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Abstract 
This paper analyzes the effect of subgroup size on the x-bar chart characteris-
tics using sample influx (SIF) into forensic science laboratory (FSL). The cha-
racteristics studied include changes in out-or-control points (OCP), upper 
control limit UCLx, and zonal demarcations. Multi-rules were used to identify 
the number of out-of-control-points, Nocp as violations using five control chart 
rules applied separately. A sensitivity analysis on the Nocp was applied for sub-
group size, k, and number of sigma above the mean value to determine the 
upper control limit, UCLx. A computer code was implemented using a 
FORTRAN code to create x-bar control-charts and capture OCP and other 
control-chart characteristics with increasing k from 2 to 25. For each value of 
k, a complete series of average values, Q(p), of specific length, Nsg, was created 
from which statistical analysis was conducted and compared to the original 
SIF data, S(t). The variation of number of out-of-control points or violations, 
Nocp, for different control-charts rules with increasing k was determined to 
follow a decaying exponential function, Nocp = Ae−α, for which, the goodness 
of fit was established, and the R2 value approached unity for Rule #4 and #5 
only. The goodness of fit was established to be the new criteria for rational 
subgroup-size range, for Rules #5 and #4 only, which involve a count of 6 
consecutive points decreasing and 8 consecutive points above the selected 
control limit (σ/3 above the grand mean), respectively. Using this criterion, 
the rational subgroup range was established to be 4 ≤ k ≤ 20 for the two x-bar 
control chart rules. 
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1. Introduction 

The forensic science laboratory (FSL) studied comprises of three disciplines (fo-
rensic biology and DNA, forensic chemistry and forensic toxicology), which re-
ceive, examine, analyze and reports on evidence submitted in criminal cases 
from all over Tanzania. The FSL is the sole legally authorized laboratory to ex-
amine evidence submitted by any Governmental agency investigating a criminal 
offense. Crime scenes are the primary point of detection, collection, and preser-
vation of evidence, before submission to the FSL. All of the methods and 
processes employed at a crime scene are geared toward stopping the clock, i.e., 
keeping the scene and the evidence as much as it was when the crime was com-
mitted as possible until it can be recorded and documented. The evidence re-
ceived is viewed in the context of the crime, the persons involved, and the envi-
ronment (both physical and temporal). Science applied at the scene can generate 
data for later analysis, provide quicker answers, and facilitate better analysis in 
the laboratory. Currently, the sample influx is overwhelming, which require sta-
tistical analysis and decision making. 

The FSL studied is part of a dynamic multi-disciplinary organization devoted 
to the ideals of excellence that provides leadership to advance forensic science 
and its application to the police investigation unit and legal system and other 
services offered by the organization. Currently, the FSL has undertaken studies 
to debottleneck the challenges including extended turnaround time (TAT), large 
number of case files submitted, large number of evidence or samples submitted 
per case file, defined in this study as sample influx data, financial and adminis-
trative hurdles, and human resource challenges. The SIF data shows strong vari-
ations with time, from case file to another and among the three disciplines, pos-
ing a challenge to the FSL performance. 

This paper focuses on the statistical time series analysis techniques on SIF data 
and introduces application of x-bar control chart technique as a tool for identify-
ing uncommon occurrences of high sample influx so that causes can be identified 
and action can be taken to keep the sample management process under control. 

Higher SIF to FSL affects the sample management process. Demand on hu-
man resource, funds for reagents and other consumables, high equipment utili-
zation rate and repair, administrative burdens (documentation, quality control) 
are among the effects of high SIF to the FSL management. Moreover, high de-
mand on utilities (water, electricity, compressed gases, cooling and storage facil-
ities, etc.) and increased laboratory space requirements necessitate a closer look 
at SIF data so that decisions can be made based on scientific evidence. Other ef-
fects of high SIF include high report volumes and writing and review time, pay-
ment of extra hours and demand for expert witness sessions’ preparation time 
for analysts. 

Antagonistic scenarios prevail between crime scene exhibit collection and FSL 
sample analysis and reporting. While crime scene investigation demand collec-
tion of as large number of evidence as possible (which leads to elevated SIF), the 
FSL enters a state of management surge in trying to accommodate high SIF 
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leading to extended TAT, which forms a large component of reasons for com-
plaints by its clients (investigation, prosecution and judiciary). 

The SIF data can be analyzed using time series analysis techniques. Statistical 
analysis techniques tend to unfold hidden details of the inherent process that are 
usually contained in the time series. Those details are necessary in order to build 
critical understanding of the system or process being assessed. With increased 
understanding of the process, control action and decision making become easy 
for elimination of the causes of process instability. 

There exists several time series analysis techniques employed in analyzing en-
gineering systems. This study used x-bar control charts to signal problems in ei-
ther crime scene management techniques, investigator skills, change of national 
or regional crime profile, the need for re-planning for human resources, space, 
equipment and technology acquisition, budget review process, or funding 
re-allocation. The x-bar and range charts are the most common control charts 
used in measuring continuous data well known as fundamental tools for dis-
playing the range of variability inherent to a process [1] [2] [3] [4]. This is also 
referred to as statistical process control (SPC). 

