’.’. Scientifi Open Journal of Statistics, 2017, 7, 405-421
cientific i . , .
“: Research http.//www.sarp.f)rg/Journal/OJs
94% Publishing ISSN Online: 2161-7198
* ISSN Print: 2161-718X

Confidence Intervals for the Mean of
Non-Normal Distribution: Transform
or Not to Transform

Jolynn Pek?, Augustine C. M. Wong?, Octavia C. Y. Wong!

1Department of Psychology, York University, Toronto, Canada
*Department of Mathematics and Statistics, York University, Toronto, Canada
Email: pek@yorku.ca, august@yorku.ca, owong3@my.yorku.ca

How to cite this paper: Pek, J., Wong,
A.CM. and Wong, O.C.Y. (2017) Confi-
dence Intervals for the Mean of Non-Normal
Distribution: Transform or Not to Trans-
form. Open Journal of Statistics, 7, 405-421.
https://doi.org/10.4236/0js.2017.73029

Received: April 17,2017
Accepted: June 5, 2017
Published: June 8, 2017

Copyright © 2017 by authors and

Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

DOI: 10.4236/0js.2017.73029

Abstract

In many areas of applied statistics, confidence intervals for the mean of the
population are of interest. Confidence intervals are typically constructed as-
suming normality although non-normally distributed data are a common oc-
currence in practice. Given a large enough sample size, confidence intervals
for the mean can be constructed by applying the Central Limit Theorem or by
the bootstrap method. Another commonly used method in practice is the
back-transformation method, which takes on the following three steps. First,
apply a transformation to the data such that the transformed data are nor-
mally distributed. Second, obtain confidence intervals for the transformed
mean in the usual manner, which assumes normality. Third, apply the back-
transformation to obtain confidence intervals for the mean of the original,
non-transformed distribution. The parametric Wald method and a small
sample likelihood-based third order method, which can address non-normality,
are also reviewed in this paper. Our simulation results suggest that common
approaches such as back-transformation give erroneous and misleading re-
sults even when the sample size is large. However, the likelihood-based third
order method gives extremely accurate results even when the sample size is
small.

Keywords

Back-Transformation, Bootstrap, Central Limit Theorem, Delta Method,
Maximum Likelihood Estimate, Third Order Method

1. Introduction

In the last two decades, there has been a push in psychological science to im-
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prove research reporting with an emphasis on effect size and confidence interval
reporting (see American Education Research Association [1]; Cumming [2];
Wilkinson and the Task Force for Statistical Inference [3]). Effect sizes commu-
nicate the magnitude and direction of a practically important effect (e.g., treat-
ment decreased depression scores by 13%), and confidence intervals communi-
cate this effect’s estimate precision. The importance of confidence intervals, their
basic construction, and interpretation have thus been the focus of several in-
fluential pedagogical articles (e.g., see Cumming and Fidler [4]; Cumming and
Finch [5]; Greenland et al. [6]).

Most, if not all, modern introductory statistics textbooks review and describe
the construction of confidence intervals (e.g., see Moore ef al. [7]). Let (Xl, e Xn)
be a sample obtained from a normally distributed population with mean u and
variance o”. Then a (1-a)100% confidence interval for x4 can be calcu-
lated by

o xS, o S,
(x t \/ﬁ’XH \/ﬁj (1)
where
n n 2
X; (% —X)
X = i=: , SZ — i=1 ,
n * n-1

and #* is the (1-a/ 2)100th percentile of the Student ¢ distribution with (n—1)
degrees of freedom. Moreover, when the sample size n is large (usually stated n
is larger than 30), then the (1-«)100% confidence interval for x can still be
obtained from (1) except that we replaced # by 2, which is the (1-a/2)100"
percentile of the standard normal distribution.

The fundamental assumption underlying the construction of this confidence
interval is that the data are normally distributed. However, collected data are
usually non-normally distributed in practice (for examples in psychology, see
Cain et al [8]; Micceri [9]). In public health research, Bland and Altman [10]
reported that serum triglyceride measurements are distributed with positive
skewness. In biology, McDonald [11] reported that the number of Eastern mud-
minnows in Maryland streams are non-normally distributed.

