique that if 1k 
is the integral multiple of the N or T

k ky s  , we restart
with 1 =kH I . Clearly, the BFGS method is a kind of
conjugate direction method, so the restart technique can
reduce the accumulation of the roundoff errors.

5) We only report the variant using BFGS update. we
also derive a variant of the higher order iteration schemes
by using the DFP updating formula instead of the BFGS

Copyright © 2011 SciRes. AJOR

76 Y. Y. SHI ET AL.

updating formula in step 3 and step 6.

3. The Global Convergence of the Higher

Order Iteration Schemes

Definition 3.1 [11] Curve ()x t where (0,)t  , if for any

> 0 , (0,)t  , ()x t is contained in the domain of
and is strictly monotone decreasing in

()f x
(0,)(())f x t  ,

then ()x t is a decent trajectory of at ()f x 0(0) =x x .
And if lim ()

t
x t

 
 is exist and equal the minimization

point of , then the curve ()f x ()x t is normal decent
trajectory of at ()f x 0x .

Pan proved the global convergence of the ODE meth-
ods with ratio factor and direction matrix [11]. In this
paper we only consider the situation that ratio factor is 1
and direction matrix is identity matrix. So we draw the
theorem as follows,

Theorem 3.1 [11] Given 0
nx  , assume the level set

    0= : ,n x x f x f x 

is bounded close set, and is twice continuously
differentiable in the set  and 0 , then the
right segment trajectory of the the ordinary equations (4)
is the decent curve of at 0

()f x

)

() 0f x 

(f x x and the limit point
of the trajectory is the stationery point of ()f x . If

 is convex, then the right segment trajectory is
normal decent curve of at

()f x
()f x 0x .

We use the quadratic interpolation curve (5) to ap-
proximate the trajectory. However, when ,
the iteration scheme may not be decent in the local re-
gion of the predictor 1k

> 0T
k ka f

x  . So we apply the strategy of
step 1 in subalgorithm (2.1) to keep the iteration decent.

Theorem 3.2 Given constant and t̂
1
ˆ

c
t

 . In subal-

gorithm (2.1), if is decent direction satisfying kb

0,T
k kb f 

then for any
1

0 < t
c

 , the condition

 2 0,
T

k k ka t b t f  

is hold.
Proof. If , clearly, the conclusion holds. 0T

k ka f 
> 0Ta fOtherwise , from algorithm (2.1) step 1, if k k

> ,T T
k k k ka f cb f  

then set , so the conclusion holds. If = 0ka

,T T
k k k ka f cb f   

then

 2 1
0.

T
T

k k k k k ka t b t f t a b f
c

       
 

 □

Theorem 3.3 Consider the algorithm (2.1), where k
and k are decent direction, and k satisfying the con-
dition

p
p p

1

T
k k

k k

p f
c

p f

 



 (16)

and

2kp c f  k (17)

where 1 and 2 are constants. Suppose that > 0c > 0c
()f x is bounded below and continuously differentiable

in the level set

    0= : ,nx x f x f x  , (18)

where 0x is the starting point. And the gradient f is
Lipschitz continuous on ; namely, there exists L such
that



    .f x f y L x y    (19)

Then for some , k = 0kf is hold, otherwise,

lim = 0.k
k

f


 (20)

Proof. Consider the situation that for all k, 0kf  .
Then from the algorithm (2.1), we have that

1 ,T
k k k k kf f t p f    (21)

and

1 1 1 1 1 ,T
k k k k k k 1f f t p f f          

 (22)

By (21) and (22), we have

1 ,T
k k k k kf f t p f    (23)

and

1 1 0.k kf f   (24)

With (23) and (24) , we obtain

1 .T
k k k k kf f t p f    (25)

By summing this expression over all indices less than
or equal to k, we obtain

0 1
=0

.
k

T
k k k

j
kf f t p f    (26)

Since f is bounded below, we have that 0 1kf f  is
less than some positive constant, for all k. Hence, by
taking limits in (26), we obtain

Copyright © 2011 SciRes. AJOR

Y. Y. SHI ET AL.

77

.
=0

<T
k k k

j

t p f


   (27)

