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Abstract

This paper gives a new generalization of higher order Daehee and Bernoulli
numbers and polynomials. We define the multiparameter higher order Dae-
hee numbers and polynomials of the first and second kind. Moreover, we de-
rive some new results for these numbers and polynomials. The relations be-
tween these numbers and Stirling and Bernoulli numbers are obtained. Fur-
thermore, some interesting special cases of the generalized higher order Dae-
hee and Bernoulli numbers and polynomials are deduced.
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1. Fundamental and Principles

The n-th Daehee polynomials are defined by [1]-[9].

log(1+t x & t"
(L)](m) -3D,(x)-. (1)
t s n!
If x=0 hence D, =D, (0) are called Daechee numbers,
For n>0,
I, (4), (%)= D, o

For keN, Kim [1] introduced Daehee numbers of the first kind of order &
by

D :fzpjzp"'fz,,(xl + X+ %), da (%) dp (%) de (%), 3)

where 1 is nonnegative integer.
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The generating function of these numbers are given by

n k
ZDlgk)t_:(log(l‘f‘t)j ’ (4)

t

where neZ>0,keN.
The higher-order Daehee polynomials are defined by, [10]

D (x) =J'ZJZP--~.[ZP(X1 + X o X+ X) du(x)du (%) du (%) (5)

For k €Z, the Bernoulli polynomials of order k are defined by, see [1] [11]
[12] [13],

E il)k e =§B£”(X);—n!, ©)
when x=0, B =B (0) are called the Bernoulli numbers of order &.
Also, Kim proved that
DI (x)= 3 5(n,)B") (x), o)
pac
and
B (x) =35 (n0) DY (x). Q
P
An explicit formula for higher-order Daehee numbers are given by
D<k)=M (n>0,k>1) (9)

)

where S (n, k) are the Stirling numbers of the first kind, see [1] [10].

In this article, Sections 2 and 3, give a new generalization of higher order
Daehee numbers and polynomials which are called the multiparameter higher
order Daehee numbers and polynomials of the first kind. In Sections 4 and 5, we
define the multiparameter higher order Daehee numbers and polynomials of the
second kind. Furthermore, the relations between these numbers and Stirling and

Bernoulli numbers are obtained.

2. Multiparameter Higher Order Daehee Numbers of the
First Kind

The multiparameter higher order Daehee numbers of the first kind D[(]k;
defined by

n-1 )
Dr('kgff :jz Iz .[Z TTOx 4%+ 4% =) datg (%) dig (%) -+ dagg (%, ), (10)
p?Zp Pizo

; are

where 11is nonnegative integer.
Theorem 1. The numbers D,(]kgf satisty the relation
\
=3's(n,i;@,F)DY, (11)

=

D

|
1l
o
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Proot. The generalized Comtet numbers of the first and second kind, s (n,i;T)
and S, (n,i;T), (see [14] [15] [16]), are defined, respectively, by

(x.a.r), Izn:s (n,i;7) X, (12)

and

n

X =

-

I
o

Sz (ni;F)(xa,F), (13)

where (x,a,7) =[] (x~a)" . @=(ap,a, ;) F= (10 ).

From Equation (10) and using Equation (12), we have

Dl =, jZ IZp25 (M T) (% 4%, +++ % )" dagg (%) Aty (%)

...J'Zp(x1+x2+...+xk)m dﬂo(xl)...dyo(xk)

MO | (4
=n§5 (n’m;r).[ J. J-ZP;S m, £) (X +%, +- +Xk) deto (%) Aty (%)

:Z L (n,m;T) ZS mEJ' J'Z J' X+ Xy 4ot X ), atg (%) A (%, )

Substituting from Equation (3) into Equation (14) we have

DY, =3 s, (nm:F) 3 S (m,¢) DY
m=0

=0

~

=Zogsa(n,m;r)s(m,f)Df") (15)
= (ro r/sa(n,m F)S(m,7)DY.
Since, see [15],
zr;JSa(n,m;F)S(m,f):S(n,l;&,F), (16)

hence we obtain Equation (11).
Next we derive the following theorem which gives a representation of the
multiparameter higher order Daehee numbers of the first kind in terms of the
generalized multiparameter non central Stirling numbers of the second kind and
Stirling number of the first kind, see [1] [10] [17].
Theorem 2. The numbers Dr(])F satisty the relation
\

r G T
SO S(n,f,a,r)s(“k,k)_ a7

ar = L 4K
k

Proof. Substituting from Equation (9) into Equation (11) we obtain Equation
17).
Remark 1:
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J‘ij‘zp” jng(xi+x2+ % =) datg (%) iy (%, )+ ety (%, )
=is( GaT)s(l+kk) (18)

l+k
k
Theorem 3. The numbers D) satisty the relation

na,r

(n,6;7)BY. (19)

= z/:S(n,f;&,F)s(z,i)Bfk) (20)

Substituting from [15, Equation (4.5)] into Equation (20), we obtain Equation
(19).
Theorem 4. The numbers B satisty the relation

Ir|
Sz (n. ;7)) DY (1)

(=0

Proof. From Equation (19)

I"|
() _
Dn;n?,F - S&
(=0

(n,6;7)BY,

we can write this equation in the matrix form as follows

DY =5, (F)BY, (22)

thus we get
s, (F)DY =5, (F)s, (F)BY = 1B% = B -

a a a

this matrix form is equivalent to Equation (21).