In this paper, we compare various methods for constructing confidence inter-
vals when data are non-normally distributed. Three of the most popular and
commonly used methods are the method based on the Central Limit Theorem,
the bootstrap method, and the back-transformation method, which are reviewed
in Section 2. The parametric based Wald method and likelihood-based third or-
der method are also discussed in Section 2. Note that the popular back-trans-
formation method requires the existence of a transformation such that the
transformed data are normally distributed. The selection of such a transforma-
tion by the Box-Cox transformation and the Tukey’s ladder of power transfor-
mation are briefly discussed in Section 2. Two empirical examples are presented
in Section 3 to illustrate that confidence intervals based on the different methods

discussed in Section 2 can be vastly different. Simulation results are presented in
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Section 4 to compare the accuracy of the methods discussed in this paper and il-
lustrated that the likelihood-based third order method gives extremely accurate
coverage probability even when the sample size is small, the Wald method, the
Central Limit Theorem method and then bootstrap method all performed poorly
when sample size is small but the performance increases when the sample size
increases, and the popular back-transformation method should not be used be-
cause it does not construct the confidence interval for the correct parameter. Fi-

nally, some concluding remarks are given in Section 5.

2. Methodology

This section reviews four commonly used methods, namely the Central Limit
Theorem, bootstrap, back-transformation, and Wald for obtaining a confidence
interval for the mean of a non-normal distribution. A very accurate likelih-

ood-based method is also introduced in this section.

2.1. Central Limit Theorem Method

Let (X,---,X,) be a sample from a non-normal distribution with mean y .

When the sample size nis large, the Central Limit Theorem gives

ﬂ—)]\/ 0,1
var (X) (0

where X = . Since X and s’ are the unbiased

"X _
22X and var(X)zvar(x)
n n

estimates of ¥ and var(X) respectively; by the Central Limit Theorem, an
approximate (1—«)100% confidence interval for y is

[7—2*%,7+2*%j (2)

where 7 isthe (1-a/ 2)100th percentile of the standard normal distribution.

2.2. Bootstrap Method

The bootstrap method is a popular non-parametric method, which does not re-
quire any distributional assumptions. Efron and Tibshirani [12] provide a de-
tailed review of the bootstrap method. The following is an algorithmic approach
of obtaining a (1-a)100% percentile bootstrap confidence interval for the
population mean, v .

Sample: (Xl,---,xn)

Step 1: Resample the observed sample with replacement and calculate the
sample mean for this bootstrap sample.

Step 2: Repeat Step 1 Btimes, where, typically, B >200.

Step 3: Sort the B bootstrapped sample means; the (a/2)100" and
(1—a/ 2)100th percentiles give the (1—a)100% percentile bootstrap confi-
dence interval for the population mean.

Note that as with the Central Limit Theorem method, the bootstrap method
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requires the observed sample size to be large so as to be representative of the

population.

2.3. Back-Transformation Method

Recall that X'is a non-normally distributed random variable with mean y . As-
sume there exists a transformation g(-) suchthat Y =g(X) is normally dis-

tributed with mean  and variance o?. By the delta method,
v=E(x)=E[g"(V)]~g" (u),

and an approximate (1— a)lOO% confidence interval for w from (1) is

S

It is important to note that (3) could be misleading because g™ (#) canbe very
different from y . For example, if X follows a Iognormal( ,u,az) distribution,
then Y = Iog(X) is distributed as A/ ( I, o'z). It follows that the delta method
gives y = E(X ) ~ exp(y) . However, as shown in Table 1, y = exp(u+ 0'2/2),
which can be quite different from exp(), especially when o is large. Con-
sider another example where Y =~+/X followsa A/ ( H, 02) distribution. Here,
the delta method gives y ~ u°. However, Table 1 shows that y = u* + 07,
which can be quite different from 1, especially when o is large.

The rest of this subsection is to provide a systematic way of choosing the
transformation ¢ () . In practice, the most common simple transformations are
the logarithmic transformation and square root transformation. Box and Cox
[13] proposed a more complicated transformation, which requires the determi-
nation of the power parameter. Similarly, Tukey [14] suggested a ladder of pow-
er transformation, which also requires the determination of the power parameter.
We review Tukey’s method in a later subsection. With an observed sample
(Xl, ey Xn) , our aim is to obtain confidence intervals for . In this paper, focus
is placed on the two most commonly used transformations in practice: the loga-
rithmic transformation and the square root transformation. Note that the tans-
formation methods discussed can be generalized to any known transformation
in theory (cf., Box-Cox or Tukey’s transformations).

