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ABSTRACT 

On the basis of experimental observations on animals, 
applications to clinical data on patients and theoretical 
statistical reasoning, the author developed a com-
puter-assisted general mathematical model of the 
“probacent”-probability equation, Eq.1 and death 
rate (mortality probability) equation, Eq.2 derivable 
from Eq.1 that may be applicable as a general ap-
proximation method to make useful predictions of 
probable outcomes in a variety of biomedical phe-
nomena [1-4]. Eqs.1 and 2 contain a constant, γ and c, 
respectively. In the previous studies, the author used 
the least maximum-difference principle to determine 
these constants that were expected to best fit reported 
data, minimizing the deviation. In this study, the au-
thor uses the method of computer-assisted least sum 
of squares to determine the constants, γ and c in con-
structing the “probacent”-related formulas best fit-
ting the NCHS-reported data on survival probabili-
ties and death rates in the US total adult population 
for 2001. The results of this study reveal that the 
method of computer-assisted mathematical analysis 
with the least sum of squares seems to be simple, 
more accurate, convenient and preferable than the 
previously used least maximum-difference principle, 
and better fitting the NCHS-reported data on sur-
vival probabilities and death rates in the US total 
adult population. The computer program of curved 
regression for the “probacent”-probability and death 
rate equations. may be helpful in research in bio-
medicine. 

Keywords: Linear Regression; Curved Regression; 
Least Sum of Squares; Least Maximum-Difference; 
“probacent”-Probability Equation; Computer Program of 
Curved Regression; Survival Probability Equation; 
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Human Tolerance to Radiation 

1. INTRODUCTION 

On the basis of experimental observations on animals, 
clinical applications on patients and theoretical statistical 
reasoning, the author developed a general mathematical 
model of “probacent”-probability equation that may be 
applicable as a general approximation method to make 
useful predictions of probable outcomes in a variety of 
biomedical phenomena [1-4]. 

The model of the “probacent”-probability equation was 
constructed from experimental studies on animals to 
express survival probability in mice exposed to g-force 
in terms of magnitude of acceleration and exposure time 
[1,5]; and to express a relationship among intensity of 
stimulus or environmental agent (such as drug [1,2,6], 
heat [7], pH [8], electroshock [7,9] and radiation [4,10]), 
duration of exposure and biological response in animals. 

The model has been applied to data in the literature to 
express carboxyhemoglobin levels of blood as a function 
of carbon monoxide concentration in air and duration of 
exposure [11,12]; to express a relationship among plasma 
acetaminophen concentration, time after ingestion and 
occurrence of hepatotoxicity in man [13,14]; to predict 
survival probability in patients with malignant mela-
noma [15-17]; to express survival probability in patients 
with heart transplantation [18,19]; to express a relation-
ship among age, height and weight, and percentile in 
Saudi and US children of 6 - 16 years of age [20-22]; to 
predict the percentile of heart weight by body weight 
from birth to 19 years of age [23,24]; and to predict the 
percentile of serum cholesterol levels by age in adults 
[25-27]. 

The model was applied to the United States life tables, 
1992 and 2001 reported by the National Center for 
Health Statistics (NCHS) to construct formulas express-
ing age-specific survival probability, death rate and life 
expectancy in US adults, men and women [3,28-31]. 

The formula of survival probability is expressed by the 
following “probacent”-probability Eq.1: 

A B logP T                (1a) 
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where T = time after biomedical insult, diagnosis of 
cancer or age; P = “probacent” (abbreviation of prob-
ability percentage) = relative biological amount of ‘re-
serve’ for survival; “probacent” (P) of 0, 50 and 100 
corresponds to –5 SD, mean and mean +5SD, respec-
tively; the unit of “probacent” is 0.1 SD. In addition, 0, 
50 and 100 “probacents” seem to correspond to 0, 50 
and 100 percent probability in mathematical prediction 
problems in terms of percentage. Therefore, it seems to 
the author that survival probabilities can be used to pre-
dict probabilities in general biomedical phenomena. 
“probacent” (P) values are obtainable from a list of con-
version of percent probability into “probacent” that was 
published by the author (Table 6 of Ref. [1] and Table of 
4 of Ref. [2]) γ, A and B are constants; A is an intercept 
and B a slope; γ represents a curvature (a shape of curve) 
and expressed by the following equation: 

 log A B log logT P    

If the value of γ becomes equal to one, Eq.1 repre-
sents a log-normal distribution. Eq.1 is considered to be 
fundamentally based on the Gaussian normal distribu-
tion.  