In standard inexact line search algorithem, we know
that if the initiate trial does not satisfy the condition t̂

(11), then kt


 violate the condition. So

> .Tk k
k k k k

t t
kf x p f p f

 
   
 

 (28)

By the Lipschitz condition (37), we have

 
 

 

1

0

2

0

22

2

=

= d

d

1
=

2

2 1
, for all 0 <

k k k k k k

t TkT
k k k k k k k

tkT
k k k k

T
k k k k k

T
k kT

k k k k

k

f f f x t p f

t p f f x sp f p s

t p f sL p s

t p f Lt p

p f
t p f t

L p




   

      

  

    
 

 
  







 (29)

It follows from (28) and (29) that

 
2

2 1
>

T
k kk

k

p ft

L p




 
. (30)

If initiate trial satisfy the condition (11), then .
Furthermore, from (16) and (17), we have

t̂ ˆ=t t

 
2

2 1
ˆmin , > 0.

T
k k

k

k

p f
t

L p

      
  

t (31)

It follows from (27) that

  2

2
=0

2 1 | |
ˆmin , <

T
k k T

k k
j k

p f
tp f

L p

        
  

 (32)

It follows from (16) and (17)

  2 22
1 1 2

=0

2 1
ˆmin , <k k

j

c p tc c f
L

    
  


  (33)

By (33), we obtain that

2

=0

<k
j

f


  . (34)

This implies that

= 0.lim k
k

f


 (35)

The theorem (3.3) analyzes the global convergence of
the iteration scheme based on ODE, similarly, we obtain
the global convergence of the variant iteration scheme
using BFGS update formula.

Theorem 3.4 Consider the algorithm (2.2), suppose
that f is bounded below in and continuously differ-
entiable in the level set

n

    0= x f x f x , (36)

where 0x is the starting point. And the gradient f is
Lipschitz continuous on ; namely, there exists L such
that



    .f x f y L x y    (37)

Then for some , k = 0kf is hold, otherwise,

= 0.lim k
k

f


 (38)

Proof. Consider the situation that for all k, 0kf  .
Then from the algorithm (2.2), we have that

 1 1 1 1

T

k k k k k 1f f t H f f       



k

 (39)

and

 1 .
T

k k k kf f t H f f     (40)

The step 3 implies that

 1 1 1 > 0
T

k k kH f f     (41)

By combining the condition (39), (40) and (41), we have

 1 .
T

k k k k kf f t H f f    (42)

From the step 8 in the algorithm (2.2), we have that

1 1 1

1 1 1

,
T

k k k

k k k

f H f

f H f
  

  

 


 
 (43)

and

1 1

1

.
T

k k

k

f H

f
 







 (44)

From the theorem (3.3), we conclude that

= 0.lim k
k

f


 (45)

is hold. □

4. Computational Results

In this section, we report computational results showing
that the variant iteration schemes using BFGS and DFP
update formula outperformed the BFGS method and DFP
method on two sets of test functions. The first set of 20
functions were from [15], and the second from [16], which
can be obtained from http://www.ici.ro/camo/neculai/
ansoft.htm.

Copyright © 2011 SciRes. AJOR

Y. Y. SHI ET AL.

Copyright © 2011 SciRes. AJOR

78

4.1. Test Codes 4.2. Result for 20 Small Scale Functions

In this section, the following four codes are tested: The first set of test problems included the 20 problems.
Numerical results obtained are listed in Table 1, where
numbers of function value computation and gradient
computation are listed in columns labeled “f ” and “ f ”,
respectively. And CUP-time required for solving each
problem are listed in columns labeled ‘Time’ and its unit
is second. “-” denotes that the algorithm does not get a
correct solution in upper bound iteration number.

 DFP: the DFP method.
 BFGS: the BFGS method.
 HDFP: the higher order iteration schemes using DFP

update.
 HBFGS: the higher order iteration schemes using

BFGS update.
To have the competitions fair and easy, all the codes

were implemented with the same parameters: 4= 10  ,
= 0.5 , , 0= 15N =H I , , 6= 10  12= 10  and

; The detail results of the BFGS and HBFGS are
showed below. And the performance of DFP and HDFP
are only demonstrated in the overall results table.

