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Abstract 
In many areas of applied statistics, confidence intervals for the mean of the 
population are of interest. Confidence intervals are typically constructed as-
suming normality although non-normally distributed data are a common oc-
currence in practice. Given a large enough sample size, confidence intervals 
for the mean can be constructed by applying the Central Limit Theorem or by 
the bootstrap method. Another commonly used method in practice is the 
back-transformation method, which takes on the following three steps. First, 
apply a transformation to the data such that the transformed data are nor-
mally distributed. Second, obtain confidence intervals for the transformed 
mean in the usual manner, which assumes normality. Third, apply the back- 
transformation to obtain confidence intervals for the mean of the original, 
non-transformed distribution. The parametric Wald method and a small 
sample likelihood-based third order method, which can address non-normality, 
are also reviewed in this paper. Our simulation results suggest that common 
approaches such as back-transformation give erroneous and misleading re-
sults even when the sample size is large. However, the likelihood-based third 
order method gives extremely accurate results even when the sample size is 
small. 
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1. Introduction 

In the last two decades, there has been a push in psychological science to im-
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prove research reporting with an emphasis on effect size and confidence interval 
reporting (see American Education Research Association [1]; Cumming [2]; 
Wilkinson and the Task Force for Statistical Inference [3]). Effect sizes commu-
nicate the magnitude and direction of a practically important effect (e.g., treat-
ment decreased depression scores by 13%), and confidence intervals communi-
cate this effect’s estimate precision. The importance of confidence intervals, their 
basic construction, and interpretation have thus been the focus of several in-
fluential pedagogical articles (e.g., see Cumming and Fidler [4]; Cumming and 
Finch [5]; Greenland et al. [6]). 

Most, if not all, modern introductory statistics textbooks review and describe 
the construction of confidence intervals (e.g., see Moore et al. [7]). Let ( )1, , nx x  
be a sample obtained from a normally distributed population with mean µ  and 
variance 2σ . Then a ( )1 100%α−  confidence interval for µ  can be calcu-
lated by 

* *,x xs sx t x t
n n

 − + 
 

                      (1) 

where 

( )2

21 1, ,
1

n n

i i
i i

x

x x x
x s

n n
= =

−
= =

−

∑ ∑
 

and t* is the ( )1 2 100thα−  percentile of the Student t distribution with ( )1n −  
degrees of freedom. Moreover, when the sample size n is large (usually stated n 
is larger than 30), then the ( )1 100%α−  confidence interval for µ  can still be 
obtained from (1) except that we replaced t* by z*, which is the ( )1 2 100thα−  
percentile of the standard normal distribution. 

The fundamental assumption underlying the construction of this confidence 
interval is that the data are normally distributed. However, collected data are 
usually non-normally distributed in practice (for examples in psychology, see 
Cain et al. [8]; Micceri [9]). In public health research, Bland and Altman [10] 
reported that serum triglyceride measurements are distributed with positive 
skewness. In biology, McDonald [11] reported that the number of Eastern mud- 
minnows in Maryland streams are non-normally distributed. 

In this paper, we compare various methods for constructing confidence inter-
vals when data are non-normally distributed. Three of the most popular and 
commonly used methods are the method based on the Central Limit Theorem, 
the bootstrap method, and the back-transformation method, which are reviewed 
in Section 2. The parametric based Wald method and likelihood-based third or-
der method are also discussed in Section 2. Note that the popular back-trans- 
formation method requires the existence of a transformation such that the 
transformed data are normally distributed. The selection of such a transforma-
tion by the Box-Cox transformation and the Tukey’s ladder of power transfor-
mation are briefly discussed in Section 2. Two empirical examples are presented 
in Section 3 to illustrate that confidence intervals based on the different methods 
discussed in Section 2 can be vastly different. Simulation results are presented in 



J. Pek et al. 
 

407 

Section 4 to compare the accuracy of the methods discussed in this paper and il-
lustrated that the likelihood-based third order method gives extremely accurate 
coverage probability even when the sample size is small, the Wald method, the 
Central Limit Theorem method and then bootstrap method all performed poorly 
when sample size is small but the performance increases when the sample size 
increases, and the popular back-transformation method should not be used be-
cause it does not construct the confidence interval for the correct parameter. Fi-
nally, some concluding remarks are given in Section 5. 

2. Methodology 

This section reviews four commonly used methods, namely the Central Limit 
Theorem, bootstrap, back-transformation, and Wald for obtaining a confidence 
interval for the mean of a non-normal distribution. A very accurate likelih-
ood-based method is also introduced in this section. 

2.1. Central Limit Theorem Method 

Let ( )1, , nx x  be a sample from a non-normal distribution with mean ψ . 
When the sample size n is large, the Central Limit Theorem gives 

( )
( )0,1X

var X
ψ−

→   

where 1
n

ii X
X

n
== ∑  and ( ) ( )var X

var X
n

= . Since x  and 2
xs  are the unbiased  

estimates of ψ  and ( )var X  respectively; by the Central Limit Theorem, an 
approximate ( )1 100%α−  confidence interval for ψ  is 

* *,x xs sx z x z
n n

 − + 
 

                     (2) 

where *z  is the ( )1 2 100thα−  percentile of the standard normal distribution. 

