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Abstract 
Combining with cosmological constraints we find a most probable value of 
17.6 meV for beta decay anti-neutrinos. In passing we note that our expecta-
tion for the quadric Higgs self-coupling deviates from standard model expec-
tations by a factor equal to the ud quark mixing matrix element. This matrix 
element also turns up by its square root in the expected triple self-coupling. 
We present neutrino mass eigenstates related to the neutron beta decay. In 
our first scenario we get 15.2 meV for the lowest mass eigenstate, in the 
second we get 0.917 eV. The latter is to be covered by the KATRIN experiment, 
while the former comes close to the CRES sensitivity in the Project 8 reach. 
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1. Introduction 

Observation of neutrino oscillations between the three lepton flavour species, 

e , ,µ τν ν ν  [1] [2], means that at least two different mass eigenstates have non- 
vanishing mass. In particular one may mention the disappearance of solar 
neutrinos eν  [3] as a first indication for transformation of flavour states 
together with µ τν ν→  oscillation [4] [5] and eµν ν→  oscillation [6] [7] as 
spectacular confirmations. From the oscillations one infers mass differences 
between mass eigenstates. Now the task remains to determine the masses 
themselves. An experimental set-up, KATRIN [8] [9] [10] using tritium decay is 
undertaken in Karlsruhe, Germany with results for electron-based neutrinos 
expected in 20181. 

 

 

1See the KATRIN homepage, http://www.kit.edu/kit/english/20624.php, where it reads: “Erste inte-
ressante Ergebnisse zur Neutrinomasse werden bereits für Mitte 2018 erwartet”. And further: “Die 
endgültige geplante Sensitivität erreicht KATRIN aber erst nach fünf Kalenderjahren Messzeit”, kes. 
17.10.2016. 
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We suggest the electron-based anti-neutrino mass scale to originate in a 
slightly misaligned Higgs vacuum [11] [12] [13] [14] [15] occurring in the 
neutron beta decay  

e .n p e ν→ + +                          (1) 

In our first scenario, we find  
2

eZ
2 2

e W W

,
π8sin cos

m
m
ν αα

θ θ
 =  
 

                   (2) 

which yields ( )2 15.152 4 meVm cν = . In our second scenario we find  

eZ
2 2

e e W W

1 ,
πE π8sin cos

m
m
ν αα

θ θ
=                   (3) 

with eE 2.2655=  , which yields ( )2 0.9165 4 eVm cν = . The latter is below the 
limit 2 eV from tritium decay [2] but above the limit 2

tot 0.2 eV cm ≤  on the 
sum-total of stable neutrino masses from cosmological phenomenology [16]. 

The first scenario value is comparable in order of magnitude with [2]  

( )2
21 8.68 0.10 meVm∆ = ±                     (4) 

( ) ( )2
32 49.4 0.6 meV normal hierarchym∆ = ±  

( ) ( )2
32 50.1 0.6 meV inverted hierarchym∆ = ±  

determined from the observed neutrino oscillations. The first scenario value at 
15 meV positions itself intriguingly with respect to the Cyclotron Radiation 
Emission Spectroscopy technique of Project 8 [17]. Project 8 states a lower 
bound ( )

e
9 0.1 meVmν ≥  from neutrino oscillations, cf. the first equation in (4) 

and they expect their own sensitivity level to go down to 
e

40 meVmν ≤ . 
Neutrino oscillations are traditionally described by mixing between left 

handed flavour fields via a non-diagonal matrix U relating to left handed mass 
eigenstates [18]  

( ) ( )L L , , ,l lj jx U x l eν ν µ τ= =                    (5) 

From the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix U one gets 
“effective” flavour masses. For the anti-neutrino state created in the beta decay, 
one has [19]  

22 2
jej

j
m U mβ ν= ∑                        (6) 

where the sum runs over the mass eigenstates jν . It is not known whether  
1,2,j =   ends at 3j = . 