When observed data are non-normally distributed, a common approach is to

first apply a transformation such that the transformed data become somewhat

Table 1. Transformation and the parameter of interest.

A Transformation 174
-1 reciprocal does not exist
2
P o

0 logarithmic exp ( H+ 7)
1 2 2

E square root u+o

1 none u
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normally distributed. In the statistical literature, two very similar families of
transformations are frequently discussed: the Box-Cox transformation and Tu-
key’s ladder of power transformation. In particular, Osborne [15] gives a de-
tailed discussion of the application of the Box-Cox transformation. Mathemati-
cally, the Box-Cox transformation and Tukey’s ladder of power transformation
are very similar. Because Tukey’s ladder of power transformation is easier to in-
terpret compared to the Box-Cox transformation, we review the ladder of power
transformation and suggested criteria to choose an appropriate transformation
to address non-normally distributed data below.
Tukey’s ladder of power transformation takes the form

VoA = log(X) if21=0
ST I xA if 120

where A is called the power parameter of this transformation, where A is
chosen such that Y'is approximately normally distributed. Moreover, A should
be chosen such that the power parameter is easy to interpret. Note that A =1 is
equivalent to no transformation. In practice, the popular reciprocal transforma-

tion, logarithmic transformation, and square root transformation are equivalent

to A=-10 and %, respectively.

Table 1 presents the mean of distribution prior to transformation, ¥, in
terms of 4 and o based on the type of transformation used. Since y does
not exist for the reciprocal transformation, this transformation is not considered
in this paper.

With an observed sample, we suggest the choice of 4 be based on three
criteria:

1. de-trended normal quantile-quantile (Q-Q) plot,

2. p-value of the Shapiro-Wilk test of normality, and

3. skewness.

First, when the de-trended normal Q-Q plot deviates from the horizontal ref-
erence line which indicates identical quantiles between the data and a theoretical
normal distribution, the plot suggests that the data are likely non-normally dis-
tributed. Second, simulation studies by Razali and Wah [16] illustrate that the
Shapiro-Wilk test is the most powerful test among all formulated statistical tests
for normality. Under the assumption of a normal distribution, the smaller the
p-value associated with the Shaprio-Wilk test, the more evidence against the
normality assumption. Thus, the transformation which gives the largest p-value
of the Shapiro-Wilk test is associated with the least evidence against the trans-
formed data being normally distributed. Finally, with regard to skewness, the
normal distribution has skewness 0. In this vein, the transformation which re-
sults in a skewness value closest to 0 is most symmetric and would be the pre-

ferred transformation.

2.4. Wald Method

As in the previous subsection, we assume that X be a non-normally distributed
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random variable with mean  and there exists a transformation ¢ () such
that Y =g(X) is normally distributed with mean u and variance o”.
Moreover, y =y (y, 02).

The log-likelihood function concerning Y can be written as

n

2)_a-Mogo? LS (y - u)
E(,u,O')—a 2loga 2O_ZZ:(yI u) (4)

i=1

where a is an additive constant. Without loss of generality, a is set to zero he-
reafter. The overall maximum likelihood estimate (MLE), denoted by ( i, 6‘2) ,

can be obtained by solving

o (u,0%) 19 )
VT - Sy —4)=0
| sz 2 ()
0,6
ol(u,c® noo1 ¢ .
(602 ) :_2&2+2&4;(y'_“)2:0
i=
6

Hence, we have
Ao a2
H=Y, 0=

The observed information matrix is the negative of the second derivatives of

the log-likelihood function with respect to the parameters:

n 1
o o o )
iwo?)= 12 noo1Q 2|
?izzl: Yi_,u) _20_4"‘?;(%_#)

The variance-covariance matrix for ( i,6° )’ can be approxi{nated by the in-
verse of Fisher’s expected information matrix, {E [ j ( u,o’ )J} , which, in gen-
eral, can be difficult to obtain in practice. Nevertheless, the variance-covariance
matrix for ( i,6° )’ can be approximated by the inverse of the observed infor-

mation evaluated at the MLE, j* ( i, &2) where

o0
i(we?)=|
0 _A4

20

It is well-known that ( [1,6'2) is asymptotically distributed as normal with

!

mean (,u, o’ ) and variance ™ (/}, o ) .
Recall that the parameter of interest is y =y ( M, 0-2) , and we denote
v=y ([z 6—2) . By the delta method,
_ ol(f1,6%)

) ol m,6°
var(y/)z G(y O_z) M

6(;1,0‘2)

)

where
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o)
o0(6*) | au
o(mo?) | ar(i6%)

oo’ (76?)