Application of several rules to the same set of data is referred to as multi-rule 
analysis. The rules can be implemented separately (as in this work) or in combi-
nation [5]. The advantage of multi-rule quality control procedures include mi-
nimization of false out-of-control detection, while at the same time maintaining 
high out of control detection. In this study, the multi-rule application was done 
by selecting individual rules with different levels of violation detection, then ap-
plying them separately, while other researchers apply them jointly to maximize 
detection levels, so called stringent process control. Thus, multi-rules optimize 
both sensitivity and specificity of the quality control process, and were imple-
mented to build an insight understanding of the behavior of the evidence or 
sample reception system and the power of the control charts [6] [7] [8]. This 
study utilized a computer code to identify violations using several rules applied 
separately different from simultaneous application of multi-rules [9] [10]. 

Research on SPC is wide in industry and medical laboratories, but has not 
been focused in forensic science laboratories for cost and quality improvements. 
While FSL’’s reports contribute strongly in the judiciary system, the use of con-
trol chart as quality control tool is an important research area. The purpose of 
this research was to provide a scientific basis for choosing rational subgroup size, 
given an acceptable range of 2 to 25. None of the researchers dealt in depth on 
the scientific identification of rational subgroup size. 

2. Literature Review 

The primary use of x-bar control charts is to help in determining whether or not 
the process in question is stable [3] [4] [11]. In general, “stable” refers to a state 
of statistical control, a condition which exists when the process is affected by 
only common or random variation, that is, variations inherent in the process 
and not caused by unusual influences. In this study, control charts were used to 
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signal unusual occurrence of SIF, and hence allow for re-examination of case 
files in the respective subgroups which exceeded the upper control limit. A spe-
cial cause is present in the process if any points fall above the upper control limit 
or below the lower control limit, the so called Rule #1, giving the number of ex-
ceedances as out-of-control points. Action should be taken to find the special 
cause and permanently remove it from the process by making changes in the in-
vestigation techniques a problem which is outside the scope of FSL. 

Other rules use the zones to test for process stability, called zone tests (Rule #2 
to #4). The zone tests are valuable tests for enhancing the ability of control 
charts to detect small shifts quickly. In this study, Rule #2 to #4 were imple-
mented based on zone tests while Rule #5 which is based on trending behavior 
was also implemented in order to build understanding on the ability of the con-
trol charts. The first step in using these tests is to divide the control chart into 
zones, by dividing the area between the average and the upper control limit into 
three equally spaced areas. The locations of the lines depend on standard devia-
tion and a factor of the latter to be added to the grand mean. This is then re-
peated for the area between the average and the lower control limit. 

The x-bar control charts consist of three zones, that is, A, B, and C. There is 
zone A for the top half of the chart and a zone A for the bottom half of the chart. 
The same is true for zones B and C. The charts are normally based on 3 sigma 
limits of the variable being plotted. This method works perfectly for a normally 
distributed process [11]. Thus, each zone is normally one standard deviation in 
width. For example, considering the top half of the chart, zone C is the region 
from the average to the average plus one standard deviation. Zone B is the re-
gion between the average plus one standard deviation and the average plus two 
standard deviations. Zone A is the region between the average plus two standard 
deviations and the average plus three standard deviations. In this work, a test 
was conducted to assess the effect of number of sigma on the control charts cha-
racteristics, and a choice of the control limits made based on suitability of the 
control chart in detecting the process instability, because the studied process 
does not follow a normal distribution, as shown later. The control limits (de-
fined for the statistic that is being plotted) are statistically determined by ob-
serving process behavior, providing an indication of the bounds of expected 
process behavior [1] [12]. The fluctuations of the points between the upper and 
lower control limits are due to the variation that is intrinsic (built in) to the 
process (that is, sample submission to the forensic science laboratory). These 
variations are due to common causes. Although we do not know exactly what 
these causes are, they are specific to each crime scene and their effect on the 
process seems to be consistent over time. Thus, if the process is in control, the 
vertical location of subgroup average value that lies between the control limits is 
not useful information. When points exceed the control limits, we assert that the 
process must have shifted, since the chance of this happening is so small. Due to 
averaging within each subgroup, any point outside the control limits is attri-
buted to special causes. It should be noted that a point falling beyond the upper 
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control limit is the average of all values in that subgroup, such that there must be 
an unusual situation in the respective subgroup time interval worth examining 
in details using the subgroup data and taking remedial action in the real process. 
A key value of the control chart is to identify the occurrence of such special 
causes so that they can be identified and removed, leading to a reduction in 
overall process variation. 

The limits are determined by estimating the short-term variation in the 
process, which are then used in defining process stability (or process control). 
The short-term variation provides a good model (or estimate, or prediction) of 
the longer-term variations because if short term variation remains under con-
trol, eventually the long term variations will be under control or stable. The 
short-termism arises from the choice of the subgroup size. This is the most crit-
ical component towards effective use of these control charts, yet one of the most 
overlooked. This paper examines the effect of subgroup size on the performance 
of the control chart as a statistical tool. 