We write only ν  for the mass eigenstate in (2) and (3). In the discussion 
section we make a choice on hierarchy. For a three neutrino model in normal 
hierarchy we get from (6) our most probable mass value for the neutrino flavour 
generated in beta decay  

2 217.6 0.2 meV c .mβ = ±                   (7) 
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2. Leptonic Sector 

Both our scenarios set out from an intrinsic description of the electron, related 
to a similar description of the nucleon. 

The value eE  in the second scenario (3) is found from an electronic ground 
state on the intrinsic configuration space, the Lie group ( )2U  with a hamil- 
tonian structure  

( ) ( )2
e

1 1 Tr
2 2

u uχ Λ − ∆ + Ψ = Ψ  
                 (8) 

where eΛ  is the energy scale and ( )2iu e Uχ= ∈  is the configuration variable. 
We assume the lowest neutrino mass eigenstate to be the ground state of a 
similar hamiltonian structure  

( ) ( )21 1 Tr .
2 2

u uν χ Λ − ∆ + Ψ = Ψ  
                (9) 

The two Equations (8) and (9) share dimensionless eigenvalues for the ground 
state, i.e.  

e e eE E ,ν ν ν≡ Λ = Λ ≡                    (10) 

where 2
e em c=  and 2m cν ν= . 

If we can solve (8) (and we can), all that is needed to determine mν  is to fix 

νΛ . Below we shall present two different scenarios for the determination of 

νΛ . 

3. The Leptonic Ground State 

The particle data group notes that existing upper limits on neutrino masses 
imply very low masses of the order of one millionth of charged lepton lm  and 
quark masses qm   

6
, 10j l qm m −≤                          (11) 

and they conclude [20]: “It is natural to suppose that the remarkable smallness 
of neutrino masses is related to the existence of a new fundamental mass scale in 
particle physics and thus to new physics beyond that predicted by the Standard 
Model”. 

In the present work we suggest two mass scale scenarios. The new physics 
component offered in that connection is the idea of intrinsic configuration 
variables. 

The configuration variables in (8) and (9) contain four dynamical variables 
from the four dimensions laid out by the four generators of ( )2U . Two of the 
generators are toroidal, i.e. diagonal 2 2×  matrices in a two-dimensional 
representation. We thus write  

( )1 1 2 2 1 1 2 2
1 2 1 2, , , , ,i T Tu e ϑ ϑ α σ α σ ϑ ϑ α α+ + += ∈              (12) 

where 1 2,σ σ  are the two off-diagonal Pauli matrices  

1 2

0 1 0
,

1 0 0
i

i
σ σ

−   
= =   
   

                  (13) 



O. L. Trinhammer 
 

929 

and the two diagonal generators  

j
j

T i
ϑ
∂

= −
∂

                          (14) 

are represented by  

1 2

1 0 0 0
, .

0 0 0 1
T T   
= =   
   

                    (15) 

The more common parametrization from using  

3

1 0 1 0
,

0 1 0 1
σ

   
= =   −   

1                     (16) 

as diagonal ( )2U  generators is equivalent to the choice in (15) but does not 
match the polar decomposition of the Laplacian ∆  which we need in order to 
solve (8) and (9). 

The wavefunction in (8) can be factorized in a torodial and an off-torus part  

( ) ( ) ( )1 2 1 2, , .u τ ϑ ϑ α αΨ = ϒ                    (17) 

in analogy with solving the Hydrogen atom in polar coordinates. The off- 
toroidal degrees of freedom can be integrated out to get for the measure-scaled 
toroidal wavefunction R Jτ=   

( ) ( ) ( )
2 2

1 2 1 2 1 22 2
1 2

1 , , E ,
2

W R Rϑ ϑ ϑ ϑ ϑ ϑ
ϑ ϑ

  ∂ ∂
− + + =  

∂ ∂   
       (18) 

with the van de Monde determinant [21]  

( )1 2
12sin .
2

J ϑ ϑ= −                      (19) 

and with potential  

( ) ( )

( )
( ) ( )

2

1 2 1 2
2

1 2

11 1, .
14 16 sin
2

s s s
W w wϑ ϑ ϑ ϑ

ϑ ϑ

+ −
= − + + +

−
        (20) 