Eq.2 representing death rate is derived from Eq.1 ex-
pressing survival probability [30]. 

 c
log a+b logD T               (2) 

where D represents death rate in percentage (mortality 
probability); T is time or age; c, a and b are constants; c 
represents a curvature (a shape of curve) like γ in Eq.1a; 
a is an intercept and b a slope.  

If the value of constant c becomes equal to one, Eq.2 is 
essentially similar to the Weibull distribution [32]. 

Eq.2 was applied to express death rates in US adults 
[3,30,31]. It was found to better express death rates in 
US total elderly population than the Gompertz, the ex-
ponential and the Weibull distributions [3]. 

Eq.2 has been successfully applied to predict mortal-
ity probability in total body irradiation without medical 
support in humans as a function of dose rate of radiation 
and duration of exposure [4], and to express mean sur-
vival time as a function of daily dose rate of total body 
irradiation in mice [33]. 

Mehta and Joshi [34] successfully applied the “pro-
bacent”-probability equation, Eqs.1 and 2 to use model- 
derived data as an input for radiation risk evaluation of 
Indian adult population. 

The Constants, γ in Eq.1 of Survival Probability, 
and c in Eq.2 of Death Rate 
If the constants, γ in Eqs.1 and c in Eq.2 are one, then 

both equations represent a straight line when data points 
are plotted against age on a graph paper as illustrated in 
Figures 1 and 2. If the γ and c values are >1, it indicates 
that the data-points-connecting curve would reveal an 
upward convexity by graphical inspection. If the γ and c 
values are <1, it indicates that the data curve would re-
veal a downward convexity on the graph. 

The author used a principle of least maximum-differ- 
rence, I(E-O)I in determining the best-fitting γ and c val-
ues to the observed data curve. Here E and O in the pa-
renthesis stand for formula-derived and NCHS-reported 
age-specific survival probability or death rate, respec-
tively. 

 

 

Figure 1. Relationship between age and percent survival prob-
ability in the US total adult population of age 20 - 100 years for 
2001. The abscissa represents age in years (log scale) and the 
ordinate percent survival probability (S) (normal probability 
scale) on the right scale and “probacent” (P) on the left scale. 
Data points of open circles indicating survival probabilities at 
different ages appear to fall overall on a solid curved line. The 
solid line can be expressed by Eqs.4-6. 
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Figure 2. Relationship between age and death rate in the US 
total elderly population of 60 - 100 years for 2001. The ab-
scissa represents age in years and the ordinate death rate (D) in 
percentages (log scale). Data points of closed circles indicate 
US national life table death rates reported by the National 
Center for Health Statistics (NCHS) for 2001. The dashed 
straight line represents death rates predicted by the Gompertz 
mortality model expressed by equation, D = 10 (-2.2674 + 0.03779T). 
The solid curved line represents death rates predicted by the 
“probacent”-probability model of death rate (D) expressed by 
Eqs.7 and 8. Data points of NCHS appear to fall overall on the 
solid death-rate line predicted by Eqs.7 and 8. The maximum 
predictive error of the “probacent” model is ±0.3% and that of 
the Gompertz model ±3.2%. Source: reference [3]. 
 