Thus, an approximate (1— a)lOO% confidence interval for y is
(V;_z*,/w?r(lp),l,nzm/v?r(m). (5)

For the case of the logarithmic transformation (Ze., Tukey’s ladder of power
transformation where 4=0), the parameter of interest is y =exp(y), where
y=pu+ 62/2. Therefore, by the Wald method, a (1—a)100% confidence in-
terval for y is

(7~ (7). 7+ fwar (7))

where 7 = fi+6%/2 and var (7)= GT + ;——n. Thus, an approximate (1—a)100%

confidence interval for ¥ is
(exp{ﬁ— z*./\fa\r(;?)},exp{ﬂ 7 v/a\r(;?)}j
For the case of the square root transformation (Ze., Tukey’s (1977) ladder of

. 1 . .
power transformation where A= 3 ), the parameter of interest is y = u”> +o°.

Therefore, an approximate (1—)100% confidence interval for y is given by
(5), where
26° (241" +6°)

y =% +67 andvar ()= -

2.5. Likelihood-Based Third Order Method

Both the Central Limit Theorem method and Wald method have a theoretical
rate of convergence of O (n’l/ 2), and both the back-transformation method and
the bootstrap method have no known rate of convergence. In recent years, many
methods have been developed to improve the rate of convergence of existing
asymptotic methods. In this subsection, we review the modified signed log-like-
lihood ratio method by Barndorff-Nielsen [17]. The modified signed log-like-

lihood ratio statistic is defined as

r=r(y)=r —Lo r(v)
- (‘//) (l//) I’(l//)l QQ(l//) (6)
where
r(w)=sion(p —v){2[¢(2.6%)~0(2,.82) || 7)

is the signed log-likelihood ratio statistic, ( [zw,o”-;) is the constrained MLE

obtained by maximizing the log-likelihood function for a given y value, and
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q(w) is a statistic based on the log-likelihood function given in (4). Barndorff-
Nielsen [17] showed that r" is asymptotically distributed as a standard normal
distribution with a rate of convergence of O(n’3/ 2) . Thus, a (1-«)100%
confidence interval obtained based on " is () suchthat y, and y,
satisfies |r* (v, )| <7, |r* (v )| <Zz',and y, <y, .

If the model is an exponential family model and the parameter of interest y
is a component parameter of the canonical parameter, Fraser [18] showed that
q(y) is the standardized MLE statistic. Given a general model and this idea in
mind, Fraser and Reid [19] first approximate the model using an approximate
tangent exponential model to obtain the locally defined canonical parameter.
Then, they express the parameter of interest in terms of the locally defined ca-
nonical parameter and also derived the variance the estimated parameter of in-
terest in this locally defined canonical parameter scale. Thus, ¢ (1,//) is the stan-
dardized MLE statistic expressed in the locally defined canonical parameter scale,
and the modified signed likelihood ratio statistic can be used to obtain confi-
dence interval for y . Details of this algorithmic approach of obtaining r" is
outlined below.

Notation: £ (9) is the log-likelihood function;

0 is a k-dimensional vector of parameters;

Q= q)(ﬁ) is a k-dimensional vector of canonical parameters for the exponen-
tial family model;

v=y (0) is a scalar parameter of interest;

(X, X%, ) is the observed data.

Aim: Inference about i

Step 1: From the lo;g—likelihood function, obtain the overall MLE,
0, W= l//(é),f(é) and | = Joo (é) can be obtained.