This paper presents a new criterion on choosing subgroup size for the data in 
hand. As stated above, each subgroup represents a snapshot of the process at a 
given point in time. The x-axes of the x-bar control chart are time-based, so that 
the charts show a history of the exhibit or sample receiving process. X-bar charts 
are efficient at detecting relatively large shifts in the process average, typically 
shifts of ±1.5 sigma or larger. The larger the subgroup, the less-sensitive the 
chart will be to shifts in the process. 

Different researchers use subgroup sizes depending on convenience of data 
collection, and limitations posed by literature values of subgroup size. The key to 
successful control charts is based on formation of rational subgroups. Control 
charts rely upon properly selected subgroups to estimate the short-term varia-
tions in the process. The short-term variations are then used to predict the long-
er-term variation defined by the control limits, which differentiate between 
common and special causes of variations. A rational subgroup is simply a sample 
in which all of the items are produced under conditions in which only random 
effects are responsible for the observed variation. This study critically investi-
gates the ability to identify process instability at a wide range of subgroup sizes 
for the same data set, that is, SIF data. 

This paper deals with an approach for choosing the proper subgroup size for 
control charts. Other researchers used ANOVA for testing that the process mean 
is in control and Bartlett’s test for testing that the process variance is in control 
[13]. The subgroup sizes were created assuming that several conditions for sub-
group properties were satisfied. It was assumed that the observations within a 
subgroup are from a single, stable process, with few special causes within sub-
groups, to have small variations within subgroups relative to the variation be-
tween subgroup averages. Presence of large variations within subgroup forces 
the control limits to be too far apart, resulting in a lack of sensitivity to process 
shifts. However, the control limits depend on characteristics of the overall data 
set based on standard deviation or average range [11] [14]. 
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The purpose of x-bar control charts is to detect significant process changes 
when they occur. In general, charts that display averages of data like x-bar charts 
are more useful than charts of individual data points. Charts of individuals are 
not nearly as sensitive as charts of averages at detecting process changes quickly. 
X-bar charts are far superior at detecting process shifts in a timely manner, and 
the subgroup size is a crucial element in ensuring that appropriate chart signals 
are produced [15]. 

Often, the subgroup size is selected without much thought. A subgroup size of 
5 seems to be a common choice. If the subgroup size is not large enough, then 
meaningful process shifts may go undetected. Based on the limitations over 
batch completion time, a value of k = 11 was used for saccharification tempera-
ture, pH and Brix data control charts [11]. On the other hand, if the subgroup 
size is too large, then chart signals may be produced from insignificant process 
shifts. The key is to specify a subgroup size so that significant shifts (from a 
practical perspective) are detected with high probability and that insignificant 
shifts are unlikely to produce a signal [16] [17]. The observations within the 
subgroups are independent, implying that no observation influences, or results 
from, another. If observations are dependent on one another, the process has 
autocorrelation which causes the within subgroup variation to be unnaturally 
small and a poor predictor of the between subgroup variation. The small within 
subgroup variation forces the control limits to be too narrow, resulting in fre-
quent out of control conditions or false violations. 

3. Methodology 
3.1. Data Collection and Organization 

The SIF data comprised of details per case files received in each calendar year 
from January to December. Each request submission contains a different num-
ber of samples or evidence, referred to as case file. Since the sample influx data 
was collected from recorded sample receiving datasheets, as the samples were 
being received, then the subgroups are formed from observations taken in a 
time-ordered sequence, i.e., from a time series of sample influx, or SIF, denoted 
as S(t). In other words, subgroups were formed using a snapshot of the process 
over a small window of time, and the order of the subgroups would show how 
those snapshots vary in time. Given that 629 case files were received in 260 
working days (SIF2014 with highest case files), at an average of 3 case files per 
day, a value of k = 2 or 3 spans a time window of one day. Thus, values of k 
higher than 3 are recommended for SIF data. On the other extreme, a maximum 
value of k = 25, on the other extreme, is equivalent to 8.33 working days, which 
is within 2 weeks. Thus, most of the values of k used in this study investigate 
variations in a time window of 1 to 2 weeks, which can be too long maximizing 
the chance of special causes. Thus, for sample influx data, one week or 5 days 
should be sufficient, that is k = 5 × 3 = 15 maximum. In this case, analysis of k = 
2 to 15 to provide a time window of 5 working days in a week is recommended. 
The details of the SIF data used in this study including number of case files re-
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ceived at FSL and the corresponding statistics is summarized in Table 1. 

3.2. Choice of Subgroup Size 

This study was mainly focused on characterizing stability of the system as the 
subgroup size was increased from 2 to 25. Given a time series of sample influx 
data, S(t), of length Npt, as the number of subgroups, k, is changed the number of 
groups for which average values are determined and compared with control lim-
its changes as per Equation (1): 

pt
g

N
N

k
=                          (1) 

Since only complete columns of subgroups can be processed, the incomplete 
subgroups were truncated leading to slight variations in the grand mean, X  
and standard deviation. However, the analysis was still valid since each value of 
k gives a complete and independent x-bar control chart, assessed for violation 
using five Rules. The choice of number of subgroups Nsg or the size of sub-
groups, k (where Npt = Nsg × k) affects the resulting control chart in terms of 
number of points that exhibit out of control behavior, the percentage of the out 
of control points, and also the control limits UCLx, LCLx, as well as the zone de-
marcations, XA and XB, as shown in Table 2, for Npt = 620. 
 
