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Abstract 
Dynamic measurements of T1 shortening (dynamic contrast enhanced—DCE) 
as well as of *

2T  shortening (dynamic susceptibility contrast—DSC) as two 
separate measurement strategies are widely used to quantitatively describe 
tumor perfusion and vascularity. Dual-echo approaches allow for the simul-
taneous assessment of both effects. The extension to multi-echo sequences 
should inhere the advantage of improved signal-to-noise ratios and more pre-
cise sampling of the *

2T  decay. The aim of our study is to investigate, if an 
extension of the dual-echo approach to the multi-echo approach allows for 
more stable quantitative determination of pharmacokinetic parameters in 
brain tumors. This study applies a multi-echo approach to obtain different es-
timations of a vascular input function and analyzes various combinations of 
vascular input functions and pharmacokinetic models. Perfusion measure-
ments were performed with 52 consecutive patients with different brain tu-
mors using a 10-echo gradient echo sequence. Our findings show that the ex-
tension to multi-echo sequences leads to an 11%-improvement of the Con-
trast-to-Noise ratio. Compared to other combinations, an application of Ex-
tended Tofts model using the *

2T -related venous output function or an out-
put function estimated in the tumor tissue enables the most reliable determi-
nation of perfusion parameters, reducing the reproducibility range by a factor 
of 1.2 to 10 for Ktrans and of 1.2 to 5.5 in the case of rBV calculation. Determi-
nation of Ktrans within repeated measurements within about 3 days results as 
most stable, if AIF from tumor pixels is used as vascular input function, 
meaning that the scatter is reduced by a factor of 1.2 compared to the next 
best VIF and by a factor of 10 compared to the worst of the tested approaches. 
In addition, this study shows that signal decomposition into two components 
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with different Larmor frequencies might provide additional information con-
cerning tissue composition of brain tumors. 
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1. Introduction 

Dynamic contrast enhanced (DCE) magnetic resonance imaging and dynamic 
susceptibility contrast (DSC) magnetic resonance imaging are widely used tech-
niques for the assessment of tumor perfusion and tumor vascularity. In DCE- 
MRI, the measured T1 shortening is mainly caused by contrast medium (CM) 
distributed in the interstitial space, but partly also by intravascular CM [1] [2]. 

*
2T  shortening measured in DSC-MRI is predominantly determined by CM in 

the capillary space. However, interstitial CM accumulation has some effect on 
*

2T  shortening as well. 
Since the diffusion of CM into the interstitial space is much slower compared 

to the passage of a CM bolus through the capillaries, T1-related dynamic mea-
surements can be performed with a temporal resolution of about 45 seconds to 3 
minutes [3] [4]. For this reason, spin echo or gradient echo volume sequences with 
short echo times (TE) can be used to minimize the influence of *

2T  changes. In 
contrast, *

2T -related measurements usually are performed with EPI sequences to 
cover a sufficient volume with a temporal resolution of 1 to 2 seconds [5]. Here, 
long repetition times (TR) assure minimal influence of T1 shortening. 

Using a dual-echo approach, temporal distribution of CM in both interstitial 
and capillary compartments can be assessed during only one CM administration 
[6]. The idea of simultaneous measurement and separation of T1 and *

2T -related 
signal changes was firstly proposed in the 1990s [6] [7] [8]. The basic principle 
of this approach is the use of a gradient dual-echo sequence in order to simulta-
neously obtain images with equal T1 weighting but different *

2T  weighting. The 
structure of the gradient echo signal intensity formula allows the calculation of 
the time course of ( )*

2R t  and at least of a hypothetical signal S0 for TE = 0 (be-
ing independent of *

2R ).  
However, to achieve a sufficient temporal resolution, this dual-echo approach 

is restricted to a few slices only. This major drawback might be solved by the ap-
plication of more sophisticated sequence designs (e.g., parallel imaging, keyhole, 
segmented EPI etc.). 

Another disadvantage of the dual-echo approach is the compromise between 
temporal resolution and signal to noise ratio (SNR) of the calculated images, 
which does not always produce sufficient accuracy of results. 

In addition, the determination of a vascular input function (VIF) still is a crit-
ical step in MR perfusion measurements. In vessels apart from the tumor, the 
time course of the CM concentration is known to be different from that in the 
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intratumoral vasculature in terms of temporal position (i.e., delay) as well as 
peak broadening (i.e., dispersion). This might result in systematic errors of esti-
mated perfusion parameters [9].  