Step 2: Apply the Lagrange multiplier technique to obtain the constrained
MLE at y =, . More specifically, maximize

H(0,4) = £(0)+ 2(w (0)~vs)

with respect to (6,4), where 1 is defined as the Lagrange multiplier. Denote
the result of the maximization be (9;,0 : /i) .
Step 3: Define the tilted log-likelihood function as

1(0)=1(0)+ Ay (0) )

where y is a fixed value. Obtain the constrained MLE either from the tilted
log-likelihood function or from Step 2, éy, v (é,/,) = 2(9},) and J,, (6’], ) , which
is the matrix of the negative of the second derivatives of the tilted log-likelihood
function.

Step 4: The signed log-likelihood ratio statistic is

r=sgn(y —W){Z[ﬂ(é) - f(éw )}}1/2 :

Step 5: Define
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where v, (6) is the first derivative of !//(49) with respect to 8, and ¢, (0)
is the first derivative of (0(9) with respect 6. This quantity is a recalibration
of the parameter of interest ¥ in the canonical parameter ¢ space.

Step 6: The quantity ‘ ;((é) - ;((91, )‘ measures the departure of 7 from
in ¢ space.

Step 7: The estimated variance for the departurein ¢ space is given by
)) _ Vo (é.,/) Eel (é.,/ )‘//é (é(//) jae (é.,/) Do (é.,/)
in (8)]ox (9]

Step 8: The standardized MLE departure under the ¢ scale is given by

LA ‘Z(é)—l(é.,,)
=sign(y -y )—= —.
S o]

Step 9: The modified signed log-likelihood ratio statistic is given by

-2

(2(0)-+(0

« 1 r
r=r—=log—.
rgq
Although the algorithm involves many steps, it can easily be implemented into

algebraic or statistical software such as MATLAB, Maple and R.

3. Empirical Examples

In this section, the different methods of constructing a confidence interval about
the mean of non-normally distributed data are illustrated with two empirical
examples. We demonstrate that the results obtained by the methods discussed in

this paper can be very different.

3.1. Example 1: Serum Triglyceride Measurements

Bland and Altman [10] considered n = 278 serum triglyceride measurements,
which had a positively skewed data distribution with an average of 0.51 mmol/l
and a standard deviation of 0.22 mmol/l. By applying a base 10 logarithm trans-
formation to the data to obtain a less skewed distribution, the transformed dis-
tribution became bell-shaped with an average of —0.33 and a standard deviation
of 0.17. By applying the Central Limit Theorem, they report a 95% confidence
interval for the mean serum triglyceride measurements to be (0.48, 0.54). Using
the back-transformation method, the corresponding interval is (0.45, 0.49). Ta-
ble 2 presents the 95% confidence intervals for the mean serum triglyceride

Table 2. 95% confidence interval for the mean serum triglyceride measurements.

Data Method 95% confidence interval
Original Central Limit Theorem (0.48, 0.54)
Log-transformed Back-transformation (0.45, 0.49)
Log-transformed Wald (0.46, 0.51)
Log-transformed Third order (0.46, 0.51)
@ 413
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measurements for the alternative methods reviewed above Note that for this
example, the bootstrap method cannot be applied because the original data set is
not unavailable.

Bland and Altman [10] noted that the interval obtained by the back-trans-
formation method is actually the 95% confidence interval for the geometric
mean of serum triglyceride measurements instead of the mean serum triglyce-
ride measurements, where the latter is the parameter of interest. Stated diffe-
rently, the back-transformation method does not provide information about the
focal parameter of interest (Ze., the mean of the non-normal distribution). From
Table 2, it can be observed that the results from the Central Limit Theorem me-
thod are different from those obtained by the Wald method and third order
method. Additionally, the Wald method and third order method give results
which agree up to the second decimal place. This observation is not surprising
because these two methods theoretically converge to the same answer when the
sample size goes to infinity. The only difference is that the third order method
will have a faster rate of convergence than the Wald method (ie, O(n']/z)
versus O(n’3/2), respectively). The different rates of convergence are more

formally illustrated in Section 4.

3.2. Example 2: Abundance of Eastern Mudminnows

McDonald [11] reported on data on the abundance of Eastern mudminnows in

Maryland streams, which is reproduced below:

38 1 13 2 13 20 50 9 28 6 4 43

These data are non-normally distributed and McDonald [11] suggested that
both the logarithmic and square root transformed data are suitable for analysis
because they are more normally distributed compared to the original and other
competing transformations. His final analysis makes use of the logarithmic
transformed data.