Table 1. Statistical analysis of the SIF data (samples per case file) used in this study. 

SIF data source SIF2009 SIF2014 SIF2015 

N (case files) 360 629 503 

Mean (samples/case file) 14.72 13.31 12.03 

Median 3 3 3 

Mode 1 3 3 

Std. Deviation 34.17 44.35 36.13 

Skewness 5.68 7.48 7.08 

Kurtosis 41.18 73.42 63.41 

Minimum 1 1 1 

Maximum 343 618 400 

Total number of samples 5300 8370 6073 

Mean 14.72 13.31 12.03 

Percentiles 

25% 1 2 2 

50% 3 3 3 

75% 14 4.5 5 

 
Table 2. Effect of increasing subgroup size on control chart parameters and process sta-
bility (SIF2014). 

k Nsg UCLx X X X  1X σ−  2X σ−  xLCL  Nocp Pocp 

5 124 36.9 29.1 21.284 13.5 5.7 −2.1 −9.96 12 9.67% 

10 62 35.0 27.9 20.664 13.5 6.3 −0.9 −8.10 8 12.90% 

15 41 33.8 27.2 20.296 13.6 6.8 0.1 −6.63 4 9.75% 
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3.3. Control Chart Characterization Parameters 

The main purpose of x-bar control chart is to identify and count the number of 
out-of-control points (OCP) denoted as Nocp, observed above the upper control 
limit, UCLx, using Equation (2): 

xUCL X nσ= +                         (2) 

where n is the number of multiples of sample sigma above the grand mean to 
determine the upper control limit. For a normal distribution, n = 3. However, 
for a distribution away from normal, it is wise to establish the coefficient n be-
fore a control chart can be used to assess stability of the process. In the literature, 
the value of n used to set the control limits is usually stated in the rules to be 
used, such as 2of32s as introduced in Westgard Rules. 

3.4. Parameters Determined 

The count of number of times any rule was violated, denoted as OCP, was estab-
lished based on the selected value of n = 1.0 for setting the control limits, as per 
Equation (3):  

xUCL X σ= +                         (3) 

This led to the three zones separated by the lines XA and XB, as per Equations 
(4) and (5):  

2
3AX X σ= +                         (4) 

and  
1
3BX X σ= +                         (5) 

The percent of out-of-control points for different control-chart interpretation 
rules for a given number of subgroups, Nsg, (that is, for each value of k) was de-
termined using Equation (6):  

100ocp
ocp

sg

N
P

N
= ×                        (6) 

3.5. Application of Multi-Rules to the X-Bar Control Chart 

Literature shows that there are times when control limits are set using 3σ, 2σ or 
1σ [11] [14] including use of control chart constant multiples of R-bar [11]. The 
question is, when to use control limit other than 3σ. During preliminary work, 
test for effect of n or Nocp and Pocp were conducted for n ranging between 0 and 
3, while varying k, and a choice of n = 1.5 was made. 

Detailed analysis of control charts uses a collection of rules to asses for condi-
tion leading to denoting the process (from which a time series originates) as out 
of control or unstable [11]. The rules which were used in the analysis are sum-
marized in Table 3. 

Rule #1 signifies process control rule where a violation was counted as Nocp 
when a subgroup average exceeds the upper control limit set as per Equation (3), 
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where n = 1, which is different from a usual action or rejection limit on Shew-
hart control chart that uses Equation (2) with n = 3. The decision to use n = 1 
was reached through sensitivity analysis for SIF data, as shown in Figure 1. 
Based on results shown in Figure 1, the numbers of points beyond 2X σ+  and 

3X σ+  are already very small (equal to 1) for k ≥ 10, indicating that, further 
analysis of the effect of k will be restricted. By virtual of the maximum value be-
ing above UCLx, it is evident that Nocp will be higher than 1, allowing analysis of 
Nocp with k except at k = 25. Thus, this study used n = 1. 

Rule #2 was implemented using a count of times at least 2 points out of 3 ex-
ceed XA. This count was established by summation of cases where all three 
points (Rall3), first and second points (R1&2), first and third points (R1&3), or 
second and third points (R2&3) were observed to exceed XA. Whenever Rule #2 is  
 
Table 3. Rules for assessing stability using control charts. 

Rules Condition assessed 

Rule #1 When a point falls outside UCLx, denoted as 11s. 

Rule #2 At least 2 points out of 3 are in zone A. 

Rule #3 3 out of five consecutive points on a control chart fall above XB. 

Rule #4 8 consecutive points above XB (in Zones B, or A or beyond). 

Rule #5 
6 consecutive points decreasing or increasing. In this case only a decreasing 

scenario was used. 