These problems can be diminished when applying the concept of simultaneous 
dynamic registration of T1 and *

2T -related signals. We hypothesize that: 
• The multi-echo approach results in a significant better contrast-to-noise ratio 

(CNR) of the calculated ( )*
2R t  and S0(t) compared to the dual-echo ap-

proach. This is because the acquisition of more than two echoes within a 
given TR samples the *

2T  decay curve with more than two data points. 
• Simultaneous dynamic T1 and *

2T -based measurement enables estimation of 
a *

2T  based VIF from the tumor pixels in addition to the DCE perfusion 
properties. Thus, location related VIF bias might be avoided.  

Moreover, there exists still some hidden potential of the multi-echo approach. 
Especially when we express the TE dependent signal intensity as a complex sum of 
two components with different Larmor frequencies (e.g., water and fat), we can 
model the signal dependence on TE more correctly with the multi-echo approach.  

Therefore, the aim of this paper is to reveal the potential benefits of the mul-
ti-echo approach in dynamic imaging of brain tumors. 

More precisely, we aim to assess alterations of CNR using higher numbers of 
echoes within a given TR. For this purpose, different correction methods for the 
calculation of S0(t) and ( )*

2R t  are compared. 
Additionally, different estimations of a vascular input function are compared 

quantitatively and various combinations of vascular input functions and phar-
macokinetic models are tested.  

Finally, assuming tumor tissue to consist of two components with different 
Larmor frequencies, we aim to obtain more information about the tumor structure 
by differentiating those substances. We think that at least rough spectroscopic dif-
ferences are identifiable with multi-echo measurements. Therefore, we analyze the 
potential clinical value of the signal decomposition into two parts with different 
Larmor frequencies in a population of brain tumor patients. 

2. Material and Methods 
2.1. Patients 

52 consecutive patients with different, newly diagnosed brain tumors were in-
cluded in the study (25 glioblastoma, 12 meningioma, 12 metastasis, 3 lympho-
ma patients). For 21 patients, MRI examination was performed twice with a time 
interval of 1 to 4 days. 18 patients received preoperatively dexamethasone (10 
glioblastoma, 2 meningeoma, 5 metastasis, 1 lymphoma patients). We excluded 
five patients who received an MRI examination twice and eight patients with 
single-time MRI examinations from further analysis due to non-plausible vascu-
lar input functions or movement artifacts. 

2.2. MRI Measurements 

MRI was performed on a 3 Tesla MR scanner (Siemens Magnetom Verio). In 
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addition to the standard tumor protocol, a dynamic 10 echo FLASH sequence 
(TR = 44 ms, α = 70˚, TE = 1.2, 2.2, 3.1, 4.1, 5.5, 6.4, 8.0, 10.0, 12.0 and 13.0 ms, 
matrix 256 × 208 (acquisition matrix: 128 × 73), GRAPPA acceleration factor = 3) 
with a temporal resolution of 2 seconds was run during the application of CM 
(0.1 ml/kg body weight of Gadovist, (Bayer Schering) at a flow of 4 ml/s followed 
by 10 ml of saline). The sequence includes 3 slices of each 5 mm thickness. One 
slice was positioned in the neck region for measurement of an Arterial Input 
Function (AIF), two others were placed in the tumor region, identified with na-
tive T1 and T2 weighted images. After 10 of 60 dynamic scans, the CM was ad-
ministered. 

2.3. Multi-Echo Correction Methods (Calculation of R*
2  and S0) 

For calculation of ( )*
2R t  and S0, different procedures were applied (see appen-

dix). The calculations were based on the first and last echo only (i.e., conven-
tional dual-echo approach), as linear fit on the logarithmic signal intensities, as 
monoexponential fit on the signal intensities themselves or as fit of two complex 
intensities of components with different Larmor frequencies (i.e., a multi-echo 
Dixon approach). Calculations based on first and second echo only were also 
performed as negative control. 

