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Abstract 
Background: Low-dose computed tomography (CT) screening reduces lung 
cancer mortality but costs are prohibitive for most healthcare budgets due to 
high false positive rates. An adjunctive test able to distinguish malignant from 
benign pulmonary nodules would be hugely beneficial. EarlyCDT-Lung mea- 
sures serum autoantibodies to tumor-associated antigens and has found clini-
cal acceptance to aid early detection of lung cancer for high risk patients. 
However performance was optimized for screening. The construction of a re-
ceiver-operating characteristic (ROC) curve would enable optimization of 
performance for alternative settings, including nodule malignancy. Methods: 
A Monte-Carlo search method was used to construct a ROC curve using a 
case-control cohort, enabling high and low specificity versions of Ear-
lyCDT-Lung to be determined. These were used for a theoretical evaluation of 
a nodule cohort, and positive predictive value (PPV) was calculated under the 
assumption of independence of risk source. Patients or their nodules are typi-
cally classified into three risk groups: low (0% - 10%), intermediate (10% - 
65%) and high (>65%) risk of malignancy. The predicted shift in risk group by 
application of the high and low specificity versions, along with the current 
commercial EarlyCDT-Lung, was then estimated. Results: The ROC curve, 
with an area under the curve of 0.743, was constructed. The high specificity 
(98%), low specificity (49%) and current commercial (91% specificity) ver-
sions of EarlyCDT-Lung re-classified 27%, 23% and 26% of intermediate no-
dules, respectively, to either a higher (10%, 8% and 10%) or lower (17%, 15% 
and 16%) risk group. Conclusion: A ROC curve was constructed to allow per-
formance prediction of EarlyCDT-Lung at different specificities in the inde-
terminate nodule setting. This enabled risk re-classification of intermediate 
risk nodules, and could therefore facilitate alternative more appropriate in-
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tervention. We have shown how a multivariate biomarker test can add to the 
interpretation of pulmonary nodules and therefore aid patient management. 
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1. Introduction 

In the United States, there is a well-documented high rate of lung cancer and 
pulmonary nodules [1] [2]. In recent years, widespread use of computed tomo-
graphy (CT) resulting from the finding by the National Lung Screening Trial 
that annual CT screening reduces lung cancer mortality by 20% compared to 
chest x-ray [3] has resulted in over 50% of CT-screened patients having at least 
one non-calcified nodule and over 96% of nodules over 4mm being benign (false 
positive) [3] [4]. There is also a high false positive rate and morbidity associated 
with biopsy or resection of these benign nodules [2] [3] [5]. Consequently, a CT 
screening program will need substantial resources to perform follow up for every 
pulmonary nodule detected. Potential malignancy has been found to increase 
with nodule size, which also tends to result in later-stage detection of lung can-
cer as the nodule grows [4]. Therefore, there is a clear need for a complimentary 
test to aid evaluation of nodule malignancy potential, ideally a biomarker, to re-
duce false positive rates of CT screening for lung cancer and enable earlier de-
tection. 

Tumor-associated (TA) antigens are currently the most commonly measured 
biomarkers during management of cancer patients [6]. However they are often 
of little utility in early disease due to serum levels having a strong correlation 
with tumor burden. This generally results in levels only being elevated in later 
stage disease, limiting their clinical use to monitoring of treatment and disease 
recurrence. TA autoantibodies have been identified for a range of solid tumors 
and are currently emerging as strong candidates for clinically useful cancer bio-
markers [7]. The mechanisms of their secretion have not been clearly deter-
mined but their production is thought to occur due to increased immunogenici-
ty of the corresponding antigen. They are produced early in tumorigenesis, be-
ing measurable up to 5 years before the development of clinical symptoms [8]. 
As antibodies they represent biologically amplified markers, increasing the de-
tectable signal for the corresponding antigen. They also persist in the circulation 
with half-lives of typically up to 30 days [9] and are more stable outside the body 
than other biomarkers. 

EarlyCDT-Lung (Oncimmune Holdings plc.) detects the presence of TA au-
toantibodies to a panel of seven lung cancer associated antigens using an indirect 
enzyme-linked immunosorbent assay (ELISA) method [10] [11]. A sample is 
positive when at least one of the panel of TA autoantibodies is elevated above a 
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pre-determined cut-off [12]. The test has been both technically [10] and clini-
cally validated in seven independent validation cohorts [11] [13] including high- 
risk control groups matched for age, sex, and smoking history. The performance 
characteristics have been further validated in the commercial setting by an audit 
of clinical outcomes for the first 1599 patients who had a valid EarlyCDT-Lung 
and unknown nodule status [14]. The test consistently identifies lung cancer 
with 92% accuracy (compared with 50% for CT) with a sensitivity (true positive 
rate) of ~40% for all stages and types (small cell and non-small cell) of lung tu-
mors and a specificity (true negative rate) of ~93% for all cohorts, showing the 
robustness and reproducibility of this assay system [12]. 