2.2. Bootstrap Method 

The bootstrap method is a popular non-parametric method, which does not re-
quire any distributional assumptions. Efron and Tibshirani [12] provide a de-
tailed review of the bootstrap method. The following is an algorithmic approach 
of obtaining a ( )1 100%α−  percentile bootstrap confidence interval for the 
population mean, ψ . 

Sample: ( )1, , nx x  
Step 1: Resample the observed sample with replacement and calculate the 

sample mean for this bootstrap sample. 
Step 2: Repeat Step 1 B times, where, typically, 200B ≥ . 
Step 3: Sort the B bootstrapped sample means; the ( )2 100thα  and 

( )1 2 100thα−  percentiles give the ( )1 100%α−  percentile bootstrap confi-
dence interval for the population mean. 

Note that as with the Central Limit Theorem method, the bootstrap method 
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requires the observed sample size to be large so as to be representative of the 
population. 

2.3. Back-Transformation Method 

Recall that X is a non-normally distributed random variable with mean ψ . As-
sume there exists a transformation ( )g ⋅  such that ( )Y g X=  is normally dis- 
tributed with mean µ  and variance 2σ . By the delta method, 

( ) ( ) ( )1 1 ,E X E g Y gψ µ− − = = ≈   

and an approximate ( )1 100%α−  confidence interval for ψ  from (1) is 

1 * 1 *, .y ys s
g y t g y t

n n
− −    

− +         
                (3) 

It is important to note that (3) could be misleading because ( )1g µ−  can be very 
different from ψ . For example, if X follows a ( )2lognormal ,µ σ  distribution, 
then ( )logY X=  is distributed as ( )2,µ σ . It follows that the delta method 
gives ( ) ( )expE Xψ µ= ≈ . However, as shown in Table 1, ( )2exp 2ψ µ σ= + , 
which can be quite different from ( )exp µ , especially when 2σ  is large. Con-
sider another example where Y X=  follows a ( )2,µ σ  distribution. Here, 
the delta method gives 2ψ µ≈ . However, Table 1 shows that 2 2ψ µ σ= + , 
which can be quite different from 2µ , especially when 2σ  is large. 

The rest of this subsection is to provide a systematic way of choosing the 
transformation ( )g ⋅ . In practice, the most common simple transformations are 
the logarithmic transformation and square root transformation. Box and Cox 
[13] proposed a more complicated transformation, which requires the determi-
nation of the power parameter. Similarly, Tukey [14] suggested a ladder of pow-
er transformation, which also requires the determination of the power parameter. 
We review Tukey’s method in a later subsection. With an observed sample 
( )1, , nx x , our aim is to obtain confidence intervals for ψ . In this paper, focus 
is placed on the two most commonly used transformations in practice: the loga-
rithmic transformation and the square root transformation. Note that the tans-
formation methods discussed can be generalized to any known transformation 
in theory (cf., Box-Cox or Tukey’s transformations). 

When observed data are non-normally distributed, a common approach is to 
first apply a transformation such that the transformed data become somewhat  
 
Table 1. Transformation and the parameter of interest. 

λ  Transformation ψ  

−1 reciprocal does not exist 

0 logarithmic 
2

exp
2
σµ 

+ 
 

 

1
2

 square root 2 2µ σ+  

1 none µ  
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normally distributed. In the statistical literature, two very similar families of 
transformations are frequently discussed: the Box-Cox transformation and Tu-
key’s ladder of power transformation. In particular, Osborne [15] gives a de-
tailed discussion of the application of the Box-Cox transformation. Mathemati-
cally, the Box-Cox transformation and Tukey’s ladder of power transformation 
are very similar. Because Tukey’s ladder of power transformation is easier to in-
terpret compared to the Box-Cox transformation, we review the ladder of power 
transformation and suggested criteria to choose an appropriate transformation 
to address non-normally distributed data below. 

Tukey’s ladder of power transformation takes the form 

( )log if 0
if 0

X
Y X

X
λ

λ

λ
λ
=

= = 
≠

 

where λ  is called the power parameter of this transformation, where λ  is 
chosen such that Y is approximately normally distributed. Moreover, λ  should 
be chosen such that the power parameter is easy to interpret. Note that 1λ =  is 
equivalent to no transformation. In practice, the popular reciprocal transforma-
tion, logarithmic transformation, and square root transformation are equivalent  

to 1,0λ = −  and 1
2

, respectively. 

Table 1 presents the mean of distribution prior to transformation, ψ , in 
terms of µ  and 2σ  based on the type of transformation used. Since ψ  does 
not exist for the reciprocal transformation, this transformation is not considered 
in this paper. 

With an observed sample, we suggest the choice of λ  be based on three 
criteria: 

1. de-trended normal quantile-quantile (Q-Q) plot, 
2. p-value of the Shapiro-Wilk test of normality, and 
3. skewness. 
First, when the de-trended normal Q-Q plot deviates from the horizontal ref-

erence line which indicates identical quantiles between the data and a theoretical 
normal distribution, the plot suggests that the data are likely non-normally dis-
tributed. Second, simulation studies by Razali and Wah [16] illustrate that the 
Shapiro-Wilk test is the most powerful test among all formulated statistical tests 
for normality. Under the assumption of a normal distribution, the smaller the 
p-value associated with the Shaprio-Wilk test, the more evidence against the 
normality assumption. Thus, the transformation which gives the largest p-value 
of the Shapiro-Wilk test is associated with the least evidence against the trans-
formed data being normally distributed. Finally, with regard to skewness, the 
normal distribution has skewness 0. In this vein, the transformation which re-
sults in a skewness value closest to 0 is most symmetric and would be the pre-
ferred transformation. 