ˆ = 1t

Compiled using Matlab 7.0.4, the four codes operated
under a Windows XP system Home Edition Version
2002 on an Asus PC with Genuine Intel(R) Centrino-
Duo T2300 processor 1.66 GHz and 1.00 GB memory.

Table 1 serves as an comparison between the BFGS
and HBFGS. It shows that the computation numbers of
function value andgradient vectors of HBFGS are fewer
than that of BFGS. However, the HBFGS costs 0.11
seconds more than the BFGS, because the HBFGS has to
compute k . Although the computation of k is much
less compare with that of function value, it affects the
CPU-time, especially, for small scale problems. So the
HBFGS is competitive with BFGS on the 20 small scale

a a

Table 1. Statistics of first 20 functions.

BFGS HBFGS
Problem

Time f f Time f f

Rosenbrock 0.02 62 36 0.06 133 44

Freudenstein and Roth 0.00 29 14 0.03 48 16

Powell badly scaled 0.17 796 303 0.02 257 33

Brown badly scaled - - - - - -

Beale 0.03 23 16 0.03 35 18

Jennrich and Sampson 0.00 7 2 0.02 7 2

Helical vally 0.05 77 35 0.06 166 44

Bard 0.05 430 34 0.03 65 22

Guassian 0.00 6 5 0.02 20 10

Meyer - - - - - -

Gulf research and develop 0.05 1 2 0.00 1 2

Box three-dimensional 0.04 51 41 0.05 86 44

Powell singular 0.05 65 36 0.06 157 58

Wood 0.05 88 32 0.06 194 44

Kowalik and Osborne 0.05 45 42 0.05 71 38

Brown and Dennis 0.34 2546 263 0.20 1225 104

Biggs EXP6 0.03 21 19 0.05 31 20

Watson 0.39 79 42 0.47 163 54

Extended Rosenbrock 0.13 244 74 0.25 832 130

Broyden banded 0.09 160 45 0.19 647 112

total 1.53 4730 1041 1.64 4138 795

Y. Y. SHI ET AL.

Copyright © 2011 SciRes. AJOR

79

problems.

4.3. Result for 50 Middle Scale Functions

The second test set of 50 problems consist of 43 functions
with 100 variables, 3 functions with 200 variables and 4
functions with 300 variables. The problems with “*”
have 300 independent variables, and with “**” have 200
independent variables.

Table 2 shows that compared with BFGS, the compu-
tation of the function value and the gradient vectors and
CPU-time of HBFGS decrease by 52.65%, 52.08% and
36.01%, respectively. In summary the HBFGS method
are faster and have less computation than the BFGS
method.

4.4. Result for 50 Large Scale Functions

The second test set of 50 problems consist of 46 func-
tions with 500 variables, 4 functions with 300 variables.
The problems with “*” have 300 independent variables.

Table 3 shows that the HBFGS’s CPU-time, computa-
tion numbers of function value and gradient vectors are
less than the BFGS by 949.10 seconds, 38808 and 3957,
respectively.

4.5. Statistics of the Ratio

The Table 4 gives overall comparison of HDFP, HBFGS
and DFP, BFGS. In Table 4, “Time” denotes the run
time ratio, “f ” denotes function value computation num-
ber ratio and “ f ” denotes gradient computation num-
ber ratio.

Table 4 shows that the HDFP outperforms the DFP
with the average CPU-time ratio 1.58, function computa-
tion ratio 1.67 and gradient computation ratio 1.71. And
the HBFGS defeats the BFGS with the average CPU-
time ratio 1.23, function computation ratio 1.57 and gra-
dient computation ratio 1.56.

4.6. Summary of the Tests

As the tests show, although the higher order iteration
schemes add the computation of k , it has less compu-
tation of function value and gradient vector. For large
scale problems, the computation of is much less
than that of function value.

a

ka

5. Concluding Remarks

We gave a new iteration scheme based on ODE, proved

Table 2. Statistics of middle scale 50 functions.