The quality of the multi-echo corrections (i.e., the determination of S0 and 
*
2R  maps) was evaluated by calculation of CNR ratios for the time curves of *

2R  
and S0 for the AIF, VOF and tumor ROIs. For this purpose, the difference of the 
curve maximum and the baseline value was divided by the standard deviation 
along the baseline. For plausibility control, modified Euclidean distances be-
tween glioblastoma, meningioma, metastasis and lymphoma were calculated 
based on Ktrans and rBV (both calculated with the *

2R  VOF, see Table 1). For 
reasons of non-symmetric parameter distributions and noisy data, medians in-
stead of mean values were used. Taking into account the asymmetric parameter 
distribution, the normalization was done with the mean difference of the 75 and 25 
percentiles of the two classes being compared. As an overall quality parameter, we 
used the sum of these distances normalized to the size of the smaller class. 

 
Table 1. Sum of contrast-to-noise ratios over the ROIs in tumors, arteries and venes and 
sum of Euclidean distances between the median values of glioblastoma, meningioma, 
metastases and lymphoma. 

 Sum of CNRs Euklidean distance 

1st + 2nd echo 163.92 26.6 

1st + 10th echo 319.21 24.9 

10 echoes loglinear 357.04 33.4 

10 echoes exponential 342.41 33.3 

4 echoes exponential 330.16 27.4 

water fat 10 echoes exponential 347.42 30.4 

water fat 4 echoes exponential 344.51 27.4 
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2.4. Vascular Input Function 

For estimation of the vascular input function, we implemented several time 
courses: S0(t) and ( )*

2R t  of a ROI in a neck artery (AIF) and in a venous sinus 
(mostly superior sagittal sinus—VOF) and ( )*

2R t  in the tumor ROI. Manual 
drawing of vascular ROIs was supported by pixel exclusion based on lower and 
upper thresholds for maximum change and time of maximum in S0(t) and 

( )*
2R t  respectively. During the definition of the ROIs, both S0(t) and ( )*

2R t  
were checked for plausibility control. In case of non-plausible curve shapes, oth-
er vessels or other vessel segments were selected. Baseline subtraction was per-
formed after manual selection of a baseline range, mostly including the 4th to 22th 
scan. For the use of a S0(t) curve in ( )*

2R t  based models, the curve was norma-
lized to the maximum of ( )*

2R t  and vice versa (in the case of *
2R  from the 

tumor ROI the corresponding maxima from the healthy tissue ROI were used in 
order to minimize the influence of the non-linearity of the dependence of S0 
from the CM concentration). As a preprocessing step, the vascular input func-
tions were shifted in time (except for ( )*

2R t  in the tumor ROI). For that reason, 
positions of the maxima of the curves were determined by Gaussian fits to the 
data points exceeding 60.6% of the maximum (for normal distributions, this is 
equivalent to the position range of mean ± standard deviation). The VIFs were 
shifted so that their maximum position became equal to that of the *

2R  curve 
measured in the tumor ROI. When applying ( )*

2R t  in the tumor ROI as vascu-
lar input function, rBV and Ktrans estimations are biased by the “real rBV” mul-
tiplicatively. Therefore, appropriate rescaling has to be done, preferable with 
rBV determined on the base of another vascular input function in order to avoid 
errors. 

The degree of nonlinearity in S0(CM concentration) was qualitatively eva- 
luated by comparing the curve shape of S0(t) with that of ( )*

2R t . 

2.5. Comparison of Pharmacokinetic Model—Vascular Input  
Function Combinations 

The following models were combined with the above-described vascular input 
functions: 

For S0,Tumor(t) we applied the Patlak and Extended Tofts models [10] [11] [12] 
[13] to calculate Ktrans, rBV and ve. The curve fits were performed with precalcu-
lated rBV as well as with rBV as free parameter. 

For *
2TumorR  we used the Indicator Dilution Theory (IDT) to determine rBV, 

regional blood flow (rBV) and mean transit time (MTT) [14] [15] [16]. For that, 
Gaussian and Gama Variate peaks were fitted to ( )*

2R t  curves. 
Additionally, we evaluated simple empiric parameters like maximum relative 

and maximum absolute enhancement in S0,Tumor(t) and maximum temporal in-
crease of *

2TumorR . Each parameter was examined before as well as after normali-
zation to the corresponding value from a ROI in contralateral healthy tissue.  

Based on the perfusion parametric images, lacunarity parameters were calcu-
lated as published elsewhere [17]. 
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Figure 1. Examples for reproducibility diagrams: patient by patient course of parameters cal-
culated from the first and second investigation (loglinearmultiecho correction). Left: relative 
enhancement of S0 in the tumor, normalized to contralateral tissue. Good reproducibility, mean 
normalized deviation 0.62∆ = . Right: k2 from fit with rBV as free parameter with AIF derived 
from the *

2R  from an artery after appropriate scaling. Bad reproducibility, 1.82∆ = . 
 