 

 

 
Figure 1. Sensitivity analysis of the effect of n and k on control limits, UCLx 
and number of violations, Nocp. 
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violated, the count of number of violations is increased by unity, such that the 
total number of violations can be expressed as per Equation (7): 

2
1&2 1&3 2&3 3ocp allN R R R R= + + +                   (7) 

where the exponent denotes rule number. 
Rule #3 was implemented by counting number of times the following scena-

rios were detected among the average values for each subgroup: the 1st to 3rd 
points (R1to3), 2nd to 4th points (R2to4), or 3rd to 5th points (R3to5) are above XB. Thus 
the rule is violated whenever any of these scenarios is observed, such that, the 
total number of possible violations is the sum of three possibilities, defined using 
Equation (8):  

3
1to3 2 to4 3to5ocpN R R R= + +                     (8) 

Rule #4 was implemented by assessing when eight consecutive average values 
of the subgroups were above XB [14], a sequence of which is denoted as Q(p) for 

1, 2,3, , .sgp N= 
 

Let ( )A Q p= , ( )1B Q p= + , ( )2C Q p= + ,  , ( )7H Q p= + , be con-
secutive values of Q(p) starting at point p in the series. If  

( ) ( ) ( ) ( ) ( )B B B B BA X B X C X D X H X> Λ > Λ > Λ > Λ Λ >      (9) 

where symbol “Λ” represents an “AND” operator, then Rule #4 is violated and 
Nocp is increased by 1, until all cases where the condition is fulfilled are counted. 
This is denoted as 8x in multi-rule implementation. When condition stipulated 
in Equation (9) is fulfilled, the number of OCP or violations are counted, de-
noted as Rall8, expressed as per Equation (10): 

4
8ocp allN R= ∑                        (10) 

Rule #5 was implemented by assuming that a sequence of Q(p) values, such 
that ( )A Q p= , ( )1B Q p= + , ( )2C Q p= + ,  , ( )5F Q p= + , satisfies the 
condition given in Equation (11):  

A B C D E F> > > > >                    (11) 

This implies that six consecutive points in Q(p) series steadily decreases [14]. 
This is denoted as 6 T in the multi-rule implementation. Thus, the count of vi-
olations is increased by unity until all cases where the conditions are fulfilled are 
counted, as per Equation (12):  

5
6ocp all dN R= ∑                       (12) 

Since all the rules were applied separately to the sample influx data, Figure 2 
shows the flow chart for implementation of the rules. 

3.6. Application of a Computer Code 

Based on results shown in Figure 1 and the multi-rule implementation in Figure 
2, it is evident that there are many variations of violations in the characteristics 
of the control chart, which require a computers code to capture the violations 
and keep counts as k is varied [3] [6] [7] [8] [9]. A FORTRAN computer code  
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Figure 2. Flow chart of multi-rule implementation adopted in this study. 

 
was implemented to read the original time series, S(t), create subgroups auto-
matically, and create the upper and lower control limits, followed by calculating 
the averages for each subgroup and performing violations detection. 

While the x-bar control chart rules might be used differently in different ap-
plications, it is important to note that these rules are intended to provide evi-
dence of out-of-control process and not conclusive proof. Once out-of-control 
points are observed in the data, causes are investigated in the real or physical 
system, remedies made and observation on the effect of remedial action investi-
gated once again. 

With such wide range of variations in control chart characteristics, a FORTRAN 
code was created to read the time series data and perform the analysis of detect-
ing instability using the above rules and mainly testing the effect of subgroup 
size, k, stating from 2 to 25. The parameters assessed for OCP were related to k 
using power and exponential functions of different coefficients and indices. 

4. Results and Discussion 
4.1. Sample Influx Time Series 

The sample influx data recorded chronologically for 629 case files received into 
the FSL in the year 2009, 2014 and 2015 is presented in Figure 3. The sample in-
flux fluctuated from 1 to above 600 samples per case file, with spikes of very high 
influx occurring randomly with time. This tendency of random sharp rise affects 
strongly the operations and performance of FSL as it impacts human resource 
and staffing requirements, supplies, extended TAT and longer working hours for 
employees. To answer the question, whether the influx fluctuations are still stat-
ically under control, control charts were suggested and implemented. The higher 
values of S(t) on the other hand, affects the performance of FSL strongly, due to 
extended TAT in handling large number of samples, high consumption of rea-
gents and other consumables. 

4.2. Probability Distribution Function of the SIF Data 

When the data was tested for underlying nature of distribution, it was evident 
that the SIF data is not normally distributed. The probability distribution func-
tions (PDFs) show high positively skewed distributions with skewness = 5.69, 
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7.48 and 7.06 and very high kurtosis values = 41.18, 73.42, and 63.17, for 
SIF2009, SIF2014 and SIF2015, respectively, as shown in Figure 4. The longer 
tails on the right for all the three PDFs signify that, each year very high values of 
SIF exist at lower frequencies as indicated by few longer peaks in Figure 3. Very 
higher SIF values than 100 samples per case file were observed, indicating case 
files with higher public interest. The PDF of SIF2009 data shows a slight differ-
ence from the recent data sets, of having a bimodal behavior, attributable to ef-
fective training offered by the FSL to the investigation team. Also, in 2009, the 
FSL was in infant stages of implementing Human DNA Regulation Act and the 
corresponding test procedures including paternity testing (for which three samples  
 

 

 

 
Figure 3. Time series of sample influx data. 
 