BFGS HBFGS
Problem

Time f f Time f f

Strictly Convex1 0.05 7 8 0.06 21 12

Strictly Convex2 0.30 202 97 0.19 147 60

Extended Freudenstein and Roth 0.08 21 12 0.13 45 18

Extended Trigonometric 0.17 237 57 0.39 388 124

Extended White and Holst 0.19 75 36 0.22 118 38

Extended Beale 0.08 20 15 0.09 45 20

Extended Penalty 0.09 85 26 0.13 141 38

Perturbed Quadratic 0.80 1729 279 0.53 1095 170

Diagonal2 0.28 112 113 0.27 97 96

Diagonal1 5.58 10756 1998 1.03 1701 342

Diagonal3 5.77 10380 2001 1.03 1758 326

Hager 0.16 138 63 0.13 107 40

Generalized Tridiagonal-1 0.47 460 104 0.44 439 90

Extended Tridiagonal-1 0.19 30 28 0.17 29 24

Extended Three Exponential Terms 0.06 12 9 0.05 33 12

80 Y. Y. SHI ET AL.

Generalized Tridiagonal-2 0.67 1261 189 0.77 1340 192

Diagonal4 0.03 9 4 0.03 28 6

Diagonal5 0.03 5 6 0.03 12 8

Extended Himmelblau 0.06 19 10 0.06 56 18

Generalized PSC1 0.73 369 313 0.28 137 104

Extended PSC1 0.06 22 15 0.09 41 22

Extended Powell** 1.45 148 78 0.98 111 50

Extended Block Diagonal BD1 0.05 14 13 0.06 30 16

Extended Maratos 0.19 146 67 0.25 264 90

Extended Cliff 0.17 71 44 0.09 65 22

Quadratic Diagonal Perturbed 0.11 57 40 0.13 65 42

Extended Wood** 0.34 81 25 0.64 134 44

Scaled Quadratic SQ1** 6.61 3163 460 5.70 3205 360

Quadratic Function QF1 0.52 1015 193 0.42 784 140

Extended Quadratic Penalty QP1 0.06 41 21 0.06 45 16

Extended Quadratic Penalty QP2 0.08 49 26 0.11 82 34

A Quadratic Function QF2 0.92 2352 324 0.58 1377 186

Extended EP1 0.03 12 5 0.05 31 8

Extended Tridiagonal-2 0.11 75 40 0.11 83 38

BDQRTIC 1.70 5044 560 0.69 1619 206

TRIDIA 1.75 5288 570 0.88 2336 258

ARWHEAD 1.69 749 121 1.81 748 114

NONDIA (Shanno-78) 0.06 88 19 0.19 378 58

NONDQUAR 5.25 2170 1999 2.86 1207 1040

DQDRTIC 0.05 49 13 0.14 234 42

Extended Rosenbrock 0.13 74 38 0.16 153 52

EG2 0.05 21 12 0.08 57 24

DIXMAANA* 0.48 14 11 0.75 27 16

DIXMAANB* 0.69 19 16 0.94 31 20

Almost Perturbed Quadratic 0.80 1744 280 0.47 963 148

Tridiagonal Perturbed Quadratic 1.25 1686 267 0.83 1088 168

DIXMAANC* 0.67 21 16 0.98 40 20

DIXMAANE* 8.31 176 174 4.93 109 102

Partial Perturbed Quadratic 0.97 1618 260 0.64 1019 158

Broyden Tridiagonal 0.64 1030 174 0.66 1015 160

total 50.97 52964 11251 32.31 25078 5392

Copyright © 2011 SciRes. AJOR

Y. Y. SHI ET AL.

81

Table 3. Statistics of large scale 50 functions on BFGS and HBFGS.