To identify model/VIF-combinations allowing the most stable perfusion pa-
rameter estimation, the reliability and reproducibility of the calculated parame-
ters were evaluated visually and quantitatively. For the visual evaluation of each 
parameter, the values of the first and second investigation were drawn on a pa-
tient-by-patient basis (see Figure 1). For the quantitative assessment, a norma-
lized mean difference between the consecutive MRI sessions was calculated to be 
used as reproducibility parameter 

( ) ( )1, 2,
11, 2,

2
median

n

i i
ii i

x x
n x x =

∆ = −
⋅ + ∑

              
 (1) 

(n = number of patients, x1,i or x2,i = parameter x for patient i at first or second 
measurement resp.). This parameter normalizes the mean of difference of meas-
ures between the two time points to the median of the corresponding parameter 
and defines in this way a relative measure of stability of that parameter. For 
plausibility reasons, ∆  was used to generate a list of the 30 best normalized and 
30 best non-normalized parameters, from which the most plausible ones were 
selected on the basis of the diagrams mentioned above. This step was necessary 
due to the bias resulting from a few patients with unusual large deviations be-



V. Hietschold et al. 
 

180 

tween the first and second measurements. 

2.6. Data Analysis 

Statistical analysis was done using Excel with user functions written in VBA 
(Visual Basic for Applications, Microsoft Corporation). The image analysis was 
performed with a program written in IDL (“Interactive Data Language”, Exelis 
Visual Information Solutions Inc.). 

3. Results 
3.1. Comparison of Multi-Echo Correction Methods (Calculations  

of R*
2  and S0) 

The CNR values averaged over all measurements for *
2R  as well as for S0 

curves are summarized in Table 1. The best overall CNR was achieved by the 
log-linear calculation according to Equation (5), followed by the 10 echo fit 
considering water and fat compartments. The CNR sum for the dual-echo 
correction was less precise with about 11% compared to the best value. In the 
normalized sum of Euclidean distances, the different methods appear in the 
same order, except for the calculation based on the first and second echoes 
only (see Table 1). 

Most reliable pharmacokinetic parameters occurred to be Ktrans and rBV. In Table 
2, their reproducibility is shown depending on different models (Tofts, Patlak or fit 
to a Gaussian or Gama Variate peak) and VIF selected for calculation. 

3.2. Vascular Input Function 

In general, the overall signal intensity in the slice aimed for the AIF estimation 
was significantly lower than in the tumor covering slice(s). 

For all kinds of multi-echo correction, the CNR of the VOF was better than 
that of the AIF by a factor of 1.75 to 3.5, where the superior sagittal sinus al-
lowed most plausible curves. For the preferred log-linear correction these factors 
amount to 2.96 for S0 and 2.10 for *

2R  resp. Perfusion evaluations using the 
VOF as vascular input function also result in the best reproducibility parameter 
∆  (see next paragraph).  

In addition, high reproducibility of perfusion parameters was achieved by us-
ing vascular input function from ( )*

2R t  within the tumor ROI. 

3.3. Comparison of Pharmacokinetic Model—Vascular Input  
Function Combinations 

The frequency of occurrence of the different models and vascular input func-
tions in the list of the 30 best model-VIF combinations is summarized in Table 3. 
In this summary, we excluded the lacunarity parameters for reasons of plausibil-
ity (Apparently good lacunarity parameters mostly were based on parameter 
images calculated with bad performing VIFs. Hence, their information content 
probably consists on the tumor shape rather than on the inhomogeneity 
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Table 2. Reproducibility parameter ∆  for Ktrans (left) and rBV (right) from the 30 best 
performing combinations of models and VIFs. Ktrans (left) without normalization, rBV 
(right) after normalization to healthy tissue. Asterix indicates significant differences (p < 
0.05, Student’s t test). 