Here the trace potential from (8) spells out as, see Figure 1  

( ) ( )2
1 2

1 Tr
2

w wχ ϑ ϑ= +                     (21) 

with periodic parametric potentials [22]  

( ) ( ) ( ) ( )21 2π , 2 1 π, 2 1 π , .
2

w n n n nϑ ϑ ϑ= − ⋅ ∈ − + ∈   
        (22) 

and the nominator ( ) 21s s s+ −  in the centrifugal term is obtained by using  
2 2 2 2
1 2 3σ σ σ+ = −σ  for states of spin s. The constant curvature [23] term 1/4 and 

the centrifugal term originate in the Laplacian [24]  
2 22

2 1 2
2 2

1

1 1 ,
2j j j

J
J J

σ σ
ϑ ϑ=

+∂ ∂
∆ = −

∂ ∂∑                (23) 

where jϑ  are dynamical toroidal eigenangles from the two eigenvalues jie ϑ  of 
the configuration variable u. 

The eigenvalue of the ground state in (8), respectively (18), can be lowered by 
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allowing period doublings in the measure-scaled torodial wavefunction, see 
Figure 2. This is possible because of the periodic nature of the potential which 
opens for Bloch degrees of freedom like in solid state physics [25]. In order that 
the wavefunction remains single-valued on ( )2U  the Bloch phase factors are  

restricted to ie κθ  with 10,
2

κ = ± . For 4π-periodic states we expand R in (18)  

on Slater determinants [26]  
1 2

1 2

ip ip

pq qp iq iq

e ef f
e e

ϑ ϑ

ϑ ϑ− =                    (24) 

with half odd-integer ,p q . 
 

 
Figure 1. Parametric periodic potential, “egg-tray”. The periodicity in coordinate space 
represents the compact nature of the intrinsic configuration space of our description. The 
colour shading is only to enhance the 3D perception. 
 

 
Figure 2. Reduced zone scheme [25] for the one-dimensional Equation (25). The period 
doubling in the diminished state for level two is paired with an augmented period 

doubled state for level one. The Bloch phase factors ie κθ  with 
1
2

κ = ±  are chosen to 

compensate for those in the neutron to proton transition in Figure 4. The variation with 
κ  for the lowest levels is exaggerated for clarity. 
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The electron rest energy 2
em c  is identified with the eigenvalue of the ground 

state e e eE= Λ  in (8). In other words, eE  is the dimensionless eigenvalue. 
We have determined eE 2.2655=   by a Rayleigh-Ritz method [27] with 3368 
base functions of the type (24) which is at the limit of our computer programme. 
All the integrals needed in the Rayleigh-Ritz procedure can be solved analytically 
(see appendix C in [28] for a similar problem) which means that eE  can be 
determined with high accuracy. The potential (21) is shown in Figure 1 with a 
characteristic periodic structure originating in mapping to a real parameter 
space from the compact configuration space. An alternative basis to (24) can be 
constructed as Slater determinants from solutions to the one-dimensional 
equation  

( ) ( ) ( )
2

2

1 .
2 i i iw eϑ ϕ ϑ ϕ ϑ

ϑ
 ∂
− + = ∂ 

              (25) 

The two basis sets are both complete and yield the same spectrum as they 
should, but the integrals for the Rayleigh-Ritz solution based on parametric 
eigenfunctions from (25) can only be solved numerically. The reduced zone 
scheme for the lowest levels of (25) is shown in Figure 2. See e.g. [28] for more 
details on the parametric solutions. 

