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Abstract 
In this paper, a modified SIS (susceptible-infected-susceptible) model with 
infective medium and feedback mechanism on scale-free networks is pre-
sented. The model is suited to describe some epidemic spreading which are 
not only transmitting by medium but also spreading between individuals by 
direct contacts. Considering biological relevance and people’s subjective con-
sciousness, we introduce medium and feedback to describe the epidemic 
spreading. By mathematical analysis, we obtain the epidemic threshold and 
equilibriums. Simulation shows that the medium parameter can change the 
threshold, and the bigger it is, the easier epidemic breaks. Feedback parameter 
cannot change the basic reproductive number, but it can reduce the endemic 
level and weaken the epidemic spreading. 
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1. Introduction 

As is known to all that epidemic diseases (plague, kala-azar, H7N9, SARS, etc.) 
always bring great harm to the stability of the social and threat individual health. 
What’s more, the rapid development of social and frequent contacts among 
people contribute to the spread of disease. So, there is account for much atten-
tion to study the spreading mechanism and stability for formulating appropriate 
policies to prevent and control of epidemic diseases [1] [2]. In the early research, 
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people considered disease spread model in homogeneous network [3] [4], all in-
dividuals in network have the same infected ability in diseases spreading. It’s ob-
vious that those models can’t completely reflect the realistic feature of the spread 
of disease. Therefore, the scale-free property is a fundamental discovery in social 
networks [5] [6]. In the process of researching, many researchers also enrich the 
epidemic model on scale-free networks. Refs [7] [8] [9] studied the spreading of 
infections on scale-free networks; these papers found the epidemic threshold on 
scale-free networks and proved the stability of equilibriums. In order to effi-
ciently control the outbreak of infectious diseases, Chen and Sun [10] firstly 
succeeded in studying optimal control of an SIRS (susceptible-infected-reco- 
vered-susceptible) epidemic model on scale-free networks. In Ref [11] the effect 
of time delay has been analyzed on scale-free networks in detail. 

However, most of researcher works mentioned above, the medium influences 
on epidemic is not considerate when epidemic spreading. Nevertheless, in the 
transmission of diseases, such as malaria, dengue fever, those diseases spreading 
not only by connects between individuals, but contacts between individual and 
medium. So medium can change the transmission mechanism in epidemic 
spread. In Ref [12] proposed a SIS (susceptible-infected-susceptible) model with 
an infected medium on complex network, but the feedback mechanism and the 
death rate of the medium have not been taken into account. Feedback mechan-
ism considers the initiative response of people when epidemic diseases prevail. 
Once an epidemic disease outbreaks, people will be more cautious and will re-
duce contacts with others, the network topology structure will be changed. In 
this paper, considering the medium and feedback mechanism we focus on a new 
SIS epidemic model on scale-free networks analyzes in detail. 

The rest of the paper is organized as follows: Section 2 derives a SIS model 
with infective medium and feedback mechanism on scale-free networks. Then, 
Section 3 obtains two equilibriums and basic reproductive number. Section 4 
numerical simulations are performed. Finally, we conclude the paper in Section 
5. 

2. Model Formulation 

In order to investigate the efficiency of the medium and feedback mechanism 
policy, we present an SIS epidemic model with infective medium and feedback 
mechanism on scale-free networks. In this paper, the epidemic spread model is 
defined as follows: there are two types of nodes in a network, one is composed of 
A individuals and the other is composed of B medium. All nodes can only exist 
in one of the two discrete states, susceptible (i.e. healthy) or infected. We only 
consider that epidemic diseases can spread between individuals on scale-free 
networks, individuals and medium spreading by a homogeneous mixing method. 
In the process of disease transmission, λ  is the infection rate, an infected indi-
vidual is cured and become susceptible again with probability δ . The feedback 
parameter is α , it is determined by the fear degree of people to the epidemic 
disease, b  is the natural birth rate, and µ  is the death rate. Here, we assume 
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that the birth rate equals the death rate, i.e. b µ= . A healthy person is infected 
by an infected medium with probability 1γ . A susceptible medium receiving the 
disease from an infected individual with probability 2γ , the infected medium 
dies with probability β . It is also assumed that there is no infection spreading 
between medium. Let ( )kS t  and ( )kI t  be the relative densities of susceptible 
and infected nodes of degree k at time t respectively. The density of infected me-
dium is ( )V t . ( ) ( ) ( )1

n
iiI t P i I t

=
= ∑  is the density of infected individuals at 

time t.  
Based on the above hypotheses, the dynamical mean-field reaction rate equa-

tions can be written as 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )
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
= − − Θ Θ + − −