2.4. Wald Method 

As in the previous subsection, we assume that X be a non-normally distributed 
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random variable with mean ψ  and there exists a transformation ( )g ⋅  such 
that ( )Y g X=  is normally distributed with mean µ  and variance 2σ . 
Moreover, ( )2,ψ ψ µ σ= . 

The log-likelihood function concerning Y can be written as 

( ) ( )22 2
2

1

1, log
2 2

n

i
i

na yµ σ σ µ
σ =

= − − −∑              (4) 

where a is an additive constant. Without loss of generality, a is set to zero he-
reafter. The overall maximum likelihood estimate (MLE), denoted by ( )2ˆ ˆ,µ σ ′ , 
can be obtained by solving 

( ) ( )
2

2

2
1

ˆ ˆ,

, 1 ˆ 0
ˆ

n

i
i

y
µ σ

µ σ
µ

µ σ =

∂
= − =

∂ ∑


 

( ) ( )
2

2
2

2 2 4
1

ˆ ˆ,

, 1 ˆ 0.
ˆ ˆ2 2

n

i
i

n y
µ σ

µ σ
µ

σ σ σ =

∂
= − + − =
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

 

Hence, we have 

( ) ( ) 2
22

1

11ˆ ˆ ˆ, .
n

y
i

i

n s
y y

n n
µ σ µ

=

−
= = − =∑  

The observed information matrix is the negative of the second derivatives of 
the log-likelihood function with respect to the parameters: 

( )
( )

( ) ( )

2 4
12

2
4 4 6

1 1

1

, .
1 1

2

n

i
i

n n

i i
i i

n y
j

ny y

µ
σ σ

µ σ
µ µ

σ σ σ

=

= =

 − 
 =
 

− − + − 
 

∑

∑ ∑
 

The variance-covariance matrix for ( )2ˆ ˆ,µ σ ′  can be approximated by the in-
verse of Fisher’s expected information matrix, ( ){ } 1

2,E j µ σ
−

 
  , which, in gen-

eral, can be difficult to obtain in practice. Nevertheless, the variance-covariance 
matrix for ( )2ˆ ˆ,µ σ ′  can be approximated by the inverse of the observed infor-
mation evaluated at the MLE, ( )1 2ˆ ˆ,j µ σ−  where 

( )
2

2

4

0
ˆˆ ˆ, .
0

ˆ2

n

j
n

σµ σ

σ

 
 

=  
  
 

 

It is well-known that ( )2ˆ ˆ,µ σ ′  is asymptotically distributed as normal with 

mean ( )2,µ σ ′  and variance ( )1 2ˆ ˆ,j µ σ− . 

Recall that the parameter of interest is ( )2,ψ ψ µ σ= , and we denote 

( )2ˆ ˆ ˆ,ψ ψ µ σ= . By the delta method, 

 ( )
( )
( ) ( ) ( )

( )
2 2

1 2
2 2

ˆ ˆ ˆ ˆ, ,
ˆ ˆ ˆ,

, ,
var j

µ σ µ σ
ψ µ σ

µ σ µ σ
−

   ∂ ∂
   ≈
   ∂ ∂   

 

 

where 
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( )
( )

( )

( )
( )2

2

2

2 2

2
ˆ ˆ,

ˆ ˆ,
ˆ ˆ,

.
, ˆ ˆ,

µ σ

µ σ
µ σ µ
µ σ µ σ

σ

 ∂
 

∂ ∂ =  ∂ ∂ 
 

∂ 







 

Thus, an approximate ( )1 100%α−  confidence interval for ψ  is 

 ( )  ( )( )* *ˆ ˆ ˆ ˆ, .z var z varψ ψ ψ ψ− +                 (5) 

For the case of the logarithmic transformation (i.e., Tukey’s ladder of power 
transformation where 0λ = ), the parameter of interest is ( )expψ γ= , where 

2 2γ µ σ= + . Therefore, by the Wald method, a ( )1 100%α−  confidence in- 
terval for γ  is 

 ( )  ( )( )* *ˆ ˆ ˆ ˆ,z var z varγ γ γ γ− +  

where 2ˆ ˆ ˆ 2γ µ σ= +  and  ( )
2 4ˆ ˆˆ

2
var

n n
σ σγ ≈ + . Thus, an approximate ( )1 100%α−  

confidence interval for ψ  is 

 ( ){ }  ( ){ }* *ˆ ˆ ˆ ˆexp , exp .z var z varγ γ γ γ − + 
 

 

For the case of the square root transformation (i.e., Tukey’s (1977) ladder of 

power transformation where 1
2

λ = ), the parameter of interest is 2 2ψ µ σ= + .  