3. Multiparameter Higher Order Daehee Polynomials of the
First Kind

The multiparameter higher order Daehee polynomials of the first kind
DY . (x) are defined by

Dfar (¥)
n-1 ; (24)
—f f ij 7O(x1+x2 ot X+ X—ay)' dptg (%) At (% )+ dig (%)
Theorem 5. The polynomials D,(] ;r (X) satisty the relation
I
DL (0= S (nis@T)D (x). 9

i=0

Proof. From Equation (24) we have

778 ‘0’ Scientific Research Publishing
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]

MJ‘Z 255 (MM F) (X o % +X)" datg (%)t (%,)

\f\p p o n
:Zasé(n,m;F)ij---ij(xl+---+xk+x) duty (%) Aty (X ) (26)
:%sﬁ(n,mf)jz e DS (M) (e % ), it (% )+t (%)

m=0 P Pr=0

= sﬁ(n,m;F)iS(m,ﬂ)jZ --~_|'Zp(x1+~--+xk +X), day (%, )+ Aty (%, )

3
I
o
~
I
o
°

f m

Dl (%)= 25, (nmr) 35(m 1) D1 ()

=335, (n.m:F)S (m, ) D (x) (27)

= sz (n,m;F)S(m,7) DM (x),

(=0m=/

~

substituting from Equation (16) into Equation (27) we obtain Equation (25).

Theorem 6. The polynomials D) (X) satisty the relation

na.r

Diiar (¥)= 255 (n ;) B (x). (28)

=3y s(n 6@ )s(4i)BY (x) (29)

Substituting from [15, Equation (4.5)] into Equation (29) we obtain
Equation (28).
Theorem 7. The polynomials B\ (x) satisfy the relation

BYY ()=, (n.£;T) DY (x). (30)

this equation can be written in the following matrix form

Dy (x) =55 (r)B"Y (x).

T
We easily have the matrix form

Sz (1) Dg? (x) =82 (1) (1) B (x) = 1B (x) = B (x).

a,r

%%
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This is equivalent to Equation (30).

Moreover some interesting special cases are investigated.

Some special cases:

Case 1: Setting X, + X, +---+ X, =X in Equation (10), we obtain

Dn;Ef = jzp (X - ao)ro (X - 0‘1)r1 (X - O‘r\—l)rml dyo (X) (31)
Corollary 1. The numbers D, . satisty the relation
I
Dyzr =2.S(ni;a&,7)D,. (32)

]
o

Proof. Setting X, +X, +:--+ X =X in Equation (11), we obtain Equation
(32).

Corollary 2. The numbers D, . satisty the relation
U
Doar = 2.5z (N (;T)B,. (33)
(=0

Proof. Setting X, + X, +---+ X, =X in Equation (19), we get Equation (33).
Case 2: Setting ;=1 in Equation (31) we have

Doar = Izp (x=ag) (X =) (X = aps) dity (). (34)
Corollary 3. The numbers D, , satisty the relation

D.,:is(n,i;ﬁ)Di. (35)

Proof Let r,=1 in Equation (32), we obtain Equation (35).
Corollary 4. The numbers D, , satisty the relation

1
D,z =2.5z(n,0)B,. (36)
R
Proof. Setting r, =1 in Equation (33), we obtain Equation (36).

Theorem 8.

J, (=) (Xt (x=, ) (x) = 3. (-1) S (n@) >, 120, @7

-1)"n!
Proof. Substituting by D, =( n) 1 (see [2] [10]) in Equation (34) and
+

Equation (35), we obtain Equation (37).
Case 3: Setting I, =1¢; =i in Equation (10) we obtain

n-1
DrEng ZJZ J.Z "'.[Z H(X1+X2 oot X _i)dﬂo(Xl)dﬂo(xz)"’dﬂo(xk)
pYZp Piso

:J‘zpj.zp“'.[zp(lerX? +.“+Xk)n detg (%) dato (%)~ it (% ) = Drgk)n

(38)

and

DY (x)=>s(n,7)BM (x).

n
(=0
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4. Multiparameter Higher Order Daehee Numbers of the
Second Kind
The multiparameter higher order Daehee numbers of the second kind |5£'2F

are defined by
n-1 -
H(—x1 — X ==X = )" Aty (%) daty (%, )+ gy (%, )- (39)

6'(‘ng - .[Zp.[zp ' ”J‘Zp o

Theorem 9. The numbers |5,(1k5),F satistfy the relation

(k) (40)

B, = 3-(-1) S(n:@F)DL,

(=0

an—l)’ r:(ro’rlv"'vrn—l)'

:Hn—l(x_ai)ﬁ ,Ol:(%,al""’

where (X; a, T)n 0

Proof. Using Equation (39) we have

B
I " "
(=1)" sz (N, m; ) (X + X+ % ) Aty (%)t (%)