 
Figure 4. Probability density functions (PDFs) of the SIF data from three years. 
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are required) which manifests in the peak at S(t) = 3 samples for SIF2014 and 
SIF2015. The peaks at S(t) = 1 signifies case files where a single sample was sub-
mitted to the FSL, which occur at highest frequency, especially for SIF2009. De-
spite the difference in number of case files received (SIF2014 and SIF2015 data 
sets) results show similar behavior compared to SIF2009, all of which are not 
normal distributions. 

4.3. X-Bar Charts Characterization Based on 3σ Control Limits 
4.3.1. Sample X-Bar Control Charts at Different Subgroup Sizes 
The effect of sub-group size was initially investigated by plotting control charts 
at selected interval of subgroup sizes. In each case, different control limits and 
zonal demarcations of the x-bar charts were identified. Figure 5 shows the sam-
ple control charts for k = 5, 10 and 15, respectively. In σ, horizontal axis is the 
subgroup number, Sbg, while vertical axis is the subgroup average values, Q(p). 
The number of bunches or subgroups of case files decreased from 124, 62, and 
41 when k was increased from 5, 10 and 15, respectively. It is notable that the 
number of out-of-control points based on 3X σ+  decreased from 12 at k = 5 
to 8 at k = 10, and decreased further to 3 at k = 15. This shows clearly that the 
subgroup size is an important parameter of the x-bar control chart for proper 
decision making in identifying process instability. 

Figure 5 uses the same vertical scale in order to compare the number of Nocp, 
but Also to show that the Q(p) values decreases with k. For instance, at k = 5, the 
maximum value of Q(p) was 182 samples per case file, while at k = 10 the max-
imum value was 120 and down to 50 at k = 15. It should also be noted that the 
shape of the Q(p) curves at different values of k remains the same (Figure 5), 
but varying in vertical span only. Results show that changing k, the number of 
subgroups changed as well as the upper and lower control limits of the charts, 
showing that the setting of the control chart need to be well scrutinized in order 
to portray the meaningful results. 

4.3.2. Analysis of the Effect of Subgroup Size on X-Bar Chart  
Characteristics 

The resulting changes in the control chart parameters are listed in Table 2 for 
different values of k. Based on results reported, control charts must be used and 
interpreted with care. The effect of subgroup size on the useful control charts 
parameters is well stipulated in Table 2 for n = 1, 2, 3 although detailed analysis 
used n = 1 only. It is also noted that Pocp does not decrease with k, like Nocp be-
cause the denominator Nsg is also decreasing. The results of out-of-control 
points shown in Table 2 are based on simple basic concept of control charts, 
that is, when the average values of Q(p) exceeds the UCLx. 

Other characteristics of the control chart that depend on the subgroup size in-
clude X  (where if the time series data is truncated to fit the complete subgroups, 
especially at higher values of k), UCLx, LCLx, and span between limits, SPx, as 
shown in Figure 6. With all values of LCLx being negative, this analysis did not 
use such limits. Results show that the control limits shrink when k increases, so  
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Figure 5. X-bar control charts of SIF data at three different subgroup sizes (data from SIF2014) using 3σ limits above the grand 
mean. 

 
that SPx drops from 46.87 at k = 5 to 40.39 at k = 15. Further increase in k will 
result into even narrower area between units since the standard deviation de-
creases continuously. 

Based on the nature of S(t) and Q(p), that is the number of samples per case 
file, negative control limits were excluded in the analysis, and only x-bar, UCLx, 
XA, and XB were used in detecting violations. 
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Figure 6. Effect of subgroup size on x-bar chart characteristics (for SIF2014 with n =3). 

4.3.3. Comparison of X-Bar Charts for Different SIF Data 
While Figure 5 shows the control charts at different subgroup sizes, k, the need 
to compare the behavior for SIF data from different years revealed the behavior 
of the SIF data on a control chart, as shown in Figure 7, for k = 5. Based on Fig-
ure 7 and Rule #1 which can be implemented manually by counting exceedances 
over UCLx as violations, Table 4 shows the detailed analysis of the control charts 
based on Rule #1. 

Figure 7 and Table 4 show clearly that there is a wide variation in control 
chart limits between SIF data series, depending on the statistics embedded in the 
data sets from different years, being highest for SIF2014. Moreover, the span 
between control limits, SPx, was narrowest for SIF2009 compared to the rest of 
the data sets. The number of violations observed were different, being 13, 12 and 
8 leading to Pocp = 17.57%, 9.68% and 8.0% for SIF2009, SIF2014 and SIF2015, 
respectively. It is evident that the number of violations (Nocp) and percent of vi-
olations (Pocp) decreased with time. The changes observed in the Pocp can be at-
tributed to the effectiveness of the training for the investigation team on sample 
collection, storage and transportation prior to submission to the FSL. 