The test was launched commercially in 2012 for the early detection of lung 
cancer in a high-risk screening scenario [14] [15]. However it has also had some 
clinical acceptance for follow up of patients who had a positive result on CT. It 
has recently been demonstrated that a positive test result reflects a significant 
increased risk for malignancy in lung nodules 4 to 20 mm in diameter [16]. This 
confirms that EarlyCDT-Lung may have clinical value in assessment of malig-
nancy risk for indeterminate pulmonary nodules. 

The optimum diagnostic performance of EarlyCDT-Lung in the screening set-
ting may not be appropriate for the indeterminate nodule setting. Performance 
is defined by the particular set of cut-offs chosen. So by varying the cut-offs, spe-
cificity and sensitivity, and hence false-positive and false-negative rates, can be 
adjusted. So the purpose of this present paper is largely technical, and describes 
the creation and use of a receiver-operating characteristic (ROC) curve for Ear-
lyCDT-Lung. Because of the need for a relatively large number of cancers to 
achieve this, a case-control cohort (designated the optimization cohort) pre-
viously used for validation of EarlyCDT-Lung was used [11] [12]. It was com-
pared with a dataset (designated the nodule cohort) derived from our commer-
cial operations (designated the audit cohort). 

2. Materials and Methods 
2.1. Patient Cohorts 
2.1.1 Optimization Cohort  
This cohort has been described elsewhere and was previously used to set the 
current commercial cut-offs for EarlyCDT-Lung [12]. Briefly, serum samples 
from 235 patients with lung cancer obtained at or just after histopathological 
confirmation of the tumor, were assayed. The lung cancers consisted of 178 non- 
small cell lung cancer (75.7 %), 53 small cell lung cancers (22.6 %), and 4 others 
(1 sarcoma, 2 × bronchogenic carcinomas, and 1 undefined lung cancer). This 
cohort was representative of a high risk population with a mean and median age 
of 65 years and a high proportion of smokers (49%) and ex-smokers (29%). The 
controls consisted of 266 healthy volunteers, 235 of which were individually 
matched to the lung cancer patients for age, gender, and smoking status. This 
group of controls had no evidence of any current or prior cancer including 
non-melanoma skin cancer. 
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2.1.2. Audit Patient Cohort 
This cohort has been described previously [14]. Briefly, EarlyCDT-Lung was 
launched commercially in November 2010 with physicians in routine practice 
across USA ordering the test on behalf of their patients. This cohort was assem-
bled for an audit of clinical practice, reporting the physicians’ use of the test and 
not a prospective study in a population defined by inclusion and exclusion fac-
tors. The cohort is comprised of the first 861 patients tested with the seven-an- 
tigen test, with some exclusion factors applied. The cohort was followed for clin-
ical outcomes and a total of 35 cases of lung cancer were recorded. 

2.1.3. Nodule Patient Cohort 
This cohort was derived from the audit cohort by assessing CT imaging reports, 
from within 6 months of the autoantibody test, for the presence of pulmonary 
nodules. The size of the largest non-calcified nodule was recorded and exclusion 
criteria (invalid autoantibody tests, lost-to-follow-up or with previous history of 
cancer) were applied. The “Exclusive cohort” [14], tested with the seven antigen 
panel and with cancer being confirmed by pathology reports (n = 166) [16], was 
used. Nodules were categorized by size (<4 mm, 4 mm - 20 mm, >20 mm). 

2.2. Comparison of Cohorts 

The diagnostic performance of the optimization, audit and nodule (by nodule 
size: <4 mm, 4 mm - 20 mm and >20 mm) cohorts was compared statistically 
using Fisher’s Exact test applied to frequency tables for specificity and sensitivity 
separately. The test is slightly biased in the direction of non-significance due to 
the nodule cohort being a subset of the audit set. 