4. Baryonic Sector 

We have described the baryon spectrum by configurations on the Lie group 
( )3U  with dynamics determined by a Kogut-Susskind-inspired structure [29] 

[30]  

( ) ( )21 1 Tr .
2 2

c u u
a

χ − ∆ + Ψ = Ψ  



                (26) 

Here the configuration variable ( )3iu e Uχ= ∈  and 214 MeVc aΛ = ≈  is 
the energy scale corresponding to a length scale a which we took to be related to 
the classical electron radius ( )2 2

e 0 e4πr e m c=   [31] [32] by the projective 
relation [30], see Figure 3  

eπ .a r=                           (27) 

This scale reproduces accurately the electron to neutron mass ratio  

( )ne

n n

1 1
π E 1838.9
mm

m
α

= ≈


                  (28) 

with the dimensionless eigenvalue n nE = 4.38Λ ≈  determined by solving 
(26). It also reproduces the N  and ∆  baryon spectrum with no missing 
resonance problem [33]. Flavour degrees of freedom are hidden in the Laplacian 
[24]  

( )

2 23
2

2 2
21 , ,

1 1 ,
18sin
2

k k

j i j k i jj j
i j

S M
J

J θ θ θ θ= < ≠

+∂ ∂
∆ = −

∂ ∂ −
∑ ∑



         (29) 

where [21]  
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Figure 3. A projection from two of the three toroidal degrees of freedom of the intrinsic 
( )3U  configuration space used in our description of the neutron transformation in the 

neutron decay. We use the classical electron radius er  [31] [32] to set the length scale a 
for the projection of the intrinsic nucleonic dynamics as defined in (35). The thin line, 
small upper oval indicates a cut in the 2-dimensional surface representing the ( )2U  

torus which is outlined by the thicker line ovals in the center of the drawing. An 
orthogonal cut runs along an inner circle of the torodial surface. The lowest thin oval 
indicates the definition of toroidal angles θ  used as intrinsic coordinates on the Lie 
group configuration space. After the cut, the toroidal surface maps onto a square in space. 
The curved sheet shows an intermediate step in the mapping. The inverse map, from 
laboratory space to intrinsic space is undertaken by the exponential mapping. See also 
Equation (12) for the leptonic case. The compact nature of the configuration space is 
manifested by periodicity in the projection space—think of a floor with square tiles. If the 
tiles are sheets made of rubber, you can fold the rubber sheet into a cylinder and sew the 
ends of the cylinder together to have a torus. 
 

( )
3 12sin

2 i j
i j

J θ θ
<

= −∏                      (30) 

and the off-diagonal generators fulfil  

[ ] [ ], , .k l k l klm mM M S S i S= = −                   (31) 

Colour degrees of freedom are generated by the three 
jθ

∂
∂

s, intrinsic spin  

degrees of freedom are generated by the three kS s with commutators like 
body-fixed coordinate angular momenta in nuclear physics [34]. The flavour 
degrees of freedom are contained in the three kM s which connect the algebra. 
These mixing generators have a spectrum for 2 2 2 2

1 2 3M M M= + +M  determined 
by the hypercharge quantum number y and the isospin three component 
quantum number 3i  [30]  

( )
2

2 2 2 3
3

4 3 11 3 4 ,
3 2 3

M n s s y i = + − + − − − 
 

            (32) 

0,1,2,n =   

together with the spin quantum number s and the integer quantum number n 
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which can be thought of as an intrinsic toroidal excitation number analogous to 
the radial quantum number in the case of the hydrogen atom in a polar decom- 
position like (29)  

2 2
, 2 2

1 1
e polar r

r rr r
∂ ∂

∆ = −
∂ ∂

L                  (33) 

where L  is the angular momentum operator. Compare (33) and (29) for the 
term “polar decomposition”. 

5. Electroweak Scale—The Higgs Connection 

The transition from neutron to proton in (26) follows from a topological change 
in the wavefunction Ψ . For the neutronic state the wavefunction has a 
2π-periodicity when parametrized in the toroidal eigenangles θ  belonging to 
the three eigenvalues jie θ  of u whereas for the protonic state, the wavefunction 
has a slightly broken symmetry with respect to the potential, namely a 
4π-periodicity expressed by the appearance of fractional Bloch phase factors 

2jie θ  in the wavefunction. Such factors are allowed since the square of the 
wavefunction remains single-valued when extracted in parameter space, see also 
Bohr and Mottelson [35] for a note on doubling the angular domain for odd 
integer D-functions. The Bloch phase factors can lower the ground state eigen- 
value—provided a mechanism exists to open the relevant degrees of freedom. 
That mechanism is the Higgs mechanism and we connected the strong and 
electroweak sectors by the Ansatz [33]  

θ αϕΛ =                          (34) 

with strong energy scale Λ , torodial colour angle field θ , electroweak fine 
structure coupling α  and Higgs field ϕ . 

