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Abstract 
In this paper a class of cooperative Lotka-Volterra population system with 
time delay is considered. Some sufficient conditions on the existence and glo-
bally asymptotically stability for the asymptotically periodic solution of the 
system are established by using the Lyapunov function method and the me-
thod given in Fengying Wei and Wang Ke (Applied Mathematics and Com-
putation 182 (2006) 161-165). 
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1. Introduction 

Since Lotka-Volterra system has been established and was accepted by many 
scientists, it becomes the most important means to explain the ecological phe-
nomenon now. For many years, a lot of extensive research results were made in 
mathematical biology and mathematical ecology [1]-[8], during this time Lotka- 
Volterra system has played an important role in theses research field of mathe-
matical biology and mathematical ecology. Still now many research work mostly 
discussed periodic Lotka-Volterra systems [2] [3] [4] [5] [6] and the references 
cited therein. In fact asymptotically periodic systems [3] [4] describe our world 
more realistic and more accurate than periodic ones. 

As is well known, Lotka-Volterra Cooperative system is one of the most im-
portant classe of interaction model which is discussed widely in mathematical 
biology and mathematical ecology. 

In this paper we consider the following Lotka-Volterra cooperative system 
with time delay: 
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where ( )1x t , ( )2x t  are the density of two cooperative species at time t respec-
tively, ( ) ( )1, 2ir t i =  are intrinsic growth rate of two cooperative species at time 
t respectively, ( ) ( )11 1, 2la t l = , ( ) ( )22 0,1la t l =  are the intra patch restriction 
density of species 1x , 2x , at time t respectively, and ( ) ( )21 0,1la t l = , ( )1

12a t  
are the are cooperative coefficients between two species at time t respectively. In 
this paper we assume that system (1) satisfies the following assumption  

(H1) τ  is a positive constant and ( ) ( )1, 2ir t i = , ( ) ( )11 1, 2la t l = ,  
( ) ( )22 0,1la t l = , ( ) ( )21 0,1la t l =  and ( )1

21a t  are continuous, asymptotically 
periodic, bounded and strictly positive functions on [ ),τ− +∞ . 

From the viewpoint of mathematical biology, in this paper, for system (1) we 
consider the solution with the following initial condition 

( ) ( ) [ ] ( )1 1 10, for 2 ,0 and 0 0,x t t tφ τ φ= ≥ ∈ − >             (2) 

( ) ( ) [ ] ( )2 2 20 for ,0 and 0 0x t t tφ τ φ= ≥ ∈ − >              (3) 

then for any ( )0 ,t φ , ( ]( )2 ,0 , ,nC C Rφ τ +∈ = −  System (1) with initial condi-
tions has a unique solution denoted by ( )0, ,X t t φ . 

For a continuous and bounded function ( )f t , we define  

[ ]
( ){ }

0,
infL

t
f f t

∈ +∞
=  and 

[ ]
( ){ }

0,
supM

t
f f t

∈ +∞
=  

Y. Nakata and Y. Muroya have proved in [1] that the system (1) is permanent 
under the following conditions  

( )1 20 1, 2 , 0lL lLb l b> = >  and 22 0lLb >  

where  

( ) ( )1
1 11 21
l l lb t a a t τ−= − −  for 1, 2l =  and ( ) ( ) ( )1 0 1

2 22 21b t a t a tτ= − −  

which means that the system (1) had a bounded region that is 

( ) ( )( ) ( ) ( ) ( ){ }1 2, : 0 1, 2i i ix t x t m x t M t iΦ = < ≤ ≤ ≤ +∞ =       (4) 

In particularly, 

( )
1 1

*12 12
1 1

1 1

exp 2
M M

M
M M

a P a PM x r
r r

τ
 

= − + + 
 

             (5) 
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r a a M
M r a a M
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( )( ){ }1 21
1 1 11 11 11 2

11 11

exp 2
L

L M M
M M

rm r a a M
a a

τ= − +
+

           (7) 

( )( ){ }0 12
2 2 22 22 20 1

22 22

exp
L

L M M
M M

rm r a a M
a a

τ= − +
+

           (8) 

where *
1x x=  is the unique positive solution of ( )( )1 2 1

1 11 11 12 0M L L Mx r a a x a P− + + = , 
and p is a positive constant such that, 
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Let the set  

( ) ( )( ) ( ) ( ) [ ){ }2
1 2, : 0 1, 2 , 0,i ix t x t R m M t i R+ +Γ = ∈ < ≤ < +∞ = = +∞  

where ( ), 1, 2i im M i =  are given above, then set Γ  is the ultimately bounded 
set of system (1) 

Following is the adjoin system (2) of system (1) 
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 (9) 

Now, we present a useful definition 
Definition 1.1 (see [[3] Definition 1.1]) ( )f t  is called asymptotically pe-

riodic function, if ( )f t  is a continuous function mapping from R+  to R , 
and satisfies  

( ) ( ) ( )f t f t a t= + ,                        (10) 

where ( )f t  is a continuous periodic function and ( )lim 0
t

a t
→∞

= . 
Now, we present some useful lemmas. 
Lemma 2.1 The set ( ){ }2

1 2, | 0, 1, 2iR x x x i+ = > =  is the positively invariant 
set of system (1) 

Proof. We can obtain for ( ) ( )0 0 0, 1, 2i ix iφ= > =  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 1
1 1 1 11 1 11 1 12 20

0 exp 2 d
t

x t x r s a s x s a s x s a s x s sτ τ τ = − − − − + − ∫  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 1 0 1
2 2 2 21 1 21 1 22 2 22 20