Therefore, an approximate ( )1 100%α−  confidence interval for ψ  is given by 
(5), where 

 ( )
( )2 2 2

2 2
ˆ ˆ ˆ2 2

ˆ ˆˆ ˆ and .var
n

σ µ σ
ψ µ σ ψ

+
= + =  

2.5. Likelihood-Based Third Order Method 

Both the Central Limit Theorem method and Wald method have a theoretical 
rate of convergence of ( )1 2O n− , and both the back-transformation method and 
the bootstrap method have no known rate of convergence. In recent years, many 
methods have been developed to improve the rate of convergence of existing 
asymptotic methods. In this subsection, we review the modified signed log-like- 
lihood ratio method by Barndorff-Nielsen [17]. The modified signed log-like- 
lihood ratio statistic is defined as 

( ) ( ) ( )
( )
( )

* * 1 log
r

r r r
r q

ψ
ψ ψ

ψ ψ
= = −                (6) 

where 

( ) ( ) ( ) ( ){ }1 2
2 2ˆ ˆ ˆ ˆ ˆ2 , ,r sign ψ ψψ ψ ψ µ σ µ σ = − −  

         (7) 

is the signed log-likelihood ratio statistic, ( )2ˆ ˆ,ψ ψµ σ  is the constrained MLE 
obtained by maximizing the log-likelihood function for a given ψ  value, and 
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( )q ψ  is a statistic based on the log-likelihood function given in (4). Barndorff- 
Nielsen [17] showed that *r  is asymptotically distributed as a standard normal 
distribution with a rate of convergence of ( )3 2O n− . Thus, a ( )1 100%α−  
confidence interval obtained based on *r  is ( ),L Uψ ψ  such that Lψ  and Uψ  
satisfies ( )* *

Lr zψ < , ( )* *
Ur zψ < , and L Uψ ψ< . 

If the model is an exponential family model and the parameter of interest ψ  
is a component parameter of the canonical parameter, Fraser [18] showed that 
( )q ψ  is the standardized MLE statistic. Given a general model and this idea in 

mind, Fraser and Reid [19] first approximate the model using an approximate 
tangent exponential model to obtain the locally defined canonical parameter. 
Then, they express the parameter of interest in terms of the locally defined ca-
nonical parameter and also derived the variance the estimated parameter of in-
terest in this locally defined canonical parameter scale. Thus, ( )q ψ  is the stan-
dardized MLE statistic expressed in the locally defined canonical parameter scale, 
and the modified signed likelihood ratio statistic can be used to obtain confi-
dence interval for ψ . Details of this algorithmic approach of obtaining *r  is 
outlined below. 

Notation: ( )θ  is the log-likelihood function; 
θ  is a k-dimensional vector of parameters; 

( )ϕ ϕ θ=  is a k-dimensional vector of canonical parameters for the exponen-
tial family model; 

( )ψ ψ θ=  is a scalar parameter of interest; 
( )1, , nx x  is the observed data. 
Aim: Inference about ψ . 
Step 1: From the log-likelihood function, obtain the overall MLE, 

( ) ( )ˆ ˆ ˆˆ, ,θ ψ ψ θ θ=   and ( )ˆĵ jθθ θ=  can be obtained. 
Step 2: Apply the Lagrange multiplier technique to obtain the constrained 

MLE at 0ψ ψ= . More specifically, maximize 

( ) ( ) ( )( )0,H θ λ θ λ ψ θ ψ= + −
 

with respect to ( ),θ λ , where λ  is defined as the Lagrange multiplier. Denote 
the result of the maximization be ( )0

,ψθ λ  . 
Step 3: Define the tilted log-likelihood function as 

( ) ( ) ( )( )θ θ λ ψ θ ψ= + − 

 
 

where ψ  is a fixed value. Obtain the constrained MLE either from the tilted 
log-likelihood function or from Step 2, ( ) ( ),ψ ψ ψθ θ θ=   

   and ( )jθθ ψθ , which 
is the matrix of the negative of the second derivatives of the tilted log-likelihood 
function. 

Step 4: The signed log-likelihood ratio statistic is 

( ) ( ) ( ){ }1 2
ˆˆ 2 .r sgn ψψ ψ θ θ = − − 



   

Step 5: Define 

( ) ( ) ( ) ( )1= θ ψ θ ψχ θ ψ θ ϕ θ ϕ θ−
   
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where ( )θψ θ  is the first derivative of ( )ψ θ  with respect to θ , and ( )θϕ θ  
is the first derivative of ( )ϕ θ  with respect θ . This quantity is a recalibration 
of the parameter of interest ψ  in the canonical parameter ϕ  space. 

Step 6: The quantity ( ) ( )ˆ
ψχ θ χ θ−   measures the departure of ψ̂  from ψ  

in ϕ  space. 
Step 7: The estimated variance for the departure in ϕ  space is given by 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

21

2
ˆ .

ˆ ˆ

j j
var

j

θ ψ θθ ψ θ ψ θθ ψ θ ψ
ψ

θθ θ

ψ θ θ ψ θ θ ϕ θ
χ θ χ θ

θ ϕ θ

−
−

−

′
− =

    
 

  

Step 8: The standardized MLE departure under the ϕ  scale is given by 

( )
( ) ( )

 ( ) ( )( )
ˆ

ˆ .
ˆ

q sign
var

ψ

ψ

χ θ χ θ
ψ ψ

χ θ χ θ

−
= −

−





 

Step 9: The modified signed log-likelihood ratio statistic is given by 

* 1 log .rr r
r q

= −  

Although the algorithm involves many steps, it can easily be implemented into 
algebraic or statistical software such as MATLAB, Maple and R. 

3. Empirical Examples 

In this section, the different methods of constructing a confidence interval about 
the mean of non-normally distributed data are illustrated with two empirical 
examples. We demonstrate that the results obtained by the methods discussed in 
this paper can be very different. 