We can support this Ansatz by old time quantum mechanics arguments based 
on the minimum quantum of action, h. The length scale a introduced above can 
be used for a space projection  

j jx aθ=                           (35) 

and a time projection [36]  

0 .ict aθ=                           (36) 

A full shift of 2π in the angular time variable 0iθ−  corresponds to an exterior 
period τ  determined by  

2πc aτ =                           (37) 

leading to a minimum action  
.hτΛ =                           (38) 

As Planck’s constant h is the minimum unit of action in the time-domain, we 
can use hc as a minimum unit of “action” in the space-domain, i.e. we have a 
minimum space action  

.c hcτΛ =                          (39) 

For the exchange with the Higgs field we need a measure for the level of 
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interaction energy. We take it to be 0αϕ , i.e. the electroweak fine structure 
coupling α  times the vacuum expectation value 0ϕ  of the Higgs field. Thus 
the minimum space action to determine 0ϕ  is  

0 .a hcαϕ =                         (40) 

Equating (39) and (40) we get  

0 .a cαϕ τ= Λ                        (41) 

With the time period 2πa cτ =  from (37) and c
a

Λ =
  as in (26) we then  

have  

0
2π 2π .

2π
hc

a
ϕ

α α
= = Λ                     (42) 

This settles the electroweak scale v by  

02ν ϕ=                         (43) 

corresponding to the standard model value [2] [33]  

SM ud246.22 GeV 246.85 GeV.Vν ν= ≈ =             (44) 

See also arguments leading up to (58). 
The 2π-shift behind (42) is what is needed for the topological change leading 

to the period doubling in the nucleonic wavefunction, see Figure 4. In this 
figure, the Higgs potential  

( )
2

2 2 2 2 4
H 0

1 1
2 2 4

V λφ δ ϕ µ φ φ= − +                 (45) 

mimics the parametrized intrinsic potential. The 2π-shift in θ  is accompanied  
 

 
Figure 4. Higgs mechanism in neutron decay. The higgs potential (solid, blue) is structured 
by the intrinsic potential, either Wilson-inspired [37] (dotted, green) or Manton-inspired 
[38] (dashed, red), which are periodic in parameter space. Both parametric potentials yield 
the same value for the electroweak energy scale v, the Higgs mass Hm  and the quadric 

Higgs self-coupling 2 4λ  but only the Manton-inspired potential yields a satisfactory 
description of the baryon spectrum. The Manton-inspired potential expresses the euclidean 
measure folded onto the intrinsic configuration space [39]. Figure adapted from [40]. 
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by a shift in the Higgs field from 0φ =  before the neutron decay to 0φ ϕ=  
after the neutron decay, see Figure 4. The parameters in the Higgs potential are  

2 2 2 2 2
0 0

1 1 1 1, , .
2 8 2 2
δ ϕ µ ϕ λ= = =                 (46) 

We revived the pionic Goldstone modes [41] by a slight vacuum misalignment 
in the Higgs mechanism with a misalignment angle ζ  determined by (see 
Figure 5)  

esin .ζ
Λ

=
Λ

                        (47) 