I (X1+X2+"'+Xk)m dﬂo(&)"'dﬂo(xk)

=S sa (), o, B (M) ), 0 () ()
(41)

J, (65 0,), g (5 ()

(-1)"s, (n,m;F)iS(m,g)‘[Zp...

substituting from Equation (16) in Equation (41), then we obtain Equation (40).
Next we derive the following theorem which gives a representation of multi-

parameter higher order Daehee numbers of the second kind in terms of the
generalized multiparameter non-central Stirling numbers of the second kind and

Stirling number of the first kind, see [1] [10] [17].
Theorem 10. The numbers |5,(]2f satisty the relation
~  S(nGa,F)s(l+k,k)
DX =%(-1) . 4
nar = 2,(-1) T (42)
k

Proof. Substituting Equation (9) in Equation (40), we obtain Equation (42).

Remark 2: For ne N,
781

K2
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n-1 )
L s - () () 1)
1 S(n6&,F)s(£+k.K) (43)
= —1 .
20 =k
k
Theorem 11. The numbers |5,(]2f satisty the relation
- U
DY . =>(-1)"s, (n,;7)BY. (44)
=0

Proof. Substituting Equation (7) in Equation (40) we have

. ‘(—1)”s(n,z;&,r) s(¢,i)BY

3
i=0

=

DY

]
~

Il

o

=

i(—l)( S(n,¢;a&,7)s(¢,i)BY

i-0
|

\
o

=

=

Il
|
[N
~.
w
—_~
=
&>
Ky
=l
N—
(%]
—~
)
=
us)
z

i=0

~

Using [15, Equation (4.5)], we obtain Equation (44).
Theorem 12. The numbers B satisty the relation

BY =3'(-1)" S, (n,;F)DY .. (45)

O =, (F)1,B%, (46)

a

1,S,(F)DY) = 1,1,B% = 1B = B®

S, (F)DY) =s_(F)s, (F)1,B% = 1,BY), @)

this is equivalent to Equation (45). Where |, is the diagonal (n +1)><(n +l)
matrix with elements (I 1)ij =(-)",i=j=021-n.

5. Multiparameter Higher Order Daehee Polynomials of the
Second Kind

The multiparameter higher order Daehee polynomials of the second kind

DY . (x) are defined by
Bfar (x)
n-1 " (48)
- .[Z,, IZDH(_X1 =X ==X+ X = ) g (%) ditg (3%, )+t (X, )-
i—0
Theorem 13. The polynomials I:A)r(]k;F (X) satisty the relation
R I .
8L, ()= (1) $(n:@7) DY (). ()

K2
782 03? Scientific Research Publishing
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Proof. Using Equation (48) we have

IZ %(—1)m S5 (MM T) (X + X, + o+ X —X)" dagy (%)= gty (%, )

IZ (% + % + 00+ % = X)" datg (%) Oty (%)

’
0 p p

=330 s, (nmiF)S (m )0l ()
I 11

Substituting from Equation (16) into Equation (50), we obtain Equation (49).
Theorem 14. The polynomials D D) (X) satisty the relation

na,r

- I
B, ()= (-2) s, (7)Y (~x). 61
=0
Proof. Using Equation (7) in Equation (49), we have
R I /
5%, (x)=2(-1)' S(n, )

a,r
0

5(£,1)B" (=)

Il
| M? N
M\
2-

iy
o

(-1) s(n ;@ 7)s(£,i)BY (~x) (52)

Il
o

=

=

(-1)' s(n, ;& F)s(4,i)BY (~x).

Substituting from [15, Equation (4.5)] into Equation (52), we obtain Equation
(51).

Next we derive some important special cases.

=0 /=i

Some special cases:

Case 1: Setting —X —X, —+--— X, =—X in Equation (39), we obtain

Dy r —f “X=tg)°® (=x =)+ (=x =,y )" dagy (X). (53)

Corollary 5. The numbers [A)n@F satisty the relation
Doar = ; (-1)' s(n,i;&,F)D;. (54)

i=0

Corollary 6. The numbers [A)n@F satisty the relation

B, =3 (-1)'s, (n :7)B, (55)
=0

Case 2: Setting ;=1 in Equation (53), we obtain
D, = . (—x—a ) (=X =)+ (—x— e,y ) dpg (X). (56)

K2
035: Scientific Research Publishing
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>
|

Corollary 7. The numbers satisty the relation

D,, =

na

(-1)'s(n,i;@)D.. (57)

- 4

I
o

Corollary 8. The numbers D, satisty the relation

na

~ Ir|
Dua = 2.(-1) s (n,#)B,. (58)

=0

Theorem 15.

. p (59)
=Y (-1) S(n,i;@)—, (=0
2 (1) S(nia)
- ~  (='n! . .
Proof. Substituting by D, =ﬁ (see [18]) in Equation (56) and Equa-
+

tion (57), we obtain Equation (58).

6. Conclusion

In this paper we define the multiparameter higher order Daehee numbers and
polynomials of the first and second kind. Some new results for these numbers
and polynomials are derived. Furthermore, some interesting special cases of the
multiparameter higher order Daehee and Bernoulli numbers and polynomials

are deduced.
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