In analysis of the least maximum-difference, random 
different values of integer and/or fractional number are 
substituted as γ and c values in Eq.1 or 2 to calculate 
survival probabilities, (S) or death rates, (D). The above 
described method of the least maximum-difference 
principle was used in the author’s previous publications 
to minimize the deviation. The least sum of squares of 
well-known linear regression in statistics [32,35,36] is 
not employed in the previous author’s studies. However, 
to my knowledge, there seem to be no computer-pro- 

gram-assisted, nonlinear, curved regression models of 
the least sum of squares in the literature that determine 
the best-fitting constant, γ or c value in the “probacent”- 
probability or death rate equation, Eq.1 or 2, minimizing 
the sum of deviation [37-42].   

The purpose of this study is to design a computer pro-
gram of nonlinear, curved regression of the least sum of 
squares for construction of best-fitting equations. of 
“probacent”-probability and death rate developed by the 
author to the NCHS-reported data [29].    

2. MATERIALS AND METHODS 

The National Center for Health Statistics reported the 
United States life tables, 2001 for US total, male and 
female populations on the basis of 2001 mortality statis-
tics, the 2000 decennial census and the data from the 
Medicare program (E. Arias, United States life tables, 
2001, Natl. Vital Stat. Rep. 52 (2004) 1-40 [29]).  

The author published computer-assisted predictive 
formulas expressing the NCHS-reported survival prob-
abilities, death rates (mortality probabilities) and life 
expectancies in US adults, men and women, 2001, em-
ploying a model of the “probacent”-probability and death- 
rate equations previously published by the author in the 
study [3]. The survival probability is percent probability 
of surviving to the beginning of age T from birth. The 
death rate is percent probability of dying between age T 
to T + 1. 

The data are plotted on a log-log graph paper as illus-
trated in Figures 1 and 2. 

In this study, the data on survival probabilities and 
death rates shown in the NCHS’ report [29] and [3] as 
well as Figures 1 and 2 are used to design computer pro- 
grams of nonlinear, curved regression of the least sum of 
squares for the “probacent”-probability and death rate 
equations to minimize the sum of deviations, and to find 
the best-fitting constant values, γ and c. 

2.1. Use of the Least-Maximum-Difference  
Principle in Analysis 

In the author’s previous studies, the least maximum- 
difference principle, least I(E-O)I (the absolute value of 
the difference) is used to minimize the deviation.   

2.1.1. Formulas of Survival Probabilities (S) 
A mathematical method to determine constants, γ, A and 
B in Eq.1 is described in Appendix of Ref. [3].  

Two sets of data on age (T) and survival probability (S) 
are used in each age group, 20 - 60, 60 - 85 or 85 - 100 
years to determine constants A and B as seen in Eqs.3a, 
3b and 3c, respectively. The most appropriate and best- 
fitting γ values of Eq.1 for the age groups of 20 - 60, 60 
- 85, and 85 - 100 years are determined, using the least 
maximum-difference principle and comparing maximum 
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differences I (E-O) I calculated by substituting a various 
semi-random and semi-selective values as the γ value in 
Eqs.3a, 3b and 3c. 

 
  4.67677 71.002 3.67677x61.605

2.63013 71.002 61.605 log

P

T

  

 

  
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     (3a) 

 
  12.75482 61.605 11.75482 46.405

6.6107 61.605 46.405 log

P

T

  

 

   
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   (3b) 
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28.33664 46.405 27.336664 29.538

14.16832 46.405 29.538 log

P

T

  

 

   
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The following Eqs.4, 5 and 6 are thus constructed to 
express survival probabilities of the three age groups: 

The age group of 20 - 60 years: Eqs.4a and 4b. 

 
12.7 12.7 12.7

12.7 12.7

4.67677 71.002 3.67677 61.605

2.63013 71.002 61.605 log

P

T

   

   
 (4a) 

The age group of 60-85 years: Eqs.5a and 5b. 

 
4.8 4.8 4.8

4.8 4.8

12.75482 61.605 11.75482 46.405

6.6107 61.605 46.405 log

P

T

   

   
  (5a) 

The age group of 85-100 years: Eqs.6a and 6b. 