4.4. Probability Density Functions for the Subgroup Average  
Values 

Several series of the subgroup average values, Q(p), equal in number to Nsg, were 
determined and recorded for further statistical analysis. The probability density 
functions (PDFs) at selected values of subgroup sizes, k = 2, 5, 10, 15, 20 and 25, 
are plotted in Figure 8. It was observed that the data is characterized by positive 
skewness with longer tails towards the right. The values of skewness decreased 
from 5.12 to 1.44 when k was increased from 2 to 25. The plots reveal a slight 
decrease in the scatter of Q(p) values, or an increase in uniformity of the average 
values, as the value of k increases, such that the standard deviation decreased 
from 35.3 to 15.0 while the range of the Q(p) values dropped from 328.5 to 51.6. 
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Figure 7. X-bar control charts of SIF data (at k = 5 and n = 3). 
 

Table 4. Summary of the detailed analysis of control charts for SIF data at k = 5. 

Control chart parameters SIF2009 SIF2014 SIF2015 

UCLx 21.85 36.91 30.84 

X  14.41 13.47 12.14 

LCLx 6.96 −9.96 −6.56 

SPx 14.89 46.87 37.40 

N 370 629 503 

K 5 5 5 

Nsg 74 124 100 

Nocp 13 12 8 
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Despite the similarity in the shape of the PDFs, they differ in terms of fre-
quency or vertical axis for which the minimum observed frequency increases 
with k from 1% when k = 2% to 4% when k = 25, showing that the Q(p) ap-
proaches a normal distribution when k increases. There is also a shift along ho-
rizontal axis when k increases with the tail at lower values of Q(p) diminishing 
when k increases. Such observation has been reported in literature especially for 
data exhibiting normal distribution. 

It is evident that increasing k leads to a more uniformity among the Q(p) val-
ues due to averaging effect as subgroup size increases. Moreover, the span and 
the maximum value of Q(p) decreases with k. The changes in statistics between 
the original time series data and the Q(p) can be seen by comparing the statistic-
al values as shown in Table 5. 

It was observed that as the subgroup size increases the standard deviation of  
 

 

 
Figure 8. Probability density functions of the subgroup average values, Q(p), for SIF2014. 

 
Table 5. Statistical analysis of the Q(p) data from SIF2014. 

Series k Nsg X  σ  Sk xX UCLσ+ =  Maximum 

S(t) - 620 15.2 37.2 6.85 52.4 620 

Q(p) 2 310 13.57 34.28 5.12 47.85 329.5 

Q(p) 5 124 13.57 25.31 3.84 38.87 186.4 

Q(p) 10 62 13.57 20.06 3.04 33.63 119.3 

Q(p) 15 41 13.56 17.47 2.22 31.03 82.4 

Q(p) 20 31 13.57 16.84 2.73 30.41 83.8 

Q(p) 25 24 13.58 14.95 1.44 28.53 54.0 
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the distribution of averages decreases. Specifically, the relationship shown in 
Table 5 relates the standard deviation of averages to the standard deviation of 
individuals or S(t) as the subgroup size increases. 

Figure 9 shows a plot of cumulative probability distribution functions of the 
Q(p) series data for k = 2, 5, 10 and 15 and that of the original SIF data, denoted 
as S(t) for SIF2009 and SIF2015. The plots show the properties of the Q(p) data 
using the differences in loci. While the span of the Q(p) values decreases at 
higher values of k, a great similarity is observed in the shape of the cumulative 
functions, showing that the SIF data emanates from a distinguished and unique 
system determined by control factors constantly governing the sample collection 
at crime scene and its management before submission to the FSL. 

4.5. Variation of Number of Violations with Subgroup Size 

Figure 10 shows the variation of the number of violations or number of OCP 
with subgroup size for different rules implemented in this analysis. All rules re-
veal a clear decreasing tendency for violations when k increases. This is attri-
buted to the decrease in span between the control limits when k increases.  
 

 

 
Figure 9. Cumulative probability functions of subgroup averages, Q(p), for 
different subgroup sizes using SIF data. 
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Figure 10. Variation of number of violations with subgroup size, k, for the five control chart 
rules using SIF2014 data set (using n = 1). 

 
However, Rules #2 and #3, shows poor relationship between number of viola-
tions with subgroup size as the fluctuations were observed to increase with k. 
Thus, further analysis was conducted for Rule #1, #4 and #5. 

It should be noted that Rules #2, #3, #4 and #5 can lead to Nocp higher than Nsg 
due to the fact that one point can be counted several times as long as the neigh-
boring points lead to violation of the rule. Thus, Pocp was not determined for the 
Rules #2 to #5. 

4.6. New Criteria for Choosing Rational Subgroup Size 

The number of violations for a given control chart (prescribed by k and Nsg) 
analyzed using Rules #1, #4, and #5 were counted for each value of subgroup 
size, k. A preselected value of k that leads to rational subgroups is a prerequisite 
before performing analysis of number of violations, and identification of effec-
tive remedial action. However, the Nocp and hence the effectiveness of the control 
chart in bringing tangible remedial action depends strongly on k. Further analy-
sis revealed that the two quantities (Nocp and k) were exponentially related as de-
picted in Figure 11. 