Ktrans  
model 

rBV in  
function 

VIF  
source 

VIF  
ROI ∆  

rBV  
model 

VIF  
source 

VIF  
ROI ∆  

Tofts fitted *
2R  tumor 0.47 Patlak S0 vene 0.61 

Tofts fix *
2R  tumor 0.51 Gauss area *

2R  vene 0.71 

Tofts fitted *
2R  vene 0.58 Gauss peak *

2R  vene 0.80 

Tofts fix *
2R  vene 0.76 Patlak *

2R  tumor 0.82 

Tofts fitted *
2R  artery 0.81 Tofts *

2R  tumor 0.85 

Tofts fitted S0 vene 1.16 Tofts *
2R  vene 0.93 

Tofts fix *
2R  artery 1.17 Patlak *

2R  artery 0.97 

Patlak fitted S0 vene 1.17 Gauss area *
2R  vene 1.20 

Patlak fix *
2R  tumor 1.47 Tofts S0 vene 1.28 

Tofts fix S0 vene 1.69 Tofts *
2R  artery 1.43 

Tofts fix S0 artery 1.84 GVF peak *
2R  vene 1.43 

Tofts fitted S0 artery 2.21 Patlak *
2R  vene 1.47 

Patlak fix *
2R  artery 2.30 Tofts S0 artery 2.97 

Patlak fitted *
2R  vene 2.60 Patlak S0 artery 3.36 

Patlak fitted *
2R  tumor 2.68 

    
Patlak fitted *

2R  artery 2.87 
    

Patlak fix *
2R  vene 3.93 

    
Patlak fix S0 vene 4.02 

    
Patlak fitted S0 artery 4.41 

    
Patlak fix S0 artery 4.67 

    
 

Table 3. Percentage of models and vascular input functions in the list of 30 best parame-
ters relative to the number of their occurrence in the list of all calculations performed. 
Middle column: plain parameters. Right column: parameters normalized to healthy tissue. 
Fractal parameters are not included. The type “---” refers to model free simple parameters 
(like maximum enhancement e.g.) or parameters which were calculated independent of a 
vascular input function resp.  

Model Non normalized Normalized 
Tofts 7.1% 17.1% 
Patlak 0.0% 13.3% 
IDT 0.0% 0.0% 
Gaussian fit 0.0% 50.0% 
GVF fit 0.0% 0.0% 
--- 25.0% 50.0% 
Vascular input function Non normalized Normalized 
S0 artery 0.0% 20.0% 
S0 vein 0.0% 11.1% 

*
2R  artery 0.0% 0.0% 
*
2R  vein 4.3% 21.7% 
*
2R  tissue 15.0% 30.0% 

--- 14.3% 21.4% 



V. Hietschold et al. 
 

182 

properties). The most reliable calculations are based on the Extended Toftsmo-
del, Gaussian fit and model-free calculations (like maximum enhancement e.g., 
which showed minimum ∆  of all parameters normalized to healthy tissue). 

The results of IDT calculations are rather dissatisfactory. None of the IDT- 
based parameters was found either in the 30 best normalized or the best non- 
normalized parameters. 

3.4. Signal Decomposition 

The lowest mean “fat-to-water” signal ratio was found for malignant glioma and 
the highest mean for meningioma. Besides this, higher “fat-to-water” signal ra-
tios were detected in gliomas after dexamethasone application, compared to 
those without such medication. But due to the small sample size, these differ-
ences were not statistically significant. 

4. Discussion 

Dual-echo perfusion measurements have already been proposed in the 1990s. 
They allow calculation of the time course of ( )*

2R t  and extrapolation of the 
signal intensity to an echo time TE = 0. Thus, T1 and *

2T  related effects can be 
separated into independent functions of time. However, the clinical use of this 
principle is limited by the small number of slices which can be examined with 
sufficient temporal resolution. This disadvantage could be overcome by different 
schemes of k-space undersampling or segmented EPI [e.g. [5] [18] [19] [20] 
[21]]. 

Compared to the dual-echo approach, the multi-echo approach that is pro-
posed in this paper allows improvements concerning signal-to-noise ratio and 
estimation of vascular input functions. Furthermore, it allows at least rough es-
timations of the proportion of components with different Larmor frequencies. 