 
2.3 2.3 2.3

2.3 2.3

28.33664 46.405 27.33664 29.538

14.16832 46.405 29.538 log

P

T

   

   
 (6a) 
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2.1.2. Formulas of Death Rates (D) 
Constants, c, a and b are determined likewise as above 
described (the author’s note: see Appendix of Reference 
[33] if needed) and the following equations are con-
structed to express death rates of the two age groups:  

The age group of 60 - 85 years: 

 
 

0.82 0.82 0.82

0.82 0.82

log =12.75481 0.00655 11.75481 0.97102

6.6107 0.97102 0.00655  log

D

T

  

   
 

        (7) 

The age group of 85 - 100 years: 

 
 

1.7 1.7 1.7

1.7 1.7

log =30.13651 0.97102 29.13651 1.42545

15.10118 1.42545 0.97102  log

D

T

  

  
 

  (8) 

2.2. Use of the Least Sum of Squares in Analysis 

In this study, the least sum of squares is used. 

2.2.1. Formulas of Survival Probabilities (S) 
The method of least sum of squares, least ∑ (E-O)² is 
used to determine the best-fitting γ and c values of the 
“probacent”-probability equation to minimize the sum of 
deviations. Abridged five-year intervals are used for 
analysis to simplify computer programs. 

A close look at the data points in Figure 1 in graphic 
inspection suggests that the line connecting data points 
at each age group of 20 - 60, 60 - 85 and 85 - 100 years 
bulges upward, revealing an upward convexity and so 
that the γ value is >1. If the line shows a straight line, it 
indicates γ = 1. If the line reveals a downward like the 
line connecting the data points on death rates of the age 
group of 60 - 85 years in Figure 2, it would indicate 0 < 
γ < 1. 

A three-step approach in analyzing data with help of 
the computer program is taken to find the best-fitting 
constant values, γ and c in Eqs.1 and 2.  

The first step of computer-assisted mathematical 
analysis: 

Enter an integer N, starting from 1 and increasing the 
integer, 2, 3,  up to N as the γ value in Eq.3a for the 
age group of 20 - 60 years in US adults. Sums of squares, 
Σ (E-O)² are calculated with the computer program 
shown in Figure 3. The computer-derived line repre-
senting Eq.3 with a specific γ value of 1 to N first ap-
proaches toward the NCHS-reported-data line from the 
starting straight line; the sum of squares would be 
gradually decreasing. When the computer-generated line 
touches the NCHS-reported-data line, the sum of squares 
becomes minimum, the least sum, ideally zero. After 
passing the NCHS-data line, the sum of squares with 
increasing γ values would suddenly begin to increase and 
continues to increase further more. These processes are 
shown in Table 1. 

The second step of computer-assisted mathematical 
analysis: 

If the sum of squares suddenly starts increasing after 
preceding gradual decrease at integer N + 1 of γ value, 
then enter N – 0.1 and N + 0.1 as γ value in Eq.3a. Cal-
culate the sums of squares. Compare the sums at (N – 
0.1) and (N + 0.1) with the sum at N. 

The third step of computer-assisted mathematical 
analysis: 

If the sum at (N – 0.1) is smaller than the sum at N, 
then enter (N – 1) + 0.1, (N – 1) + 0.2,   (N – 1) + 0.9 
as γ value in Eq.3a. Compare the sums of squares and 
choose the number with the least sum of squares that is 
determined to be the best-fitting γ value for Eq.3a. A 
very close and best agreement is found between the 
computer-derived and NCHS-reported survival prob-
abilities with the γ value of 12.8. Eqs.9a and 9b, are 
finally derived to best represent a relationship between 
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Figure 3. The computer program to calculate the sum of squares, Σ (E-O)² as a function of γ value 
and age (T) in the US total adult population. Results of execution of the program are shown in Ta-
bles 1 and 3. This program is for γ value of 12.8 in Eq.4a for the age group of 20 - 60 years. 
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Table 1. Sums of squares of differences, Σ (E-O)² in nonlinear, curved regression of the least sum of squares to determine a 
best-fitting γ value for the “probacent”-probability equation expressing age-specific survival probabilities (S)a in US total adult popu-
lation. Sums of squares of differences are calculated by computer programs. A representative program is illustrated in Figure 3. 