2.3. Construction of ROC Curve 

When a diagnostic test is based on a single test result or score, the construction 
of a ROC curve is straightforward. The cut-off can be varied from minimum to 
maximum possible values and the specificity and sensitivity are read off at a se-
ries of points. EarlyCDT-Lung, however, is effectively a multivariate test, so con-
struction of a ROC curve is not as straightforward. Since the cut-offs for Ear-
lyCDT-Lung are based on quantitative results, one method is to re-optimize the 
test at every point along a range of selected specificity levels. For the optimiza-
tion cohort individualized antigen cut-offs were re-optimized to maximize sensi-
tivity at each and every specificity level hence allowing the construction of a 
complete ROC curve. The optimization was a paper exercise not involving re- 
assay of the samples. 

A Monte-Carlo direct search was used to explore the large number of possible 
combinations of cut-off level as follows. For a set of n controls: 

1) Choose the specificity. 
2) Calculate the number of control subjects that can be specified as positive 

i.e. s = n (1-specificity). 
3) Select an autoantibody at random. 
4) Select at random a number (r) between 1 and s. Identify the r samples with 
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the highest OD for the autoantibody selected in step 3 positive, ignoring those 
already declared positive. 

5) Set each cut-off value above the highest non-positive control sample OD 
value for that autoantibody. 

6) Repeat steps 3 and 4 a 1000 times until the total number of control samples 
specified as positive is equal to the number set in step 2. 

7) Calculate sensitivity. 
8) Repeat the process for the next value of specificity. 
9) Plot the ROC curve, i.e. sensitivity vs. (1-specificity) for all values of speci-

ficity. 
To complete the description of diagnostic performance, the PPV, Negative 

Predictive Value (NPV) and Relative Risk (RR) were calculated based on 20% 
lung cancer risk for patients with nodules (of any size) [16]. Positive diagnostic 
ratio (DLRp) and Negative diagnostic ratio (DLRn) were also calculated. 

2.4. Shift of Risk Category 

Patients or their nodules are typically classified into three groups: low (0% - 
10%), intermediate (10% - 65%) and high (>65%) risk of malignancy; although 
these ranges vary with source. The use of a biomarker test such as EarlyCDT- 
Lung will change a patient’s pre-test risk to a post-test risk, possibly resulting in 
a shift of risk group. Low and high risk groups will have clear monitoring and 
intervention paths. Nodules with intermediate risk are not so easy to manage 
clinically. So we calculated what percentage of intermediate nodules are re-class- 
ified using the different versions of the EarlyCDT-Lung test expressed in the 
ROC curve. 

We took the current commercial test (with 91% specificity and 40% sensitivity 
for the optimization cohort), and determined a high specificity version of the 
test (with 98% specificity and 28% sensitivity for the optimization cohort) and a 
low specificity version of the test (with 49% specificity and 80% sensitivity for 
the optimization cohort). First we used the Swensen/Mayo nodule-based risk 
model [17] [18] to derive the distribution of pre-test risk for all the nodule cases 
in the nodule cohort. Next we calculated the frequency of nodules in each 5% 
risk category. For each category, with midpoint risk r, we then calculated the 
predicted post-test risk i.e. the PPV given a positive marker test and (100-NPV) 
given a negative test using the usual formulae where sens is sensitivity and spec 
is specificity, and here with all factors expressed as proportions rather than per-
centages: 

( )( )
r sensPPV

(r sens) 1 r 1 spec
×

=
× + − −

                   (1) 

( )
( ) ( )

1 r spec
NPV

r 1 sens 1 r spec
−

=
− + −

                    (2) 

Next we calculated the predicted numbers (no.) of nodules positive and nega-
tive for the test: 
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No. true positive frequency of category predicted no. cancers sensitivity= × ×   (3) 

( )No. false negative frequency of category predicted no. cancers 1 sensitivity= × × −

(4) 
No. true negative frequency of category predicted no. controls specificity= × ×  (5) 

( )No. false positive frequency of category predicted no. controls 1 specificity= × × −

(6) 

Hence the number shifted up to a higher risk group is the total of true posi-
tives and true negatives where the post-test risk is in a higher risk group and the 
number shifted down to a lower risk group is the total of true negatives and false 
negatives where the post-test risk is in a lower risk group. 

2.5. Diagnostic Likelihood Ratio (DLRp) 

In a clinical setting pre-test and post-test risk estimation is generally more useful 
than specificity and sensitivity themselves. With a pre-test risk, r, and making 
the assumption of statistical independence mentioned above, the process equates 
to applying the positive diagnostic likelihood ratio (DLRp) [19] for test-positive 
subjects where: 

( ) ( ) ( ) ( ) ( )( )logit logit ln where logit defined as ln 1PPV r DLRp x x x = + −   (7) 

There is an equivalent formula for test-negative subjects which converts the 
pre-test risk to post-test (NPV) using the negative ratio (DLRn) involving NPV: 

( ) ( ) ( )logit NPV logit r ln DLRn= − −                   (8) 

Expressing the conversion from pre- to post-test risk in this way emphasizes 
that these estimates of post-test risk rely on the assumption of strict statistical 
independence of nodule size and marker test under a “both-positive rule”. 