The goodness of fit, expressed using R2 values, which were closer to unity, 
with exponential functions generated, as summarized in Table 5, all of which are 
decaying exponential functions, of the form depicted in Equation (13):  

eocpN A α−=                         (13) 

where A and α are constants depending on data set and interval of subgroup 
size. 
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Figure 11 shows, however, that the fit was poor for k < 4 and k > 20. After 
eliminating these values of k and running the analysis at k = 4 to 20, results show 
good agreement with the exponential relationships shown in Figure 12. Results 
show further that a good fit was obtained when a rule used involves several 
points of Q(p) satisfying a given condition to establish a violation, that is Rule #4 
(8 consecutive points above XB) and Rule #5 (6 consecutive points trend-
ing/decreasing). Rule #1 still shows poor fit even when the range of subgroup 
size was trimmed, R2 = 0.9196, as its count of violations depends on a case where 
only a single point exceeds the UCLx to be detected as a violation. Thus, further 
analysis of the relationship expressed in Equation (13) used Rules #4 and #5 to 
establish the rational subgroup size. 

In Figure 12, the data from SIF2009, SIF2014 and SIF2015 were tested for 
exponential fit in the rage of k from 4 to 20, with higher R2 values for Rule #4,  
 

 
Figure 11. Variation of the number of violations, Nocp, with subgroup size, k 
(using n = 1). 

 

 
Figure 12. Fitting of number of violations of Rule #4 with subgroup size, k, 
using SIF data from different years. 
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showing that the criteria applies well for SIF data. 
The same procedure was used to test Rule #5 for goodness of fit between Nocp 

and k as a criterion for selecting the rational subgroup range. Again, exponential 
relationship with higher R2 values was revealed for SIF data, as shown in Figure 
13. 

Table 6 summarizes the observed exponential equations relating Nocp with k 
for the whole range of k (showing a poor goodness of fit) and for selected nar-
row range of k (with a good fit) for three Rules #1, #4 and #5. 

Thus, a good fit of an exponential relationship on a log-log plot for number of 
violations, Nocp, versus subgroup size, k, was established as a criterion for choos-
ing a proper value of k, when R2 value approached 1.0 or lies between 0.9 and 
unity for the two rules. Investigations for the behavior of the x-bar chart for the 
rest of the rules require further research work. 

5. Conclusion 

Sample influx data exhibits complex behavior with sudden spikes, leading to  
 

 
Figure 13. Fitting of number of violations to Rule #5 with subgroup size, k (us-
ing n = 1). 

 
Table 6. Exponential equation generated for Nocp versus k using different rules. 

Rule No. Range of k Exponential equation R2 value SIF data set 

Rule #1 

2 ≤ k ≤ 25 

0.37251.67e k
ocpN −=  R2 = 0.9579 

SIF2014 Rule #4 0.137205.2e k
ocpN −=  R2 = 0.9705 

Rule #5 0.185271.6e k
ocpN −=  R2 = 0.9880 

Rule #4 4 ≤ k ≤ 20 

0.22167.04e k
ocpN −=  R2 = 0.9915 SIF2009 

0.136185.56e k
ocpN −=  R2 = 0.9842 SIF2014 

0.15163.45e k
ocpN −=  R2 = 0.99 SIF2015 

Rule #5 4 ≤ k ≤ 20 

0.3226.58e k
ocpN −=  R2 = 0.9915 SIF2009 

0.166211.96e k
ocpN −=  R2 = 0.9951 SIF2014 

0.208224.75e k
ocpN −=  R2 = 0.9952 SIF2015 
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sudden surge in requirements for extra FSL resources. This necessitated detailed 
analysis to enable proper management of samples throughout the year. The me-
thod employed in this study, i.e., the x-bar control charts, has proved to be effec-
tive in identifying uncommon changes in the sample reception process. Control 
charts behaved widely with changes in subgroup size, necessitating use of com-
puter software to characterize the charts and relate the results with actual situa-
tion. The rational subgroup size was established to range from 4 ≤ k ≤ 20, during 
which the exponential functions between Nocp and k exhibited high goodness of 
fit, R2, compared to other regions of k from 2 to 25. Implementation of mul-
ti-rules allowed detailed analysis of the behavior SIF data, in addition to statis-
tical analysis of subgroup averages. With a proper choice of subgroup size, x-bar 
control charts are capable of identifying uncommon changes in the sample in-
flux at FSL. The charts behave differently at different values of k with varying 
Nocp, Pocp, UCLx, SPx although the shape of the Q(p) values remains the same. At 
various values of k, the statistical analysis of Q(p) reveals a tendency to shrink 
both vertically and horizontally, with decrease in skewness and standard devia-
tion. The goodness of fit tween Nocp and k was established to be the new criteria 
for rational subgroup-size range observed for Rules #4 and #5, which involve a 
count of 8 and 6 consecutive points above the selected control limit, respectively. 
Using this criterion, the rational subgroup range was established to be 4 ≤ k ≤ 20 
for the two x-bar control chart rules. The exponential variation of Nocp with k for 
different x-bar control chart rules is a new finding established in this study. 
Where exponential functions fit well, the Nocp data has been suggested to be the 
rational choices of subgroup size. In this study, the rational subgroup size was 
observed to be 4 ≤ k ≤ 20 for Rule#4 and #5. 
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