With the mass parameter 2 2
0

1
2

µ ϕ=  in the Higgs potential (45) we obtained  

the Higgs and pion masses determined by  

( )2
H 0

1 cos 125.086 0.017 GeV
2

m c ϕ ζ= = ±            (48) 

and  

2
0

1 sin 137.5 MeV
2

m cπ ϕ ζ= =                 (49) 

by using the trailing  
 

 
Figure 5. The Higgs potential (cyan) as a wine bottle bottom on a periodically rippled egg 
tray (orange). The egg-tray structure is the periodic parametric potential scaled from the 
baryonic sector and the ripples are scaled from the leptonic sector. Both are active in the 
neutron decay where the neutron changes to a charged proton and a charge- 
compensating electron. The size of the ripples is grossly exaggerated for clarity (drawing 
for sin 1 3ζ =  as opposed the physical case sin 1 1000ζ ≈  in (47)). The size of the 
Higgs field vacuum expectation value 0ϕ  in (42) is shown by the red line. A component 
of the misalignment vector is shown as a rose arrow. The misalignment means that the 
toroidal coordinates ( )1 2,ϑ ϑ  in the leptonic sector are slightly rotated with respect to 

the toroidal coordinates ( )1 2,θ θ  in the baryonic sector, i.e. the ripples run slightly askew 

to the major structure. The misalignment even means a slight rotation into the third 
toroidal coordinate 3θ  of the baryonic sector. This is not shown in the figure. Figure 
and revised caption from [41]. 
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02π αϕΛ =                         (50) 

from (42). The value for the pion mass can be improved by iterative determina- 
tion of the fine structure constant towards the pion mass scale. 

We regret not seeing the connection (50) prior to the observation of the Higgs 
particle since it leads to a rather accurate value for the Higgs mass, see (48). Note 
however, that (46) also gives a prediction for the quadric Higgs self coupling  

2 1 0.125
4! 4 8
hhhhg λ

= = =                      (51) 

which still remains to be tested by experiment together with our prediction [41]  

( )
2

cos 31.272 4 GeV
3! 4
hhhg

vλ ζ= =                 (52) 

for the triple Higgs self-coupling. We here used the terminology of [42] for the 
mass and self-coupling terms of the Higgs particle field h  

2 4
2 3 4

2 3! 4!
h hhh hhhhm c g g

L h h h∆ = − − −                 (53) 

expanded about a minimum of the Higgs potential [42]  
2 4

2 4
SM2

hm c
V φ λ φ= − +                      (54) 

The standard model values are [42]  
2 4 2 4

,SM ,SM 2
SM SM

3 3
= and =h h

hhh hhhh
m c m c

g g
ν ν

              (55) 

where SMν  is the electroweak energy scale. The latter value is traditionally 
estimated from the Fermi constant in muon decay as [43]  

( )3

SM 246.21965 0.00006 GeV.
2 F

c
G µ

ν = = ±


            (56) 

On the other hand, from the vacuum expectation value 0 SM 2ϕ ν=  at the 
minimum of the Higgs potential (54) one has  

2
2
SM

SM

.
2

hm
ν

λ
=                          (57) 

Since our v is based on the d to u quark transformation in the n to p decay, 

F F udG G Vβ µ=  [44] is used, i.e. a quark mixing matrix element udV  is introduced  

SM .udVν ν=                         (58) 

In total we get for Higgs self-couplings relative to the standard model  

( )
2

2 4 2
,SM SM SM

4 1 8=
2

hhhh
hhhh ud

hhhh h

g
V

g m c
λκ
λ υ

≡ = =             (59) 

2 4
,SM SM

13! cos
8= cos

3
hhh

hhh ud ud
hhh h

g
V V

g m c

ν ζ
κ ζ

ν

⋅
≡ = ≈  

which yields ( )0.97425 22hhhhκ =  [2] and ( )0.98704 11hhhκ = . Finally note that 
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we actually announced the value 125.1 GeV for the Higgs mass [45] almost a 
year prior to the result 125.09 GeV from the combined ATLAS and CMS data 
[46]. Figure 6 shows the chronology. 