Age group 20 - 60 years 60 - 85 years 85 - 100 years 
Used “probacent” equation Eq.3a Eq.3b Eq.3c 

Finally chosen γ value (N) 12.8 4.8 2.3 
N*       ∑ (E-O)²     change      N    ∑ (E-O)²     change    N     ∑ (E-O)²     change 
1        19.211494                 1   141.460900              1     9.451314 
2        16.037229      D**        2    76.313722      D**     2     0.478184       D** 
3        13.142712      D          3    31.381485      D       3     3.017885       I*** 

4 – 11  continue to decrease             4    6.421165       D 
12       0.148060       D          5    0.515137       D      1.9    0.855876         # 
13       0.086081       D          6    12.296666      I***    2.1    0.216581        ## 
14       0.263210       I*** 

4.9   0.283176       #       2.2    0.070861        D 
12.9      0.081272        #         5.1   0.924423      ##      (2.3)   (0.040713)       D 
13.1      0.093282       ##                                     2.4    0.125714        I 

4.1   4.991807       D       2.5    0.325343        I 
12.1      0.130686        D         4.2   3.752168       D 
12.2      0.115832        D         4.3   2.701102       D 
12.3      0.103485        D         4.4   1.837403       D 
12.4      0.093632        D         4.5   1.159808       D 
12.5      0.086258        D         4.6   0.666995       D 
12.6      0.081349        D         4.7   0.357585       D 
12.7      0.078891        D        (4.8)  (0.230143)      D 

(12.8)     (0.078871)        D         4.9   0.283176       I 
12.9      0.081272        I          5    0.515137       I 
13        0.086081        I   

(S)a:: survival probability is percent probability of surviving to the beginning of age T from birth; *N represents a number, integer or fractional number; 
** D indicates that sum, ∑ (E-O)² decreases below the preceding sum; *** I indicates that sum, ∑ (E-O)² increases above the preceding sum; # Compare 
the sum with the sum at the last number (N) just before its sum starts increasing (see text); ## Compare the sum with the sum at the last number (N) just 
before its sum starts increasing (see text). 

 
age and survival probability in US adults of 20 - 60 
years of age. 

If the sum at (N – 0.1) is larger than the sum at N and 
the sum at (N + 0.1) is smaller than the sum at N, then 
enter (N + 0.2), (N + 0.3)   as γ value in Eq.3a. 
Compare the sums of squares and choose the number 
with the least sum of squares that is the γ value best fit-
ting to the data. 

The equations of survival probabilities, Eqs.10 and 11 
for the age groups of 60 - 85 and 85 - 100 years are 
likewise derived as shown in Table 1. 

The age group of 20 - 60 years: Eqs.9a and 9b 

 
12.8 12.8 12.8

12.8 12.8

=4.67677 71.002 3.67677 61.605

2.63013 71.002 61.605 log

P

T

  

   
  (9a) 

The age group of 60-85 years: Eqs.10a and 10b. 

 
4.8 4.8 4.8

4.8 4.8

=12.75482 61.605 11.75482 46.405

6.6107 61.605 46.405  log

P

T

  

   
 (10a) 

The age group of 85-100 years: Eqs.11a and 11b. 

 
2.3 2.3 2.3

2.3 2.3

=28.33664 46.405 27.33664 29.538

14.16832 46.405 29.538 log

P

T

  

   
  (11a) 

 ²
5010

exp d
2002π 

 
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P P
S P    (9b, 10b, 11b) 

Both methods of mathematical analysis, the least- 
maximum-difference and the least sum of squares give 
different γ values, 1.7 and 1.8 for the age groups of 20 - 
60 years. However, both methods give same γ values, 4.8 
and 4.8 for the age group of 60 - 85 years, and 2.3 and 
2.3 for the Age Group of 85 - 100 Years. 