Table 3 presents the 95% confidence intervals for the mean of the non-trans-

formed distribution obtained by applying the Central Limit Theorem method

Table 3. 95% confidence intervals for the mean of the abundance of Eastern mud-
minnows in Maryland streams.

Data Method 95% confidence interval
Original Central Limit Theorem (9.3, 28.5)
Original Bootstrap (B = 5000) (10.1, 28.3)
Log-transformed Back-transformation (5.0, 24.4)
Log-transformed Wald (9.3, 54.4)
Log-transformed Third order (11.1,123.9)
Square root transformed Back-transformation (6.7, 26.9)
Square root transformed Wald (9.8, 28.0)
Square root transformed Third order (11.1, 31.7)

414
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and the bootstrap method with B = 5000 to the original data; and the back-
transformation method, Wald method, and likelihood-based third order method

to both the logarithmic transformed data and square root transformed data.

The results obtained by the methods discussed in this paper are very different

for different transformations. In particular, the logarithmic transformation re-

sults in a much larger upper bound of the interval compared to the square root

transformation. Thus, it is essential to identify which transformation is more

appropriate for a given set of data.

The de-trended normal Q-Q plots for the original data, logarithmic trans-

formed data and square root transformed data are shown in Figure 1. From

Criginal data Log transformed data
1.04 1.0
0 . 0.5
w 0.5 = 0.
£ E
o L] =]
= =
[ ] L ]
3 . 5 ® e ®
500 ° 500 — -
k] ¢ g
> ° S
a . ° 3 « °
°
[ ]
-0.5 -0.5
-1.04 -1.0
-2 -1 0 1 2 -2 -1 0 2
Standardized observed value Standardized observed value
Square root transformed data
1.0
=05
£
5] [ ]
= ]
g o °
‘0.0
g ® e, 0 ’ ¢
.g e
@
[a]
-0.5
-1.0
-2 - 0 1 2
Standardized observed value
Figure 1. De-trended Normal Q-Q plots for original and transformed data of the abundance of Eastern mudminnows.
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these plots, it is obvious that the original data are not normally distributed be-
cause the points deviate from the horizontal reference line, which indicates iden-
tical quantiles between the data and a theoretical normal distribution. The two
sets of transformed data are more closely normally distributed because the
points in the de-trended normal Q-Q plots lie more closely to the reference line
relative to the original data.

The Shapiro-Wilk test on normality of the original data gives a p-value of
0.1091. The same test on the logarithmic transformed data gives a p-value of
0.5261, and it gives a p-value of 0.6479 on the square root transformed data.
Consistent with the de-trended Q-Q plot, the p-values of the Shapiro-Wilk test
similarly suggest that the two transformed data sets are more likely to be nor-
mally distributed. Additionally, the empirical skewness of the original data, lo-
garithmic transformed data, and square root transformed data are 0.5864,
—0.4886, and 0.1632, respectively. These quantifications of skewness imply that
the square root transformed data are more symmetrical than the original data
and logarithmic transformed data. Thus, based on the criteria discussed in Sec-

tion 2.3, the square root transformation is recommended for these data.

4. Simulation Study

A simulation study was carried out to compare the accuracies of the methods
discussed in this paper. R code for the simulation is available to the interested
reader upon request. For each (n,u,0) combination, we generated 10,000
samples from N (,u,o-z). These are our simulated transformed samples, and
the non-transformed (ie., original) samples can be obtained by applying the in-
verse transformation to the simulated data. The transformations examined are
the natural logarithm and square root. For each simulated sample, we computed
a 95% confidence interval for the mean of the untransformed population from
the five reviewed methods: Central Limit Theorem, bootstrap (B = 5000), back-
transformation, Wald, and likelihood-based third order. The following quanti-
ties are recorded: the proportion of true means falling within the 95% confidence
interval (coverage proportion), the proportion of true means less than the lower
95% confidence limit (lower error), and the proportion of true means greater
than the upper 95% confidence limit (upper error). The nominal values of cov-
erage, lower error, upper error, and bias are: 0.95, 0.025, and 0.025, respectively.
We present only a small subset of the simulations we conducted to highlight
several key points below, and other simulation results are available upon request.

Table 4 presents results with the natural logarithmic transformed data being

2
generated from A/ ( H, 02) and the parameter of interest is exp[ U+ 0—7] .