6. Neutrino Mass Scenario II 

The scale eΛ  in the leptonic sector is defined by the electron rest energy in (8) 
as 2

e e e e eE = Em cΛ ≡   with the dimensionless eigenvalue eE  of the 
period-doubled ground state of (18). Conservation of spin in the neutron decay 
requires the creation of the anti-electron neutrino. Thereby also the idea of 
lepton number conservation is introduced. As the (anti)-neutrino has no charge, 
we assume its creation to be mediated by neutral weak currents, i.e. the coupling  

α  is replaced by 
2

2 21
2

g g ′+ 
 

 [51] [52], where the couplings ,g g ′  are  

determined by 2 2 2
Wsine g θ=  and 2 2 2

Wcose g θ′ =  from the electroweak 
mixing angle Wθ . To determine the neutrino energy scale νΛ  we may suggest 
the misalignment factor sinζ  to enter a trailing  

2
2 2

e
12π sin
2

g gν ζ ′Λ = + Λ 
 

                 (60) 

analogous to (50) with the Higgs vacuum expectation value 0ϕ  substituted by a 
residual electronic scale e sinζΛ . From (60) we get for the neutrino mass  

2
2 2

2
e

1
2E E sin .

2π

g g
m cν ν ν ν ζ

 ′+ 
 = Λ = Λ             (61) 

Using (47) for the misalignment sinζ , we have  
2

2 2
2

2 e

1
2E .

2π

g g
m cν ν

 ′+  Λ =
Λ

                 (62) 

The strong scale ( )e πc a c rΛ = = 
 contains the classical electron radius 

( )2 2
e 0 e4πr e m c=   and can therefore be expressed as  

 

 
Figure 6. The chronology of experimental higgs mass values from the ATLAS 
collaboration (A) [47] [49] and the CMS collaboration (C) [48] [50] compared 
with our calculation (U) [45]. The last result shown is from the combined data by 
ATLAS and CMS at LHC run 1 (A + C) [46]. 
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2
e

π .m c
α

Λ =                         (63) 

Inserting (63) in (62), using the identity  
2 2 2

2 2
2 2

0W W

2 2
W W

1 1 1
2 4 4πsin cos

1
4 sin cos

e eg g
cθ θ

α
θ θ

  ′+ = +  
   

=


         (64) 

and exploiting (10), we get  

eZ
2 2

e e W W

1 .
πE π8sin cos

m
m
ν αα

θ θ
=                  (65) 

This yields ( )2 0.9165 4 eVm cν = . The uncertainty on eE  is estimated as 
( )eE 2.2655 5= , i.e. of the order of the uncertainty on 1

Zα
−  corresponding to 

0.022%. 

7. Neutrino Mass Scenario I 

Instead of the second order misalignment in the Higgs mechanism leading to the 
result 2 0.917 eVm cν =  in (65) from (60), we look in the present section for a 
first order misalignment but with a different length scale set by the proton and 
electron charges in space, i.e. the Bohr radius. 

Consider the classical electromagnetic field ( )A xµ  for a proton at rest [53]  

( ) ( )( ),0,0,0A x xµ φ=                      (66) 

where ( )
0

1
4π

exφ =
x

 yields the Coulomb potential energy  

( )
2

e
0

1
4π
e cV x α= =

x x



                    (67) 

for an electric charge e  at a distance x  from the proton. Here we separated 
out the fine structure constant ( )2

e 04πe cα =   in order to enter into a quan- 
tum regime. We reinterpret α  as a dimensionless coupling constant in quan- 
tum field theory. To set up the trailing in this scenario we make the substitu- 
tions  

( )B Bandc V xϕ αϕ→ →
x
                  (68) 

to get Bϕ  of dimension energy at a characteristic length scale of the Bohr 
radius a∞   

( )2 2 2
0 e e e4π .a e m rα−

∞= = =x                 (69) 

We use the Bohr radius [2] as a characteristic scale by imagining the creation 
of the anti-electron-neutrino to happen at a length scale given by the electro- 
magnetic interaction in space between the electric charges of the proton and 
electron created during the neutron decay. This assumption expresses the fact 
that all three particles ,p e  and eν  are created simultaneously in the neutron 
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decay. Thus, the proton and the electron charges (together with their masses)— 
by defining the scale of the hydrogen atom corresponding to a∞ —sets the scene 
for the projection of the intrinsic dynamics of the anti-electron-neutrino. If we 
accept (69) as a reasonable length scale, we get a trailing  