3. Results 
3.1. Comparison of Test Performance for the Patient Cohorts 

The diagnostic metrics (specificity, sensitivity and positive diagnostic likelihood 
ratio) were first tabulated (Table 1). The current commercial EarlyCDT-Lung 
performance for the nodule cohort (specificity of 85.6% and sensitivity of 37.8%) 
was well in-line with that of the optimization cohort (specificity of 90.6% and 
sensitivity of 41.3%) bearing in mind the confidence intervals. Performance was 
also maintained when assessing the nodule cohort by nodule size where for no-
dules of 4 - 20 mm specificity was 83.9% with sensitivity of 40.0% whereas for 
nodules >20 mm specificity of 91.7% and sensitivity of 36.4% were determined. 
There were no nodules <4 mm. The performance comparison for the cohorts did 
not approach significance for either specificity (p = 0.28) or sensitivity (p = 
0.93), despite the varying cancer rate (2.3% to 47.8%).   

The performance was also compared statistically for the cohorts by calculating 
DLRp (see Table 1) in order to assess whether these cohorts were similar enough 
to be used for this study. For the audit and nodule cohorts, due to the relatively 
low number of cancers the DLRp is not estimated with high accuracy, and  
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Table 1. Summary of test performance for the patient cohorts. 

Cohort 

Performance parameters 

Number of 
cancer  

samples 

Number of 
control 
samples 

Specificity 
% 

Sensitivity 
% 

Cancer rate  
% 

DLRp 

Optimisation 235 266 
90.6 

(87.1 - 94.1) 
41.3 

(35.0 - 47.6) 
- 

4.4 
(2.9 - 6.6) 

Audit  19 817 
90.5 

(88.4 - 92.5) 
47.4 

(24.9 - 69.8) 
2.3 

5.0 
(3.0 - 8.3) 

Nodulec  
(4 - 20 mm) 

15 87 
83.9 

(76.2 - 91.6) 
40.0 

(15.2-64.8) 
14.7 

2.5 
(1.1 - 5.4) 

Nodulec 
(>20 mm) 

22 24 
91.7 

(80.6 - 100) 
36.4 

(16.3 - 56.5) 
47.8 

4.4 
(1.0 - 18.4) 

Nodule   37 111 
85.6 

(79.1 - 92.1) 
37.8  

(22.2 - 53.5) 
22.3 

2.6 
(1.4 - 4.8) 

a95% confidence intervals for specificity, sensitivity and DLRp are shown in brackets, bComparison of first 
four cohorts using Fisher’s Exact test: specificity p = 0.28, sensitivity p = 0.93, cNodule subset, size range in 
brackets. 

 
showed quite wide confidence intervals, but the estimates were consistent across 
cohorts.   

The consistency of diagnostic performance of EarlyCDT-Lung for the nodule 
and audit cohorts was determined to be similar to that for the optimization co-
hort. Therefore the ROC curve constructed using the optimization cohort can be 
used to predict the performance of higher and lower specificity versions of Ear-
lyCDT-Lung and the subsequent nodule risk category shift analysis for the no-
dule and audit cohorts. 

3.2. ROC Curve 

The performance statistics were tabulated for a range of 100 specificity values 
from 0% to 100% allowing the creation of the whole ROC curve (Figure 1). A 
selection of the higher specificity points, 49% to 98%, with sensitivity ranging 
from 80% to 28%, were also tabulated with relevant performance metrics (Table 
2). 

The estimated area under the curve (AUC) for the ROC curve was 0.743 (p < 
0.001 vs. randomness). The PPV, relative risk, DLRp and DLRn all increase as 
specificity increases. Thus between 90% and 98% specificity the diagnostic per-
formance increases considerably, PPV from 54% to 78%, relative risk from 3.7 to 
5.0 and DLRp from 4.2 to 14.0. The increase for DLRn was more modest, from 
0.64 to 0.73. NPV increases steadily as specificity decreases, reaching 90.7% at a 
specificity of 49%. These changes result from the combination of high specificity 
and relatively low cancer rate which results in the number of false-positives fall-
ing rapidly towards the top of the table. High PPV is of use to a clinician faced 
with a positive biomarker test. Higher DLRp values mean that a positive bio-
marker test has greater relative effect on a pre-test risk. 
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Figure 1. Maximum true positive rate ROC curve constructed from multivariate data 
from the optimisation cohort. AUC = 0.743 (p < 0.001 vs. randomness). 