It can be observed that the likelihood-based third order method outperforms
the other methods especially when the sample size is small; coverage, lower and
upper errors associated with the likelihood-based third order method are rela-
tively closer to nominal rates compared to the alternative methods. Among the

remaining methods, the Central Limit Theorem method and the bootstrap
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Table 4. 95% coverage probability for the logarithmic transformation case.

Coverage Lower Upper
H Lo} n Method proportion error error
1 2 10 Central Limit Theorem 0.5389 0.0003 0.4608
Bootstrap (B = 5000) 0.5582 0.0007 0.4411
Back-transformation 0.1965 0.0000 0.8035
Wald 0.8549 0.0005 0.1446
Third order 0.9460 0.0262 0.0278
50 Central Limit Theorem 0.6907 0.0001 0.3092
Bootstrap (B= 5000) 0.7149 0.0013 0.2838
Back-transformation 0.0000 0.0000 1.0000
Wald 0.9303 0.0034 0.0063
Third order 0.9501 0.0238 0.0261
200  Central Limit Theorem 0.7757 0.0007 0.2236
Bootstrap (B= 5000) 0.7968 0.0021 0.2011
Back-transformation 0.0000 0.0000 1.0000
Wald 0.9446 0.0134 0.0420
Third order 0.9500 0.0261 0.0239
2 0.5 10 Central Limit Theorem 0.8902 0.0129 0.0969
Bootstrap (B= 5000) 0.8793 0.0239 0.078
Back-transformation 0.8884 0.0047 0.1069
Wald 0.8997 0.0246 0.0757
Third order 0.9492 0.0252 0.0256
50 Central Limit Theorem 0.9340 0.0106 0.0554
Bootstrap (B= 5000) 0.9345 0.0197 0.0458
Back-transformation 0.5905 0.0003 0.4092
Wald 0.9415 0.0167 0.0418
Third order 0.9505 0.0231 0.0264
200  Central Limit Theorem 0.9430 0.0172 0.0398
Bootstrap (B= 5000) 0.9466 0.0197 0.0337
Back-transformation 0.0591 0.0000 0.9409
Wald 0.9452 0.0220 0.0328
Third order 0.9481 0.0262 0.0257
3 3 10 Central Limit Theorem 0.2739 0.0000 0.7261
Bootstrap (B= 5000) 0.2842 0.0000 0.7158
Back-transformation 0.0132 0.0000 0.9868
Wald 0.8335 0.0000 0.1665
Third order 0.9465 0.0265 0.0270
50 Central Limit Theorem 0.3983 0.0000 0.6017
Bootstrap (B = 5000) 0.4166 0.0000 0.5834
Back-transformation 0.0000 0.0000 1.0000
Wald 0.9256 0.0022 0.0722
Third order 0.9507 0.0235 0.0258
200  Central Limit Theorem 0.4936 0.0000 0.5065
Bootstrap (B= 5000) 0.5166 0.0002 0.4834
Back-transformation 0.0000 0.0000 1.0000
Wald 0.9418 0.0120 0.0462
Third order 0.9504 0.0261 0.0235
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method give similar results. The Wald method seems to converge faster than the
Central Limit Theorem and bootstrap methods. As discussed in Section 2, the
back-transformation method gives unacceptable coverage probability because it
is constructing confidence intervals about a parameter that is not of interest.

It can be observed that the likelihood-based third order method outperforms
the other methods especially when the sample size is small; coverage, lower and
upper errors associated with the likelihood-based third order method are rela-
tively closer to nominal rates compared to the alternative methods. Among the
remaining methods, the Central Limit Theorem method and the bootstrap me-
thod give similar results. The Wald method seems to converge faster than the
Central Limit Theorem and bootstrap methods. As discussed in Section 2, the
back-transformation method gives unacceptable coverage probability because it
is constructing confidence intervals about a parameter that is not of interest.

Table 5 presents results with the square root transformed data being
generated from A/ ( 7 0'2) and the parameter of interest is x* +o”.

Similar to results in Table 4, we can observe that the likelihood-based third
order method outperforms the other methods, especially when sample size is
small. In this context, the Central Limit Theorem method and the bootstrap
method give similar results and they seem to converge faster than the Wald me-
thod. The back-transformation method continues to give unacceptable coverage
probability because it constructs confidence intervals about a parameter that is
not of interest.