3.1. Example 1: Serum Triglyceride Measurements 

Bland and Altman [10] considered n = 278 serum triglyceride measurements, 
which had a positively skewed data distribution with an average of 0.51 mmol/l 
and a standard deviation of 0.22 mmol/l. By applying a base 10 logarithm trans-
formation to the data to obtain a less skewed distribution, the transformed dis-
tribution became bell-shaped with an average of −0.33 and a standard deviation 
of 0.17. By applying the Central Limit Theorem, they report a 95% confidence 
interval for the mean serum triglyceride measurements to be (0.48, 0.54). Using 
the back-transformation method, the corresponding interval is (0.45, 0.49). Ta-
ble 2 presents the 95% confidence intervals for the mean serum triglyceride  
 
Table 2. 95% confidence interval for the mean serum triglyceride measurements. 

Data Method 95% confidence interval 

Original Central Limit Theorem (0.48, 0.54) 

Log-transformed Back-transformation (0.45, 0.49) 

Log-transformed Wald (0.46, 0.51) 

Log-transformed Third order (0.46, 0.51) 
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measurements for the alternative methods reviewed above Note that for this 
example, the bootstrap method cannot be applied because the original data set is 
not unavailable. 

Bland and Altman [10] noted that the interval obtained by the back-trans- 
formation method is actually the 95% confidence interval for the geometric 
mean of serum triglyceride measurements instead of the mean serum triglyce-
ride measurements, where the latter is the parameter of interest. Stated diffe-
rently, the back-transformation method does not provide information about the 
focal parameter of interest (i.e., the mean of the non-normal distribution). From 
Table 2, it can be observed that the results from the Central Limit Theorem me-
thod are different from those obtained by the Wald method and third order 
method. Additionally, the Wald method and third order method give results 
which agree up to the second decimal place. This observation is not surprising 
because these two methods theoretically converge to the same answer when the 
sample size goes to infinity. The only difference is that the third order method 
will have a faster rate of convergence than the Wald method (i.e., ( )1 2O n−  
versus ( )3 2O n− , respectively). The different rates of convergence are more 
formally illustrated in Section 4. 

3.2. Example 2: Abundance of Eastern Mudminnows 

McDonald [11] reported on data on the abundance of Eastern mudminnows in 
Maryland streams, which is reproduced below: 
 

38 1 13 2 13 20 50 9 28 6 4 43 

 

These data are non-normally distributed and McDonald [11] suggested that 
both the logarithmic and square root transformed data are suitable for analysis 
because they are more normally distributed compared to the original and other 
competing transformations. His final analysis makes use of the logarithmic 
transformed data. 

Table 3 presents the 95% confidence intervals for the mean of the non-trans- 
formed distribution obtained by applying the Central Limit Theorem method  
 
Table 3. 95% confidence intervals for the mean of the abundance of Eastern mud- 
minnows in Maryland streams. 

Data Method 95% confidence interval 

Original Central Limit Theorem (9.3, 28.5) 

Original Bootstrap (B = 5000) (10.1, 28.3) 

Log-transformed Back-transformation (5.0, 24.4) 

Log-transformed Wald (9.3, 54.4) 

Log-transformed Third order (11.1, 123.9) 

Square root transformed Back-transformation (6.7, 26.9) 

Square root transformed Wald (9.8, 28.0) 

Square root transformed Third order (11.1, 31.7) 
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and the bootstrap method with B = 5000 to the original data; and the back- 
transformation method, Wald method, and likelihood-based third order method 
to both the logarithmic transformed data and square root transformed data. 

The results obtained by the methods discussed in this paper are very different 
for different transformations. In particular, the logarithmic transformation re-
sults in a much larger upper bound of the interval compared to the square root 
transformation. Thus, it is essential to identify which transformation is more 
appropriate for a given set of data. 

The de-trended normal Q-Q plots for the original data, logarithmic trans-
formed data and square root transformed data are shown in Figure 1. From  

 

   
 

 
Figure 1. De-trended Normal Q-Q plots for original and transformed data of the abundance of Eastern mudminnows. 
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these plots, it is obvious that the original data are not normally distributed be-
cause the points deviate from the horizontal reference line, which indicates iden-
tical quantiles between the data and a theoretical normal distribution. The two 
sets of transformed data are more closely normally distributed because the 
points in the de-trended normal Q-Q plots lie more closely to the reference line 
relative to the original data. 

The Shapiro-Wilk test on normality of the original data gives a p-value of 
0.1091. The same test on the logarithmic transformed data gives a p-value of 
0.5261, and it gives a p-value of 0.6479 on the square root transformed data. 
Consistent with the de-trended Q-Q plot, the p-values of the Shapiro-Wilk test 
similarly suggest that the two transformed data sets are more likely to be nor-
mally distributed. Additionally, the empirical skewness of the original data, lo-
garithmic transformed data, and square root transformed data are 0.5864, 
−0.4886, and 0.1632, respectively. These quantifications of skewness imply that 
the square root transformed data are more symmetrical than the original data 
and logarithmic transformed data. Thus, based on the criteria discussed in Sec-
tion 2.3, the square root transformation is recommended for these data. 