 
Table 2. Tabulated performance characteristics of EarlyCDT-Lung for a range of speci- 
ficitiesa. 

Specificity 
% 

Sensitivity 
% 

PPV 
% 

NPV 
% 

RR DLRp DLRn 

98 28 78 84.5 5.0 14.0 0.73 

97 30 71 84.7 4.7 10.0 0.72 

96 33 67 85.1 4.5 8.3 0.70 

95 34 63 85.2 4.3 6.8 0.69 

94 35 59 85.3 4.0 5.8 0.69 

93 37 57 85.5 3.9 5.3 0.68 

92 38 54 85.6 3.8 4.8 0.67 

91 40 53 85.8 3.7 4.4 0.66 

90 42 51 86.1 3.7 4.2 0.64 

87 45 46 86.4 3.4 3.5 0.63 

82 50 41 86.8 3.1 2.8 0.61 

79 55 40 87.5 3.2 2.6 0.57 

74 60 37 88.1 3.1 2.3 0.54 

68 65 34 88.6 3.0 2.0 0.51 

62 70 32 89.2 2.9 1.8 0.48 

55 75 29 89.8 2.9 1.7 0.45 

49 80 28 90.7 3.0 1.6 0.41 

aBased on 20% cancer prevalence expected in a nodule cohort. 

3.3. Shift of Risk Category 

The risk groups and performance statistics for three test versions of interest, 
high specificity (98% specificity and 28% sensitivity for the optimization cohort), 



G. F. Healey et al. 
 

514 

current commercial test (91%/40%) and low specificity (49%/80%) were tabu-
lated (Table 3) with performance metrics. Any nodule category which had 
switched risk group was highlighted. For the high specificity version a total of 
26.9% of intermediate nodules were re-classified either to a higher (10.1%) or 
lower (16.8%) risk group, whilst for the current commercial test a total of 25.9% 
were re-classified, either to a higher (10.4%) or lower (15.5%) group, and for the 
low specificity version of the test a total of 22.5% were re-classified, either to a 
higher (7.6%) or lower (14.9%) group. 

4. Discussion  

The current commercial EarlyCDT-Lung performance in a pre-imaging screen-
ing scenario is quoted at 90.6% specificity and 41.3% sensitivity, with the speci-  
 

Table 3. EarlyCDT-Lung performance characteristics of the nodule cohort by risk category with predicted category shift. 

 
High specificity version 

(98%/28%)c 
Current commercial test 

(91%/40%)c 
Low specificity version 

(80%/49%)c 

Riska % Frequencyb % PPVd % 100-NPVe % RRf PPVd % 100-NPVe % RRf PPVd % 100-NPVe % RRf 