2.2.2. Formulas of Death Rates (D) 
The constants c, a and b are likewise derived as ex-
plained above and as seen in Table 2. Fractional numbers 
are used to determine these constants. Two following 
formulas expressing death rates for the age groups of 60 
- 85 and 85 - 100 years for the US total elderly population: 

The age group of 60-85 years: Eq.12. 

 
 

0.79 0.79 0.79

0.79 0.79

log =12.75481 0.00655 11.75481 0.97102

+6.6107 0.97102 0.00655  log

D

T

  

  
 

        (12) 
The age group of 85 - 100years, Eq.13. 

 
 

1.8 1.8 1.8

1.8 1.8

log =30.13651 0.97102 29.13651 1.42545

15.10118 1.42545 0.97102  log

D

T

  

   
 

(13) 
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Table 2. Sums of squares of differences, Σ (E-O)² in nonlinear, curved regression of the least sum of squares 
to determine a best-fitting c value for the death rate equation expressing age-specific death rates (D)a in US 
total elderly population. Sums of squares of differences are calculated by computer programs. A program es-
sentially similar to Figure 3 program is employed. 

Age group 60 - 85 years 85 - 100 years 

Used death rate equation Eqs.7, 12 Eq.8, 13 

Finally chosen c value (N) 0.79 1.8 

N*       ∑ (E-O)²     change      N         ∑ (E-O)²     change 

1.0       0.869088                 1.0        0.655987 

0.9       0.288493      D**       1.5        0.095908       ** 

0.8       0.046072      D         2.0        0.045142       D 

0.7       0.209247       I***       2.5        0.487048       I*** 

0.81      0.0 53194      #         1.9        0.015243        # 

(0.79)     (0.043004)      ##        2.1        0.094769        ## 

0.78      0.044062       I         1.6        0.045436        D 

0.77      0.049313       I         1.7        0.015251        D 

(1.8)       (0.005231)       D 

1.9        0.015243        I 

2.0        0.045142        I 

(D)a: death rate is percent probability of dying between age T to T +1. *N represents a number, integer or fractional number.** D in-
dicates that sum, ∑ (E-O)² decreases below the preceding sum. *** I indicates that sum, ∑ (E-O)² increases above the preceding sum. 
# Compare the sum with the sum at the last number (N) just before its sum starts increasing (see text). ## Compare the sum with the 
sum at the last number (N) just before its sum starts increasing (see text). 

 
Both methods of mathematical analysis, the least maxi- 

mum-difference and the least sum of squares give dif-
ferent c values, 0.82 and 0.79 for the age group of 60 - 
85 years, and 1.7 and 1.8 for the age group of 85 - 100 
years, respectively. 

2.3. Description of the Computer Program 

The programs were written in UBASIC for IBM PC mi-
crocomputer and compatibles for Eqs.3-13. The com-
puter program uses a formula of approximation instead 
of the integral of Eq.1b and Eqs.4b, 5b, 6b, 9b, 10b, 
11b) because the computer cannot perform integral [2, 
43-45]. Mathematical transformation of integral, Eq.1b 
to the formula of approximation is described in detail in 
the author’s book [45]. A representative computer pro-
gram is illustrated in Figure 3 to calculate the sum of 
squares, Σ (E-O)² with the γ value of 12.8 in Eq.9a. 

2.4. Statistical Analysis 

A χ² goodness-of-fit test (logrank test) [35] is used to test 
the fit of mathematical models to the NCHS-reported 
data [29]. The differences are considered statistically 
significant when p < 0.05. 

3. RESULTS 

Tables 3 and 4 show comparison of least maximum- 
differences, I(E-O)I, least sum of squares, ∑ (E-O)² and 
χ²-test p value in the two analytical methods of the least 

maximum-difference and least sum of squares, in age- 
specific survival probabilities and death rates for US 
total adult population, calculated by computer programs 
as shown in a representative program, Figure 3. 