4. Simulation Study 

A simulation study was carried out to compare the accuracies of the methods 
discussed in this paper. R code for the simulation is available to the interested 
reader upon request. For each ( ), ,n µ σ  combination, we generated 10,000 
samples from ( )2,µ σ . These are our simulated transformed samples, and 
the non-transformed (i.e., original) samples can be obtained by applying the in-
verse transformation to the simulated data. The transformations examined are 
the natural logarithm and square root. For each simulated sample, we computed 
a 95% confidence interval for the mean of the untransformed population from 
the five reviewed methods: Central Limit Theorem, bootstrap (B = 5000), back- 
transformation, Wald, and likelihood-based third order. The following quanti-
ties are recorded: the proportion of true means falling within the 95% confidence 
interval (coverage proportion), the proportion of true means less than the lower 
95% confidence limit (lower error), and the proportion of true means greater 
than the upper 95% confidence limit (upper error). The nominal values of cov-
erage, lower error, upper error, and bias are: 0.95, 0.025, and 0.025, respectively. 
We present only a small subset of the simulations we conducted to highlight 
several key points below, and other simulation results are available upon request. 

Table 4 presents results with the natural logarithmic transformed data being  

generated from ( )2,µ σ  and the parameter of interest is 
2

exp
2
σµ

 
+ 

 
. 

It can be observed that the likelihood-based third order method outperforms 
the other methods especially when the sample size is small; coverage, lower and 
upper errors associated with the likelihood-based third order method are rela-
tively closer to nominal rates compared to the alternative methods. Among the 
remaining methods, the Central Limit Theorem method and the bootstrap 
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Table 4. 95% coverage probability for the logarithmic transformation case. 

    Coverage Lower Upper 

µ  σ  n  Method proportion error error 

1 2 10 Central Limit Theorem 0.5389 0.0003 0.4608 

   Bootstrap (B = 5000) 0.5582 0.0007 0.4411 

   Back-transformation 0.1965 0.0000 0.8035 

   Wald 0.8549 0.0005 0.1446 

   Third order 0.9460 0.0262 0.0278 

  50 Central Limit Theorem 0.6907 0.0001 0.3092 

   Bootstrap (B = 5000) 0.7149 0.0013 0.2838 

   Back-transformation 0.0000 0.0000 1.0000 

   Wald 0.9303 0.0034 0.0063 

   Third order 0.9501 0.0238 0.0261 

  200 Central Limit Theorem 0.7757 0.0007 0.2236 

   Bootstrap (B = 5000) 0.7968 0.0021 0.2011 

   Back-transformation 0.0000 0.0000 1.0000 

   Wald 0.9446 0.0134 0.0420 

   Third order 0.9500 0.0261 0.0239 

2 0.5 10 Central Limit Theorem 0.8902 0.0129 0.0969 

   Bootstrap (B = 5000) 0.8793 0.0239 0.078 

   Back-transformation 0.8884 0.0047 0.1069 

   Wald 0.8997 0.0246 0.0757 

   Third order 0.9492 0.0252 0.0256 

  50 Central Limit Theorem 0.9340 0.0106 0.0554 

   Bootstrap (B = 5000) 0.9345 0.0197 0.0458 

   Back-transformation 0.5905 0.0003 0.4092 

   Wald 0.9415 0.0167 0.0418 

   Third order 0.9505 0.0231 0.0264 

  200 Central Limit Theorem 0.9430 0.0172 0.0398 

   Bootstrap (B = 5000) 0.9466 0.0197 0.0337 

   Back-transformation 0.0591 0.0000 0.9409 

   Wald 0.9452 0.0220 0.0328 

   Third order 0.9481 0.0262 0.0257 

3 3 10 Central Limit Theorem 0.2739 0.0000 0.7261 

   Bootstrap (B = 5000) 0.2842 0.0000 0.7158 

   Back-transformation 0.0132 0.0000 0.9868 

   Wald 0.8335 0.0000 0.1665 

   Third order 0.9465 0.0265 0.0270 

  50 Central Limit Theorem 0.3983 0.0000 0.6017 

   Bootstrap (B = 5000) 0.4166 0.0000 0.5834 

   Back-transformation 0.0000 0.0000 1.0000 

   Wald 0.9256 0.0022 0.0722 

   Third order 0.9507 0.0235 0.0258 

  200 Central Limit Theorem 0.4936 0.0000 0.5065 

   Bootstrap (B = 5000) 0.5166 0.0002 0.4834 

   Back-transformation 0.0000 0.0000 1.0000 

   Wald 0.9418 0.0120 0.0462 

   Third order 0.9504 0.0261 0.0235 
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method give similar results. The Wald method seems to converge faster than the 
Central Limit Theorem and bootstrap methods. As discussed in Section 2, the 
back-transformation method gives unacceptable coverage probability because it 
is constructing confidence intervals about a parameter that is not of interest. 

It can be observed that the likelihood-based third order method outperforms 
the other methods especially when the sample size is small; coverage, lower and 
upper errors associated with the likelihood-based third order method are rela-
tively closer to nominal rates compared to the alternative methods. Among the 
remaining methods, the Central Limit Theorem method and the bootstrap me-
thod give similar results. The Wald method seems to converge faster than the 
Central Limit Theorem and bootstrap methods. As discussed in Section 2, the 
back-transformation method gives unacceptable coverage probability because it 
is constructing confidence intervals about a parameter that is not of interest. 