LOW           

0 - 5 15 26.4 1.8 14.3 10.2 1.7 6.2 3.9 1.0 3.7 

5 - 10 24 53.2 5.6 9.5 26.5 5.1 5.2 11.3 3.2 3.5 

MID           

10 - 15 8 66.7 9.5 7.0 38.8 8.6 4.5 18.3 5.5 3.3 

15 - 20 7 74.8 13.5 5.5 48.5 12.3 4.0 25.0 8.0 3.1 

20 - 25 6 80.3 17.6 4.6 56.3 16.1 3.5 31.3 10.6 3.0 

25 - 30 4 84.2 21.8 3.9 62.8 20.0 3.1 37.3 13.4 2.8 

30 - 35 3 87.1 26.1 3.3 68.2 24.1 2.8 43.0 16.4 2.6 

35 - 40 3 89.4 30.6 2.9 72.7 28.3 2.6 48.5 19.7 2.5 

40 - 45 3 91.2 35.2 2.6 76.7 32.8 2.3 53.7 23.2 2.3 

45 - 50 3 92.7 39.9 2.3 80.1 37.4 2.1 58.7 27.0 2.2 

50 - 55 3 93.9 44.8 2.1 83.1 42.2 2.0 63.4 31.1 2.0 

55 - 60 3 95.0 49.8 1.9 85.7 47.1 1.8 68.0 35.6 1.9 

60 - 65 2 95.9 55.0 1.7 88.1 52.4 1.7 72.3 40.5 1.8 

HIGH           

65 - 70 2 96.7 60.4 1.6 90.2 57.8 1.6 76.5 45.9 1.7 

70 - 75 2 97.4 66.0 1.5 92.1 63.5 1.5 80.5 51.8 1.6 

75 - 80 2 98.0 71.7 1.4 93.9 69.4 1.4 84.4 58.4 1.4 

80 - 85 2 98.5 77.6 1.3 95.4 75.7 1.3 88.1 65.8 1.3 

85 - 90 2 99.0 83.7 1.2 96.9 82.2 1.2 91.7 74.1 1.2 

90 - 95 2 99.4 90.1 1.1 98.2 89.0 1.1 95.1 83.4 1.1 

95 - 100 4 99.8 96.6 1.0 99.4 96.3 1.0 98.4 94.1 1.0 

% Up  10.1   10.4   7.6   

% Down   16.8   15.5   14.9  

apre-test risk based on Swensen/Mayo nodule-based risk model with the lower figure being inclusive i.e. 0.00 and the higher figure being exclusive i.e. 4.99, 
bfrequency of nodule risk in the nodule cohort, c(specificity/sensitivity) calculated for the optimization cohort, dpost-test risk given a positive test result, 
epost-test risk given a negative test result, frelative risk = PPV/(100-NPV). Colors indicate risk groups of low (green), mid (orange) and high (red). The first 
column shows pre-test risk grouping, color coding for the rest of the table indicates shifted post-test risk group only for the groups that shifted. 
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ficity unadjusted for occult cancer in the optimization cohort [11] [12]. The 
performance was determined by fixing the specificity and then optimizing sensi-
tivity. The specificity of around 90% was chosen to restrict the false-positive rate 
to 10%. This rate is quite high but is justified on the basis that follow-up of posi-
tive patients will be by imaging and not anything more invasive. In the situation 
where a patient has already undergone imaging and a nodule has been observed, 
then the next stage may be more invasive possibly involving biopsy or surgery. 
Here the false-positive level needs to be kept low to avoid unnecessary invasive 
procedures. So the specificity would be set at a higher level, perhaps 95% or 
higher. 

The diagnostic performance of EarlyCDT-Lung in the nodule cohort was 
found similar to that for the optimization cohort and hence the ROC curve con-
structed (using the optimization cohort) can be used to predict the performance 
of higher and lower specificity versions of EarlyCDT-Lung in the nodule con-
text. Note that the ROC curve presented here is effectively a non-parametric 
curve as opposed to a model-based curve derived, for example, using logistic re-
gression. This allows multivariate optimization without the assumptions re-
quired for a model-based method. 

Clinicians consider many other factors besides nodule size itself when inter-
preting indeterminate pulmonary nodules. In some specialist centers nodule- 
based risk models, incorporating both demographic and nodule characteristics, 
are used [18]. We combined the EarlyCDT-Lung biomarker test with a nodule- 
based risk estimator (Swensen/Mayo in this case) to predict the percentage of 
intermediate risk pulmonary nodules which switched risk group after a positive 
or negative biomarker test. For the high specificity, commercial and low speci-
ficity tests the nodule reclassification was as high as 27%, 26% and 23% respec-
tively, with the majority of reclassification being in the direction of lower risk for 
all tests.  

It is recommended for nodules of moderate size that clinicians estimate the 
pre-test probability of malignancy either qualitatively by using their clinical 
judgment or quantitatively by using a validated model. The Fleischner Society 
guidelines describe the recommended follow-up for patients identified with a 
pulmonary nodule by CT [20] [21] and balance early cancer detection and treat- 
ment against over-use of invasive diagnostic procedures. A biomarker that sug-
gested an increased or decreased risk of malignancy whilst the nodule was still 
relatively small (e.g. 4 mm - 20 mm) would be clinically useful, as it could lead to 
earlier detection and decreased mortality. For larger nodules there is less need 
for a biomarker test since the clinical pathway is better established. 

5. Conclusion 

We have shown that it is possible to derive a receiver-operator characteristic 
(ROC) curve for a multivariate assay by re-optimizing the cut-offs for every 
fixed specificity value. This allows the deployment of different versions of the 
EarlyCDT-Lung biomarker test in different clinical situations depending on the 
relative costs of false-positives and false-negatives. In particular, higher and 
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lower specificity versions would seem to be more appropriate for a nodule inter-
pretation scenario where subsequent intervention may well be invasive. 
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