0 exp d
t

x t x r s a s x s a s x s a s x s a s x s sτ τ = + + − − − − ∫  

our results will be discussed in the positively invariant set 2R+ . 
Let the set  

( ) ( )( ) ( ) ( ) ( ) [ ){ }2
1 2, : 0 1, 2 , 0,i i ix t x t R m x t M t i R+ +Γ = ∈ < ≤ ≤ < +∞ = = +∞  

where ( ), 1, 2i im M i =  are given above (in Introduction). 
Lemma 2.2 Assume that ( )1 2 220 1, 2 , 0, 0,lL lL lLb l b b> = > >  then system (1) is 

permanent, where ( ) ( )1
1 11 21 , 1, 2l l lb a t a t lτ−= − − =  and  

( ) ( )1 0 1
2 22 12b a t a tτ τ= − − − . 
Lemma 2.3 ([4]) Let ( ),H HV C R S S R+ +∈ × ×  satisfy 
1) ( ) ( ) ( ), ,a x y V t x y b x y− ≤ ≤ − , where ( )a r  are ( )b r  are continuous-

ly positively increasing functions; 
2) ( ) ( ) ( )1 1 2 2 1 2 1 2, , , ,V t x y V t x y l x x y y− ≤ − + − , l  is a constant and satis-

fies 0l > ; 
3) There exists continuous function ( )p s , such that for 0s > , ( )p s s> . And 

as ( )( )( ) ( ) ( )( ), 0 , ,P V t V tφ θ φ θ φ θ> + , [ ], 0θ τ∈ − , it follows that  
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( ) ( ) ( )( ) ( ) ( )( )2.8 , 0 , 0 , 0 , 0V t V tφ φ δ φ φ′ ≤ − , where δ  is a constant and satisfies 
0δ > . 

Furthermore, system (2.7) has a solution ( )tξ  for 0t t≥  and satisfies 

t Hξ ≤ . Then system (2.7) has a unique asymptotically periodic solution, 
which is uniformly asymptotically stable. 

Our main purpose is to establish some sufficient conditions on the existence 
and globally asymptotically stability for the asymptotically periodic solution of 
the system (1). The method used in this paper is motivated by the work done by 
Fengying Wei and Wang Ke in [4] and the Lyapunov function method. 

2. Main Results 

Theorem 2.1 Assume that the condition of lemma 2.2 is hold and  
1 1 1 1
11 21 22 12, , 0L M L Ma a a a W> > > , then there exists a unique asymptotically periodic 

solution of system (1), which is uniformly asymptotically stable. (W defined in 
the proof) 

Proof. From Lemma 2.2, we know that the solution of system (1) is ultimately 
bounded. Γ  is the region of ultimately bounded. We consider the adjoint sys-
tem (2) of system (1) 

For ( ) ( ) ( )( )1 2,X t x t x t=  and ( ) ( ) ( )( )1 2,Y t y t y t=  are the solution of 
system (2) in Γ×Γ . Let ( ) ( ) ( ) ( ) ( )* *ln , ln , 1, 2i i i ix t x t y t y t i= = = . Next we 
construct a Lyapunov functional as follows: 

( ) ( ) ( )
2

* *

1
i i

i
V t x t y t

=

= −∑                       (11) 

Take ( ) ( ) ( ) ( )2 * *
1 i iia r b r x t y t
=

= = −∑  and by using the inequality  

a b a b− ≤ − , we can easily prove 1) and 2). To check the condition 3) of 
Lemma 2.3, we need to calculate upper-right derivative of system (2): 
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where 1 1 1 1
1 11 21 2 22 12,L M L MA a a A a a= − = −  and we take  

{ } { }0 0
1 21 22 1 2max , , min ,M Ma a A A Aλ = =  

Then we have  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
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By the following formula: 

( ) ( ) ( ) ( )
* * * *e e , 1, 2i ix y

i i i i i ix t y t t m x y iψ− = − = ≥ − =        (12) 

( ) ( ) ( ) ( )
* * * *e e , 1, 2i ix y

i i i i i ix t y t t M x y iψ− = − = ≤ − =        (13) 

where ( ) ( )1, 2i t iψ =  lie in between ( )ix t  and ( )iy t  respectively, then  
( )i tψ ∈Γ . let { }1 2max ,M M M= , { }1 2min ,m m m=  and if ( ) ( )2V t V tλ τ≤ − , 

where 2 0λ >  is a constant ,then we have  

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

* * * *
1 1 1 2 2

* * * *
1 1 2 2

2 1 :

D V t M x y x y

Am x t y t x t y t

MV t AmV t V t Am M WV t

λ

τ τ τ τ

λ τ λ λ

+ ≤ − + −

− − − − + − − −

= − − ≤ − − = −

 

where ( )2 1W Am Mλ λ= − . 
From the known condition of Theorem 2.1, we obtain that 0W > ,  

( ) ( )D V t WV t+ ≤ . Then 3) of Lemma 2.3 is satisfied. has system (1) has a unique 
positive asymptotically periodic solution in domain Γ , which is uniformly 
asymptotically stable. The proof is complete. 

3. Conclusions 

In [1] the author’s discussed system (1) and derived some sufficient conditions 
on the permanence of system (1). However, in this paper, based on the perma-
nence of the system (1), we further study system (1) in a asymptotically periodic 
environment and established conditions on the existence and globally asymptot-
ically stability for the asymptotically periodic solution of the system (1) by using 
the Lyapunov function method and the method given in Fengying Wei and 
Wang Ke (Applied Mathematics and Computation 182 (2006) 161 - 165). 

We have more interesting topics deserve further investigation, such as the 
dynamical behaviors of n-species Lotka-Volterra cooperative systems with dis-
crete time delays. 
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