BFGS HBFGS
Problem

Time f f Time f f

Strictly Convex1 1.58 7 8 2.13 22 12

Strictly Convex2 383.11 8094 2001 346.83 6694 1714

Extended Freudenstein and Roth 3.14 21 12 5.83 48 20

Extended Trigonometric 12.84 411 66 48.61 706 242

Extended White and Holst 9.36 75 36 11.09 123 40

Extended Beale 3.39 20 15 4.83 45 20

Extended Penalty 116.31 6041 580 32.44 309 17

Perturbed Quadratic 81.64 3428 398 86.69 3508 400

Diagonal2 67.25 353 354 38.95 205 194

Diagonal1 423.53 15033 2001 315.34 10818 1448

Diagonal3 418.64 16311 2001 323.20 11385 1432

Hager 33.78 626 176 58.16 1511 284

Generalized Tridiagonal-1 19.14 414 95 19.84 441 94

Extended Tridiagonal-1 7.98 35 32 6.41 30 24

Extended Three Exponential Terms 2.02 13 10 2.48 32 12

Generalized Tridiagonal-2 28.84 977 145 41.16 1365 196

Diagonal4 0.42 9 4 1.28 29 8

Diagonal5 0.91 5 6 1.27 12 8

Extended Himmelblau 1.70 19 10 4.02 62 20

Generalized PSC1 110.98 672 584 23.94 166 120

Extended PSC1 3.14 25 16 4.75 41 22

Extended Powel** 1.56 148 78 1.02 111 50

Extended Block Diagonal BD1 2.66 15 14 2.91 30 16

Extended Maratos 12.27 141 65 17.20 241 86

Extended Cliff 9.16 71 44 4.72 65 22

Quadratic Diagonal Perturbed 24.92 343 131 19.22 258 96

Extended Wood 0.36 81 25 0.66 134 44

Scaled Quadratic SQ1 6.59 3163 460 5.67 3205 360

Quadratic Function QF1 67.39 2626 344 78.47 2949 378

Extended Quadratic Penalty QP1 3.36 40 19 8.72 374 42

Extended Quadratic Penalty QP2 6.42 76 35 9.84 133 50

A Quadratic Function QF2 110.25 5324 556 103.45 4822 492

Extended EP1 0.69 12 5 1.39 31 8

Copyright © 2011 SciRes. AJOR

Y. Y. SHI ET AL.

Copyright © 2011 SciRes. AJOR

82

Extended Tridiagonal-2 7.16 72 39 8.30 83 42

BDQRTIC 401.72 21393 2001 216.27 10251 1010

TRIDIA 403.97 23427 2001 160.38 8716 750

ARWHEAD 1.70 749 121 1.77 748 114

NONDIA (Shanno-78) 16.36 310 86 44.33 913 218

NONDQUAR 423.55 2203 2001 600.22 3070 2555

DQDRTIC 2.53 51 14 7.42 199 38

Extended Rosenbrock 7.20 74 38 10.33 153 52

EG2 11.64 486 59 5.80 280 34

DIXMAANA* 0.48 14 11 0.73 27 16

DIXMAANB* 0.67 19 16 0.95 31 20

Almost Perturbed Quadratic 71.27 3120 361 75.47 3187 360

Tridiagonal Perturbed Quadratic 89.06 3623 420 87.52 3468 392

DIXMAANC* 0.66 21 16 0.94 40 20

DIXMAANE* 8.11 176 174 4.98 109 102

Partial Perturbed Quadratic 82.22 3446 392 93.06 3728 420

Broyden Tridiagonal 40.69 1206 203 44.28 1303 208

total 3544.33 125019 18279 2995.23 86211 14322

Table 4. Statistics of the ratio.

DFP/HDFP BFGS/HBFGS
Problem

Time f f Time f f

small 20 functions 2.49 2.66 2.63 0.93 1.14 1.31

middle 50 functions 1.03 1.29 1.23 1.58 2.11 2.09

large scale 50 functions 1.23 1.07 1.27 1.18 1.45 1.28

average 1.58 1.67 1.71 1.23 1.57 1.56

the global convergence of this scheme and variant method
using DFP and BFGS update formula. In particular, this
iteration has a class of variant methods using different
directions as the right-hand side vectors of (4). From our
experiments, we can safely conclude that this iteration
scheme improved the BFGS and DFP method on the test
data sets.