4.1. Comparison of Multi-Echo Correction Methods (Calculation of  
R*

2  and S0) 

In our study, the loglinear curve fit was found to suit best among all multi-echo 
correction algorithms tested. Remarkable, loglinear correction showed better 
results than the exponential one. From the physical point of view, however, the 
exponential fits correspond to the data more exactly than fits on logarithmized 
signal intensities (by taking the logarithms, the statistical uncertainty of higher 
values is compressed. Thus, linear fitting of logarithms overweighs the low-in- 
tensity data points corresponding to the late echoes). Otherwise, for numerical 
reasons, they are less stable compared to the linear fit on the logarithmized data. 
In other words, if the weighting of data points influences the curve fit to an im-
portant way, then the exponential fits should give better results than the logli-
near ones. But, if numerical robustness is the essential objective of the multi- 
echo correction method, then the loglinear model should work better than the 
exponential ones. Therefore, in our data the stability aspect underwent more in-
fluence than the biased weighting of the data points. 
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We also found the biexponential fat-water models resulting in higher Eucli-
dean distances between tumor entities and CNR—at least compared to the cor-
responding monoexponential models. But we want to stress, that models based 
on loglinear and monoexponential calculations are actually identical, the only 
differences are the different weighting of data points and the different numeric 
stability.  

An extended discussion of the biexponential fat-water model can be found in 
the “signal decomposition” paragraph.  

Testing simple dual-echo corrections, Euclidean distances between tumor ent-
ities based on Ktrans and rBV, appeared to be surprisingly good for the first and 
second echo only – in contrast to the CNR evaluation. This, however, seems to 
be a statistical artifact due to the high data noise and the small sample size. Ob-
tained parameters were not significantly biased compared to the ones from the 
other correction methods, but they were noisier. 

4.2. Vascular Input Function 

A prerequisite for quantitative perfusion measurements is the determination of 
VIF. Several approaches of manual, semi-automatic or automatic VIF determi-
nations for brain perfusion measurements are available. There are for example 
measurements of a special slice caudal to the tumor for deriving of an AIF [22], 
automatic selection of pixels within the brain with highest and/or fastest en-
hancement [23] or with clustering algorithms [24], reference to the venous out-
put function [25] or VIF estimation from averaging over several patients [13] 
[26]. 

In the present study, we drew the ROIs manually in order to control their in-
fluence on the time courses of S0 and *

2R . In this way, we could avoid possible 
underestimation of peak changes due to partial volume and non-plausible curve 
shapes resulting from flow effects. It should be noted here, that the definition of 
an arterial ROI often was challenging. In some cases it was even not possible to 
obtain plausible time courses of S0 and/or *

2R —possibly due to higher influence 
of turbulent flow on signal intensity at time with higher CM concentration. 
Another cause for implausible AIF curves in some cases was the bias of the mag- 
nitude of the signal intensity due to noise, especially for the late echoes leading 
to underestimation of *

2R  during the bolus peak. 
In our data, nonlinearity of S0 (CM concentration) as well as biased curve 

shapes in the venous ROIs were less noticeable than in the arterial ones. This 
subjective impression was confirmed by CNR analysis as well as by rating of 
perfusion parameters with different vascular input functions. According to Yuan 
[25], the advantage of venous time courses can be explained by lower flow veloc-
ity as well as more steady flow in veins compared to arteries. Additionally, in 
their work, VIFs derived from veins occurred to be less dependent on the se-
lected slice than that derived from arteries.  

Earlier studies [27] [28] demonstrated the crucial influence of the temporal 
shift of vascular input function on the estimation of perfusion parameters. Ap-
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plying multi-echo sequences, this problem can be avoided by the measurement 
of ( )*

2R t  in the tumor ROI. The peak position of ( )*
2R t  can then be used for 

optimal time shift of a vascular input function measured elsewhere.  
In addition to the correct position on the time axis, ( )*

2R t  from the tumor 
ROI possesses the correct curve dispersion or peak broadening. This could be 
the reason for the quite good stability of perfusion parameters calculated with 
this VIF. These properties even overcompensates the worse signal-to-noise ratio 
compared to the vessel-based input functions.  