Based on these simulation results, the Central Limit Theorem method, boot-
strap method and Wald method converge slowly relative to the likelihood-based
third order method. Hence, we recommend using the likelihood-based third or-
der method to obtain confidence intervals for the mean of the non-transformed
distribution after applying a normalizing transformation to non-normal data,
especially for small sample sizes or large departures from normality. It is impor-
tant to note that researchers should not use the popular back-transformation
method despite its simplicity except for the special case where y = E(X)
=9 (E(Y))-

More simulations have been performed with the same pattern of results. They

are not reported here, but are available upon request.

5. Conclusion

When interest is in constructing a confidence interval about a non-normal dis-
tribution, normalizing transformations are typically recommended as a first step.
This paper recommends the use of de-trended normal Q-Q plots, the largest
p-value of the Shapiro-Wilk test, and quantifications of skewness on the trans-
formed data to determine the power parameter (A4 ) for Tukey’s ladder of power
transformation when the exact transformation is unavailable. Our results strongly
advise against using the popular back-transformation approach in applied work
because it does not construct confidence intervals about the parameter of inter-

est (Ze, the mean of the original distribution). Instead, we recommend the
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Table 5. 95% coverage probability for the square root transformation case.

Coverage Lower Upper
H o n Method proportion error error
50 10 10 Central Limit Theorem 0.9135 0.0284 0.0581
Bootstrap (B = 5000) 0.8998 0.0383 0.0614
Back-transformation 0.9403 0.0131 0.0466
Wald 0.9030 0.0315 0.0655
Third order 0.9485 0.0262 0.0253
50 Central Limit Theorem 0.9405 0.0220 0.0375
Bootstrap (B = 5000) 0.9433 0.0222 0.0351
Back-transformation 0.8910 0.0048 0.1042
Wald 0.9386 0.0228 0.0386
Third order 0.9483 0.0257 0.0260
200  Central Limit Theorem 0.9490 0.0227 0.0283
Bootstrap (B = 5000) 0.9473 0.0222 0.0305
Back-transformation 0.7097 0.0002 0.2901
Wald 0.9489 0.0227 0.0284
Third order 0.9463 0.0292 0.0245
75 20 10 Central Limit Theorem 0.9093 0.0245 0.0662
Bootstrap (B = 5000) 0.8974 0.0348 0.0678
Back-transformation 0.9335 0.0108 0.0537
Wald 0.8982 0.0279 0.0739
Third order 0.9482 0.0265 0.0253
50 Central Limit Theorem 0.9382 0.0211 0.0407
Bootstrap (B = 5000) 0.9429 0.0201 0.0370
Back-transformation 0.8495 0.0025 0.1480
Wald 0.9376 0.0206 0.0418
Third order 0.9493 0.0249 0.0258
200  Central Limit Theorem 0.9490 0.0215 0.0295
Bootstrap (B = 5000) 0.9471 0.0219 0.0310
Back-transformation 0.5434 0.0001 0.4565
Wald 0.9487 0.0215 0.0298
Third order 0.9494 0.0264 0.0242
100 30 10 Central Limit Theorem 0.9075 0.0227 0.0698
Bootstrap (B = 5000) 0.8976 0.0328 0.0696
Back-transformation 0.9290 0.0098 0.0612
Wald 0.8962 0.0262 0.0776
Third order 0.9469 0.0279 0.0252
50 Central Limit Theorem 0.9374 0.0201 0.0425
Bootstrap (B = 5000) 0.9416 0.0202 0.0382
Back-transformation 0.8236 0.0017 0.1747
Wald 0.9362 0.0201 0.0437
Third order 0.9490 0.0249 0.0261
200  Central Limit Theorem 0.9492 0.0213 0.0295
Bootstrap (B = 5000) 0.9485 0.0212 0.0303
Back-transformation 0.4543 0.0000 0.5457
Wald 0.9479 0.0213 0.0308
Third order 0.9505 0.0254 0.0241
o 419
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likelihood-based third order method because of its superior performance in
terms of its rate of convergence, coverage, and accuracy relative to the Central
Limit Theorem, bootstrap and Wald methods, even when the sample size is

small or the distribution is far from being normal.
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