The γ values in the survival probability equation in 
both methods are different, 12.7 and 12.8 in Eqs.4a and 
9a for the age group of 20 - 60 years but same 4.8 and 
4.8 in Eqs.5a and 10a for the age group of 60 - 85 years, 
2.3 and 2.3 in Eqs.6a and 11a for the age group of 
85-100 years. The c values in the death rate equation in 
both methods are all different, 0.82 and 0.79 in Eqs.7 
and 12, 1.7 and 1.8 in Eqs.8 and 13 for the age groups of 
60 - 85 and 85 - 100 years, respectively.  

The least maximum-difference and the least sum of 
squares reveal slightly smaller values in those in the least 
sum of squares than in the least maximum-difference but 
same values in Eqs.5 and 10, and Eqs.6 and 11 for the 
age groups of 60 - 85 and 85 - 100 years. The above re-
sults suggest that regression curves of the least sum of 
squares are closer to the NCHS-data-connecting line 
than those of the least maximum-difference. 

The χ²-test p values are all >0.995, suggesting a very 
close agreement between both values of computer-derived 
and NCHS-reported survival probabilities and death 
rates. 

The above described results seem to indicate that the 
analytical method of the least sum of squares is simpler, 
convenient and preferable, and give more accurate in 
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Table 3. Comparison of the least maximum-difference, І(E-O)І, the least sum of squares, Σ (E-O)² and χ²-test p value in 
the two analytical methods of the least maximum-difference and the least sum of squares in age-specific survival prob-
abilities for US total adult population. 

Age group 20 - 60 years 60 - 85 years 85 - 100 years 

Used “probacent” equation Eq.4a Eq.9a Eq.5a Eq.10a Eq.6a Eq.11a 

γ value 12.7 * 12.8** 4.8* 4.8** 2.3* 2.3** 

Least maximum-Difference, I(E-O)I 0.158 0.148 0.4 0.4 0.2 0.2 

Least sum of Squares, ∑ (E-O)2 0.078891 0.078871 0.230143 0.230143 0.040713 0.040713

χ²-test p value >0.995 >0.995 >0.995 >0.995 >0.995 >0.995 

*γ value is obtained by the method of the least maximum-difference, I(E-O)I.. ** γ value is obtained by the method of the least sum of squares of 
curved regression, Σ (E-O)². ‘E’ indicates computer-derived value of survival probability. ‘O’ indicates NCHS-reported value of survival prob-
ability [29] (see text). 

 
Table 4. Comparison of the least maximum-difference, І(E-O)І, the least sum of squares, Σ (E-O)² and χ²-test p value in 
the two analytical methods of the least maximum-difference and the least sum of squares in age-specific death rates for 
US total elderly population. 

Age group 6 0 - 85 years 85 - 100 years 

Used equation Eq.10 Eq.12 Eq.11 Eq.13 

γ value 0.82 * 0.79 ** 1.7* 1.8** 

Least maximum-difference, I(E-O)I 0.359 0.325 0.132 0.073 

Least sum of squares, Σ (E-O)² 0.064304 0.043004 0.015280 0.005275 

χ²-test p value >0.995 >0.995 >0.995 >0.995 

*γ value is obtained by the method of the least maximum-difference principle, I(E-O)I. ** γ value is obtained by the method of the least sum of 
squares of curved regression, Σ (E-O)² . ‘E’ indicates computer-derived value of survival probability. ‘O’ indicates NCHS-reported value of sur-
vival probability [29] (see text). 

 
determining values of γ and c constants in the “pro-
bacent”-probability and death rate equations. 

4. DISCUSSION  

Comparison of data shown in Tables 3 and 4 suggests a 
very close agreement between formula-derived and 
NCHS-reported data on survival probabilities and death 
rates in US total adult population because χ² - test p val-
ues are >0.995 for each equation expressing them. 