However, due to downscaling by the volume fraction of capillaries in the tu-
mor voxels, ( )*

2R t  from the tumor ROI as vascular input function is neverthe-
less acceptable concerning position and peak width, but is not acceptable con-
cerning the amplitude. Hence, perfusion parameters determined this way have to 
be corrected for this downscaling.1 

4.3. Comparison of Pharmacokinetic Model—Vascular Input  
Function Combinations 

Although models with fewer numbers of free parameters like the Patlak ap-
proach are supposed to be more stable, we found better reproducibility with the 
Tofts model. This is a contradictory finding to previously published data [26] 
[29]. In [30], owing to more fitting parameters, the two-compartment exchange 
model occurred to give less stable results at given acquisition duration compared 
to the Tofts and Extended Tofts models as well. The better reproducibility found 
in our data applying the Extended Tofts model might be explained by the fact, 
that in contrary to the Extended Tofts, in Patlak model one or two boundaries 
on the time axis (depending on the implementation) have to be chosen. The un-
certainty during manual selection of these boundaries might overcompensate the 
a-priori better stability of fits to model functions with fewer degrees of freedom. 
It has to be evaluated, to what degree automatic determination of the upper (lat-
er) boundary based on statistical methods could reduce this uncertainty. 

Calculations based on the Indicator Dilution Theory lead to quite instable re-
sults. This could be caused by the limited influence of smaller, even good vascu-
larized tumors on the Mean Transit Time (MTT) of the CM bolus due to the 
comparatively short pathway of the blood through the tumor. Another reason 
could be the less stable rBV estimation by means of the fit of a Gamma Variate 
Function compared to the well performing Gaussian fit. 

Diagnostics based on pharmacological parameters is one way to achieve com-
parability of results between different sites. Another way to reach this aim is 
standardization of measurement conditions allowing for comparison of simple 
model free parameters. In MR mammography, a qualitative description of the 
time course of contrast enhancement under mildly standardized measurement 
conditions occurred to meet the clinical needs [31]. In our data, among all pa-
rameters normalized to healthy tissue, the best reproducibility was obtained for 

 

 

1The formal parameter “rBV” as well as Ktrans in the Extended Tofts and Patlak models have to be di-
vided by rBV—meaning either extracting the root of the fit parameter “rBV” or applying a rBV de-
termined by another vascular input function (e.g. the venous ( )*

2R t ). 
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the signal increase extrapolated to TE = 0, which is influenced by vessel permea-
bility, perfusion and extravascular extracellular space. 

4.4. Signal Decomposition 

The assumption for brain and tumor tissue to consist of two components with dif-
ferent Larmor frequency appears to improve the quality of curve fits of signal in-
tensities such as a function of TE, compared to monoexponential fits without dif-
ferentiation between fat and water signals. This is clearly seen in the evaluation of 
CNRs, but does not transfer to better accuracy of perfusion parameter based diffe-
rentiation between tumor entities (Table 1). However, we demonstrated decreased 
lower-frequency-compartment (with a chemical shift in the range of fatty tissue) 
in gliomas after pretreating with dexamethasone compared to the untreated group 
(Table 4, Figure 2). Thus, the multi-echo perfusion approach has the potential to 
provide additional physiological information beyond the description of blood 
supply. The background of these findings has to be analyzed comparing such 
measurements with in-vivo MR spectroscopy. 

4.5. Limitations 

Some limitations of this study are to be mentioned: 
First of all, our data was not compared to any reference method. To our 

knowledge, no real “gold standard” for the perfusion measures exists. Hence, for 
the evaluation of the reliability of our data, we introduced the reproducibility 
parameter defined in Equation (1). 

Second, evaluations were performed with in-house software. Although carefully 
tested during the development process, there remains a higher risk of incorrect 
calculations or numeric instabilities compared to commercial and/or widespread 
software solutions. No reference calculations with standard software were per-
formed. 

Finally, in the literature, DCE MR studies of brain tumors usually are per-
formed for about 5 minutes at a temporal resolution of 5.3 s [32] resulting in 
about 55 time points. In our study, we needed a temporal resolution of 2 seconds 
or higher for the DSC evaluations. At the same time, this denser sampling of 60 
time points within two minutes should at least partly compensate the lack of 
very late data points needed for determination of Ktrans and ve or k2 resp. 

5. Summary 

The extension of the well-known dual-echo perfusion measurement to multi- 
echo sequence leads to the advantage of improved signal-to-noise ratios. The 
most reliable determinations of perfusion parameters (especially Ktrans and rBV) 
were achieved with Extended Tofts model applying the *

2R  related venous out-
put function or output function estimated in the tumor tissue. 

Temporal distribution of contrast concentration within the tumor vessel bed 
from multi-echo data seems to be advantageous for the estimation of a vascular 
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Table 4. Mean values of fat to water signal ratios for glioma without vs. with pretreat-
ment with dexamethasone. 