Table 5 presents results with the square root transformed data being 
generated from ( )2,µ σ  and the parameter of interest is 2 2µ σ+ . 

Similar to results in Table 4, we can observe that the likelihood-based third 
order method outperforms the other methods, especially when sample size is 
small. In this context, the Central Limit Theorem method and the bootstrap 
method give similar results and they seem to converge faster than the Wald me-
thod. The back-transformation method continues to give unacceptable coverage 
probability because it constructs confidence intervals about a parameter that is 
not of interest. 

Based on these simulation results, the Central Limit Theorem method, boot-
strap method and Wald method converge slowly relative to the likelihood-based 
third order method. Hence, we recommend using the likelihood-based third or-
der method to obtain confidence intervals for the mean of the non-transformed 
distribution after applying a normalizing transformation to non-normal data, 
especially for small sample sizes or large departures from normality. It is impor-
tant to note that researchers should not use the popular back-transformation 
method despite its simplicity except for the special case where ( )E Xψ =

( )( )1g E Y−= . 
More simulations have been performed with the same pattern of results. They 

are not reported here, but are available upon request. 

5. Conclusion 

When interest is in constructing a confidence interval about a non-normal dis-
tribution, normalizing transformations are typically recommended as a first step. 
This paper recommends the use of de-trended normal Q-Q plots, the largest 
p-value of the Shapiro-Wilk test, and quantifications of skewness on the trans-
formed data to determine the power parameter ( λ ) for Tukey’s ladder of power 
transformation when the exact transformation is unavailable. Our results strongly 
advise against using the popular back-transformation approach in applied work 
because it does not construct confidence intervals about the parameter of inter-
est (i.e., the mean of the original distribution). Instead, we recommend the 
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Table 5. 95% coverage probability for the square root transformation case. 

    Coverage Lower Upper 

µ  σ  n  Method proportion error error 

50 10 10 Central Limit Theorem 0.9135 0.0284 0.0581 

   Bootstrap (B = 5000) 0.8998 0.0383 0.0614 

   Back-transformation 0.9403 0.0131 0.0466 

   Wald 0.9030 0.0315 0.0655 

   Third order 0.9485 0.0262 0.0253 

  50 Central Limit Theorem 0.9405 0.0220 0.0375 

   Bootstrap (B = 5000) 0.9433 0.0222 0.0351 

   Back-transformation 0.8910 0.0048 0.1042 

   Wald 0.9386 0.0228 0.0386 

   Third order 0.9483 0.0257 0.0260 

  200 Central Limit Theorem 0.9490 0.0227 0.0283 

   Bootstrap (B = 5000) 0.9473 0.0222 0.0305 

   Back-transformation 0.7097 0.0002 0.2901 

   Wald 0.9489 0.0227 0.0284 

   Third order 0.9463 0.0292 0.0245 

75 20 10 Central Limit Theorem 0.9093 0.0245 0.0662 

   Bootstrap (B = 5000) 0.8974 0.0348 0.0678 

   Back-transformation 0.9335 0.0108 0.0537 

   Wald 0.8982 0.0279 0.0739 

   Third order 0.9482 0.0265 0.0253 

  50 Central Limit Theorem 0.9382 0.0211 0.0407 

   Bootstrap (B = 5000) 0.9429 0.0201 0.0370 

   Back-transformation 0.8495 0.0025 0.1480 

   Wald 0.9376 0.0206 0.0418 

   Third order 0.9493 0.0249 0.0258 

  200 Central Limit Theorem 0.9490 0.0215 0.0295 

   Bootstrap (B = 5000) 0.9471 0.0219 0.0310 

   Back-transformation 0.5434 0.0001 0.4565 

   Wald 0.9487 0.0215 0.0298 

   Third order 0.9494 0.0264 0.0242 

100 30 10 Central Limit Theorem 0.9075 0.0227 0.0698 

   Bootstrap (B = 5000) 0.8976 0.0328 0.0696 

   Back-transformation 0.9290 0.0098 0.0612 

   Wald 0.8962 0.0262 0.0776 

   Third order 0.9469 0.0279 0.0252 

  50 Central Limit Theorem 0.9374 0.0201 0.0425 

   Bootstrap (B = 5000) 0.9416 0.0202 0.0382 

   Back-transformation 0.8236 0.0017 0.1747 

   Wald 0.9362 0.0201 0.0437 

   Third order 0.9490 0.0249 0.0261 

  200 Central Limit Theorem 0.9492 0.0213 0.0295 

   Bootstrap (B = 5000) 0.9485 0.0212 0.0303 

   Back-transformation 0.4543 0.0000 0.5457 

   Wald 0.9479 0.0213 0.0308 

   Third order 0.9505 0.0254 0.0241 
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likelihood-based third order method because of its superior performance in 
terms of its rate of convergence, coverage, and accuracy relative to the Central 
Limit Theorem, bootstrap and Wald methods, even when the sample size is 
small or the distribution is far from being normal. 

Acknowledgements 

We thank the editor and the referee for their comments. This work was based on 
O.C.Y. Wong’s undergraduate honors thesis. J. Pek was supported by the Natu-
ral Sciences and Engineering Research Council of Canada Discovery Grant 
(RGPIN-04301-2014) and the Early Researcher Award by the Ontario Ministry 
of Research and Innovation (ER15-11-004). A.C.M. Wong was supported by the 
Natural Sciences and Engineering Research Council of Canada Discovery Grant 
(RGPIN-163597-2012). 