6. References

[1] W. C. Davidon, “Variable Metric Method for Minimiza-

tion,” Technical Report ANLC5990 (Revised), Argonne
National Laboratory, Argonne, 1959.

[2] W. C. Davidon, “Variable Metric Method for Minimiza-

tion,” SIAM Journal on Optimization, Vol. 1, No. 1, 1991,
pp. 1-17. doi:10.1137/0801001

[3] R. Fletcher and M. J. D. Powell, “A Rapidly Convergent
Descent Method for Minimization,” The Computer Jour-
nal, Vol. 6, No. 2, 1963, pp. 163-168.

[4] C. G. Broyden, “The Convergence of a Class of Double
Rank Minimization Algorithms 2. The New Algorithms,”
IMA Journal of Applied Mathematics, Vol. 6, No. 3, 1970,
pp. 222-231. doi:10.1093/imamat/6.3.222

[5] R. Fletcher, “A New Approach to Variable Matric Algo-
rithm,” The Computer Journal, Vol. 13, No. 3, 1970, pp.
317-322. doi:10.1093/comjnl/13.3.317

[6] C. G. Broyden, “The Convergence of a Class of Double
Rank Minimization Algorithms 1. General Considera-
tion,” IMA Journal of Applied Mathematics, Vol. 6, No. 1,

http://dx.doi.org/10.1137/0801001
http://dx.doi.org/10.1093/imamat/6.3.222
http://dx.doi.org/10.1093/comjnl/13.3.317

Y. Y. SHI ET AL.

83

1970, pp. 76-90. doi:10.1093/imamat/6.1.76

[7] D. Goldfarb, “A Family of Variable Metric Methods De-
rived by Variational Means,” Mathematics of Computa-
tion, Vol. 24, No. 109, 1970, pp. 23-26.
doi:10.1090/S0025-5718-1970-0258249-6

[8] D. F. Shanno, “Conditioning of Quasi-Newton Methods
for Function on Minimization,” Mathematics of Compu-
tation, Vol. 24, No. 111, 1970, pp. 647-656.
doi:10.1090/S0025-5718-1970-0274029-X

[9] K. J. Arrow, L. Hurwicz and H. Uzawa, “Studies in Lin-
ear and Nonlinear Programming,” Stanford University
Press, Palo Alto, 1958.

[10] F. H. Branin and S. K. Hoo, “A Method for Finding Mul-
tiple Extreme of a Function of n Variables,” In: F. A.
Lootsman, Ed., Numerical Method for Nonlinear Opti-
mization, Academic Press, Cambridge, 1972.

[11] P. Q. Pan, “Differential Equation Methods for Uncon-
strained Optimization,” Nanjing University Journal of

Computational Mathematics, in Chinese, Vol. 4, 1982, pp.
338-349.

[12] P. Q. Pan, “New ODE Methods of Equality Constrained
Optimization (1): Equations,” Journal of Computational
Mathematics, Vol. 10, No. 1, 1992, pp. 77-92.

[13] P. Q. Pan, “New ODE Methods for Equality Constrained
Optimization (2): Algorithm,” Journal of Computational
Mathematics, Vol. 10, No. 2, 1992, pp. 129-146.

[14] J. Nocedal and S. J. Wright, “Numerical Optimization,”
Science Press, Beijing, 2006.

[15] J. J. More, B. S. Garbow and K. E. Hillstrome, “Testing
Unconstrained Optimization Software,” ACM Transac-
tions on Mathematical Software, Vol. 7, No. 1, 1981, pp.
17-41. doi:10.1145/355934.355936

[16] N. Andrei, “Unconstrained Optimization Test Function,”
Advanced Modeling and Optimization, Vol. 10, No. 1,
2008, pp. 147-161.

Copyright © 2011 SciRes. AJOR

http://dx.doi.org/10.1090/S0025-5718-1970-0258249-6
http://dx.doi.org/10.1090/S0025-5718-1970-0274029-X
http://dx.doi.org/10.1145/355934.355936