2
2 212π sin

2
cg g

aν ζ
∞

 ′Λ = + 
 

                 (70) 

where the charged current coupling α  is substituted by the neutral charge  

coupling ( )
2

2 2 212
2

f g g ′= + 
 

 [51] [52] and  

B sin sinc
a

ϕ ζ ζ
∞

=


                     (71) 

is the residual energy scale for neutrino mass creation. Thus the minimum space 
action exchange behind (70) is  

2
2 2

B B
1 sin
2

hc a g g c νϕ ζ τ∞
 ′= + = Λ 
 

             (72) 

Like in (37), the characteristic time Bτ  is determined by  

B 2πc aτ ∞=                          (73) 

which inserted in (72) gives (70). From (70) and (10) follows  
2

eZ
2 2

e e W W π8sin cos
m
m
ν ν αα

θ θ
Λ  = =  Λ  

               (74) 

as stated in (2). With ( )1 127.940 14Zα
− = , ( )2

Wsin 0.23126 5θ = ,  
( )1

e 137.035999074 44α− =  and ( )2
e 0.510998928 11 MeVm c =  [2] this yields  

( )2 15.152 4 meVm cν =  as already mentioned. To observe a neutrino mass this 
small would require an improvement by one and a half order of magnitude from 
the sensitivity of the KATRIN experiment [8] but lies close to the sensitivity of 
the CRES technique [17] prospected in Project 8. 

8. Discussion 

The second scenario with ( )2 0.9165 4 eVm cν =  combined with the observed 
mass square differences (4) from neutrino oscillations means nearly degenerate 
neutrino mass eigenstates of the order of 1 eV. This is in conflict with cosmo- 
logical constraints [16] as mentioned in the introduction. For the first scenario 
we follow the interpretation implied by the Project 8 collaboration, that the 
lowest mass eigenstate should be of the order of 2

21m∆ . We infer in normal 
hierarchy from (2) and (4)  

2
1 15.152 0.004 meVm c = ±                    (75) 

2 2 2 2
2 21 1 2 17.5 0.1 meVm m m m c= ∆ + → = ±  
2 2 2 2
3 32 2 3 52.4 0.6 meV.m m m m c= ∆ + → = ±  

This leads to a sum-total  
2 2 2

1 2 3 85.0 0.6 meV.m c m c m cΣ = + + = ±              (76) 
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Using (6) with 1 12 13cos coseU θ θ= , 2 12 13sin coseU θ θ=  and 

3 13sin i
eU e δθ −=  where 2

12sin 0.308 0.017θ = ± , 2 0.0020
13 0.0019sin 0.0234θ +

−=  and 
0.38
0.27π 1.39δ +
−=  [54] we infer  

2 17.6 0.2 meVm cβ ≈ ±                    (77) 

in accordance with what can be read off from figure 10 in ref. [55] correlating 
beta neutrino mass with cosmological constraints for the sum-total mass in (76) 
and in agreement with the disfavouring of inverted hierarchy in recent results 
from the NOνA neutrino oscillation experiment [56]. Note that the complex 
phase δ  cancels out in the norm square of the matrix elements ejU  in (6) as 
does possible Majorana phases. 

9. Conclusion 

We have investigated two possible scale scenarios for neutrino mass generation. 
Both scales relate to an intrinsic conception of the origin of the Higgs potential. 
This conception leads to slight discrepancies from standard model expectations 
in the quadric and triple Higgs self-couplings by having the d to u quark mixing 
matrix element as a factor in the electroweak energy scale v derived from 
neutron to proton decay. The foundation we have suggested is that of exchange 
of minimum quanta of action which can be used without knowing the detailed 
mechanisms behind the exchange between various degrees of freedom. We look 
forward to future accelerator experiments to test the Higgs self-couplings and to 
results from KATRIN and Project 8 to determine or constrain neutrino masses 
and possibly clarify the mechanisms behind neutrino mass generation. 
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