References 
[1] American Education Research Association (2006) Standards for Reporting on Em-

pirical Social Science Research in AERA Publications. Educational Researcher, 35, 
33-40. https://doi.org/10.3102/0013189X035006033 

[2] Cumming, G. (2014) The New Statistics: Why and How. Psychological Science, 25, 
7-9. https://doi.org/10.1177/0956797613504966 

[3] Wilkinson, L. and the Task Force on Statistical Inference (1999) Statistical Methods 
in Psychology Journals: Guidelines and Explanations. American Psychologist, 54, 
594-604. https://doi.org/10.1037/0003-066X.54.8.594 

[4] Cumming, G. and Fidler, F. (2009) Confidence Intervals: Better Answers to Better 
Questions. Journal of Psychology, 217, 15-26.  
https://doi.org/10.1027/0044-3409.217.1.15 

[5] Cumming, G. and Finch, S. (2001) A Primer on the Understanding, Use, and Cal-
culation of Confidence Intervals that Are Based on Central and Noncentral Distri-
butions. Educational and Psychological Measurement, 61, 532-574. 
https://doi.org/10.1177/0013164401614002 

[6] Greenland, S., Senn, S.J., Rothman, K.J., Carlin, J.B., Poole, C. Goodman, S.N. and 
Altman, D.G. (2016) Statistical Tests, P Values, Confidence Intervals, and Power: A 
Guide to Misinterpretations. European Journal of Epidemiology, 31, 337-350. 
https://doi.org/10.1007/s10654-016-0149-3 

[7] Moore, D.S., McCabe, G.P. and Craig, B.A. (2014) Introduction to the Practice of 
Statistics 8th Edition, W.H. Freeman and Company, New York.  

[8] Cain, M.K., Zhang, Z. and Yuan, K.H. (2016) Univariate and Multivariate Skewness 
and Kurtosis for Measuring Nonnormality: Prevalence, Influence and Estimation. 
Behavior Research Methods, 1-20.  
https://doi.org/10.3758/s13428-016-0814-1 

[9] Micceri, T. (1989) The Unicorn, the Normal Curve and Other Improbable Crea-
tures. Psychological Bulletin, 105, 156-166.  
https://doi.org/10.1037/0033-2909.105.1.156 

[10] Bland, J.M. and. Altman, D.G. (1996) Transformations, means, and confidence in-
tervals. British Medical Journal, 312, 1079.  
https://doi.org/10.1136/bmj.312.7038.1079 

[11] McDonald, J.H. (2014) Handbook of Biological Statistics. Sparky House, Maryland. 

https://doi.org/10.3102/0013189X035006033
https://doi.org/10.1177/0956797613504966
https://doi.org/10.1037/0003-066X.54.8.594
https://doi.org/10.1027/0044-3409.217.1.15
https://doi.org/10.1177/0013164401614002
https://doi.org/10.1007/s10654-016-0149-3
https://doi.org/10.3758/s13428-016-0814-1
https://doi.org/10.1037/0033-2909.105.1.156
https://doi.org/10.1136/bmj.312.7038.1079


J. Pek et al. 
 

421 

[12] Efron, B. and Tibshirani, R.J. (1994) An Introduction to the Bootstrap. Chapman 
and Hall, New York. 

[13] Box, G.E. and Cox, D.R. (1964) An Analysis of Transformation (with Discussion). 
Journal of the Royal Statistical Society B, 26, 211-252. 

[14] Tukey, J.W. (1977) Exploratory Data Analysis. Addison-Wesley, Massachusetts. 

[15] Osborne, J.W. (2010) Improving Your Data Transformation: Applying the Box-Cox 
Transformation. Practical Assessment, Research & Evaluation, 15, Article 12. 

[16] Razali, N. and Wah, Y. (2011) Power Comparisons of Shapiro-Wilk, Kolmogo-
rov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling 
and Analytics, 2, 21-33. 

[17] Barndorff-Nielsen, O.E. (1991) Modified Signed Log Likelihood Ratio. Biometrika, 
78, 557-561. https://doi.org/10.1093/biomet/78.3.557 

[18] Fraser, D.A.S. (1991) Statistical Inference: Likelihood to Significance. Journal of 
American Statistical Association, 86, 258-265.  
https://doi.org/10.1080/01621459.1991.10475029 

[19] Fraser, D.A.S. and Reid, N. (1995) Ancillaries and Third Order Significance. Utilitas 
Mathematica, 7, 33-53. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact ojs@scirp.org  

https://doi.org/10.1093/biomet/78.3.557
https://doi.org/10.1080/01621459.1991.10475029
http://papersubmission.scirp.org/
mailto:ojs@scirp.org

	Confidence Intervals for the Mean of Non-Normal Distribution: Transformor Not to Transform
	Abstract
	Keywords
	1. Introduction
	2. Methodology
	2.1. Central Limit Theorem Method
	2.2. Bootstrap Method
	2.3. Back-Transformation Method
	2.4. Wald Method
	2.5. Likelihood-Based Third Order Method

	3. Empirical Examples
	3.1. Example 1: Serum Triglyceride Measurements
	3.2. Example 2: Abundance of Eastern Mudminnows

	4. Simulation Study
	5. Conclusion
	Acknowledgements
	References