 
Without pretreatment Dexamethasone 

Fat to water signal ratio 0.016 0.018 

Fat to water signal ratio normalized to normal tissue 2.00 2.57 

 

 
Figure 2. Box plot for fat-water ratios estimated with Equation (8). 

 
input function compared to potentially dispersed and time-shifted functions de-
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rived from arterial or venous signals. 
As potential added value, multi-echo FLASH MRI allowing signal decomposi-

tion into two components with different Larmor frequencies might provide ad-
ditional information concerning tissue composition of brain tumors. The clinical 
value of these findings and particularly the exact biochemical composition of the 
so-called “fat” component are fruitful areas for of future research. 
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Appendix: Calculation of ( )R t*
2  and S0(t) 

According to Wang et al. [33], for gradient echo sequences the signal intensity is 
given as 

( )

( )

*
12

* *
1 12 2

exp sin 1 exp

1 exp exp cos exp exp

E R

R R R R

T T
TT
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T T T T
T TT T

α
ρ

α

    − −
⋅ ⋅ −         = ⋅

       − − − −
− ⋅ − ⋅ −               

   (2) 

For T2
*  TR it simplifies to the commonly used form 

( )
( )

1
*

2

1

1 exp
sin exp

1 cos exp

R

E

R

T
TTS

T T
T

ρ α
α

 −
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 −  − ⋅  
 

           (3) 

In principle, this simplification condition is not fulfilled for all data points in 
our experiments. However, in the relevant ranges of T1 and *

2T , the influence of 
*

2RT T  is small compared to the nonlinear dependence of S on T1. In addition, 
using Equation (2) requires the knowledge of native T1 values. To our experience, 
the determination of T1 introduces uncertainties, which could even prevail the 
possible advantage of the elimination of this nonlinearity. In addition, the sepa-
ration of the influences of T1 and *

2T  into distinct factors in Equation (3) is of 
great numerical advantage. Hence, the multi-echo data were converted to *

2R  
and S0 maps based on Equation (3) (S0 is the hypothetical signal intensity for TE 
= 0, i.e., the signal part which depends on proton density and T1 only) either by 
logarithmized ratios of two signal intensities 

( ) ( )*
2 0 , ,0ln i E i ER S S T T= −

                   
(4) 

( )*
0 1 ,1 2exp ES S T R= ⋅ ⋅

                      
(5) 

with i = [1, 2] or i = [1, 9] (smallest or largest difference in echo times), by linear 
fit of 10 logarithmic signal intensities 

( ) ( )*
2 , 1ln i E iS R T f T= ⋅ +                      (6) 

with 0, ,9i =   or by a monoexponential fit  

( ) ( )*
, 2 1expi E iS T R f T= − ⋅ ⋅

                    
(7) 

with four or all ten echoes (i = [0, 1, 4, 9] or i = [0, ⋅⋅⋅, 9]).  
In addition, according to Dixon [34] [35] [36] a signal decomposition to two 

components with different Larmor frequency (here called “water” and “fat” sig-
nals (W(T1) and F(T1) resp.) based on the phase differences for these compo-
nents for every echo time was performed 

( ) ( )( ) ( )( )2 2*
, 2exp cos sini E i i iS T R W F Fα α= − ⋅ ⋅ + ∆ + ∆       (8) 

(i = [0, 1, 4, 9] or i = [0, ⋅⋅⋅, 9]) with 

, 2πi E iT fα∆ = ⋅ ⋅∆                        (9) 
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(∆f – frequency difference for the water vs. fat spins which is given by the water 
Larmorfrequency times the fat-water chemical shift). From Equation (8) (which 
is the adaption of the formula given in [35] to real numbers eliminating the in-
fluence of additional phase shifts with only slight noise penalty [37]), a fat to 
water signal ratio F/W can be derived. 

In the selection of the four echoes for Equations ((7) and (8)) a more or less 
equal signal difference between consecutive echoes for characteristic *

2T  values 
was intended. 

In the dependence of the signal intensity on TE, noise was neglected even for 
long TE and high CM concentration. In previous evaluations we could show, that 
noise was small compared to the signal, even at peak *

2R  for the longest TE for 
all regions of interest except for some cases with very small ROI for the AIF and 
poor signal intensity in the AIF slice. But even in these cases, the noise-related 
signal at long TE was small compared to nonstochastic deviations of S(TE) from a 
monoexponential form. 
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