However, The method of the least sum of squares, 
least ∑ (E-O)² gives more accurate and best fitting val-
ues of constants, γ and c in these equations that fit better 
the NCHS-reported data, closer to the data-points con-
necting line. The computer program of curved regression 
of the least sum of squares for the “probacent”-probability 
and death rate seems preferable to the method of the 
least maximum-difference, least I(E-O)I to minimize the 
deviation. 

The author feels that in a variety of biological phe-
nomena, γ and c values are, if applicable, generally greater 
than one or less than one but not one, indicating a curved 
line when plotted on a X-Y graph paper as seen in Fig-
ures 1 and 2. The γ and c values are relatively rarely one, 
indicating a straight line on a graph or otherwise ap-
proximately appearing straight. This phenomena seems 

to be possibly analogous in physics to that light path is 
actually curved when passing through a gravitational 
field of space but appears straight [46,47]. 

If the γ value becomes equal to one, Eq.1 represents a 
log-normal distribution. If the c value is one, Eq.2 that is 
derivable from Eq.1 [30] becomes essentially similar to 
the Weibull distribution [32]. Weibull distribution is a 
generalized exponential distribution [32]. If the base of a 
logarithm is one, the lognormal distribution would be-
come a normal distribution (log1 1

n = n) [45, 48]. If the 
logarithm of one as its base is taken for X axis of time, 
the Gompertz distribution might be similar to the Wei- 
bull distribution. Therefore, it seems to the author that the 
Gompertz distribution might be a specific form of the 
“probacent”-probability equation. A normal distribution 
is likewise a specific form of the “probacent”-probability 
equation. 

“probacent” can be a dependent variable versus an 
independent variable such as time or age as seen in sur-
vival probability, death rate and life expectancy in US 
total adult population (NCHS) [3,29]. “probacent” can 
be a dependant variable versus two independent vari-
ables such as intensity of stimulus or harmful agent and 
duration of exposure like dose rate of radiation and dura-
tion of exposure in total body irradiation [4], and like 
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dose of drug and time after administration [2,14]. In 
cases of two independent variables, Eq.1 can make a 
prediction of probability of occurrence of a response in 
subjects in various biomedical phenomena. The original 
and ultimate purpose of the author’s studies has been to 
find a general mathematical model, possibly a mathe-
matical law hidden in nature that might calculate the 
probability of safe survival in humans and other living 
organisms exposed to any harmful or adverse circum-
stances, overcoming the risk [1,45]. 

The “probacent”-probability does not predict a single 
definite result or response for an individual observation 
in biodynamic biological phenomena. Instead, if the 
same observations are made on a large number of similar 
population, each of who had the same condition at the 
start, the model would predict the possible outcomes, the 
approximate biomedical events in quantities under ob-
servations, but it could not predict the occurrence of the 
specific event in an individual. Thus, the “probacent”- 
probability would introduce an unpredictability in bio-
medicine like an uncertainty principle of Werner Heisen- 
berg in quantum mechanics [46,47] 

The computer program represented by Figure 3 can 
easily calculate survival probabilities that are required to 
determine the least sum of squares, by using an ap-
proximation instead of integral in Eqs.4b, 5b, 6b, 9b, 
10b, 11b. This enables users of the “probacent” model in 
mathematical analysis, to eliminate a need for consulta-
tion of table of normal frequency or percentile in books 
of statistics and mathematics.  

5. CONCLUSIONS 

In this study, a computer program of nonlinear, curved 
regression of the least sum of squares is designed to de-
termine the constant values of γ in Eq.1 and c in Eq.2 
that seems better fitting and more accurate than those 
obtained by the least maximum-difference principle as 
suggested by the data shown in Tables 3 and 4. The re-
gression curve obtained by this method of the least sum 
of squares is closer to the data-point-connecting line than 
that obtained by the least maximum-difference principle. 
The computer program of curved regression for the 
“probacent”-probability equation may be helpful in re-
search in biomedicine. The computer program of curved 
regression of this study would need further improvement 
to enable users to readily find the best-fitting constant 
values in the equations of the “probacent”-probability and 
death rate. 
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