 = − Θ Θ − − − +

 = − + −


 (1) 

where the probability ( )tΘ  can be described a link pointing to an infected  

node, which written as ( ) ( ) ( ) ( )1

1 n
iit i P i I t

k
ϕ

=
Θ = ∑ . where k  is the aver-

age degree of the network, i.e. ( )1
n
kk kP k
=

= ∑ , and ( )iϕ  is the infectivity of 

node with degree i. Furthermore ( ) ( ) ( ) ( )1 1,n n
k kk kS t P k S I t P k I

= =
= =∑ ∑  are  

the global average densities of the two states. In view of the practical considera-
tion, we noted that ( ) 0P k >  for 1, 2, ,k n=  . Those variables obey the nor-
malization condition, i.e. ( ) ( ) 1k kS t I t+ = , and the initial conditions for the 
system (1) satisfy: 

( ) ( ) ( )0 1 0 0, 0 0k k kS I I= − > ≥ , and ( )0 0Θ > . 

3. Basic Productive Number and Equilibria 

In this section, we reveal some properties of the solutions and the equilibria of 
system (1). 

Theory 1. Consider system (1), Define  

( )( ) ( ) ( )
( ) ( )( )

1 2 1 2
0

1 2

k k k k
R

k

λ β δ µ γ γ ϕ γ γ ϕ

δ µ β δ µ γ γ

 + − + =
+ + −

 

The system always exits a disease-free equilibria ( )0 1,0E =  and a unique ep-
idemic equilibrium ( ),k kE S I∗ ∗ ∗=  if 0 1R > . 

Proof. It is easily finding that 0E  is always an equilibrium of system (1). To 
obtain the equilibrium E∗ , we need to impose the right side of system (1) to be 
equal to zero. In other words, the equilibrium ( ),k kE S I∗ ∗ ∗=  should satisfy  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )
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where ( ) ( ) ( ) ( )1

1 n
kkt k P k I t

k
ϕ∗ ∗

=
Θ = ∑ . We find that  

( ) ( )
( )

( )
( ) ( )( )

( ) ( )
( )

22
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Inserting Equation into Equation, we have  

( )
( )( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( ) ( )
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Let  
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Θ
. 

Therefore, a self-consistency equation can be obtained 
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,
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∑            (4) 

Obviously, when 0kI = , so 0I = , ( ) ( ) 0t tΘ = , it is a zero solution of (3). 
If there exist another positive solution ( ) 0tΘ > , it follows that 
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We can get the basic reproduction number  

( )( ) ( ) ( )
( ) ( )( )

1 2 1 2
0

1 2

k k k k
R

k

λ β δ µ γ γ ϕ γ γ ϕ

δ µ β δ µ γ γ

 + − + =
+ + −

. 

The unique nontrivial solution exist when 0 1R > . Therefore, the epidemic 
threshold can be defined by: 

( ) ( )( )
( )( ) ( ) ( )

1 2

1 2 1 2
c

k
k k k k

δ µ β δ µ γ γ
λ

β δ µ γ γ ϕ γ γ ϕ
+ + −

=
+ − +

         (5) 

Inserting the nontrivial solution of (4) into (3), we can get kI ∗ . Then we can 
obtain 0 1kS∗< < , 0 1kI ∗< <  for 1, 2, ,k n=  . So, there is a unique epidemic 
equilibrium ( ),k kE S I∗ ∗ ∗=  if 0 1R > . The proof is completed. 

Remark 
(1) The epidemic threshold cλ  is obtained by Equation (5). The epidemic 

threshold depends on the fluctuations of the degree distribution and some model 
parameters. Interestingly, the feedback mechanism parameter α  cannot 
change the epidemic threshold cλ . 

(2) If 1, 0δ µ= =  and, 0α =  then the system (1) becomes the SIS model 
with the influence of the infective vector. Then the epidemic threshold  

( )
( ) ( ) ( )

1 2

1 2 1 2

1
1c

k
k k k k

γ γ
λ

γ γ ϕ γ γ ϕ
−

=
− +

 

which consists with Ref [13]. The infected medium is affected the epidemic 
threshold. 

(3) If ( ) , 1, 0k kϕ δ µ= = =  and 0α =  then the system (1) becomes the SIS 
model with the influence of the infective medium. Then the epidemic threshold  

( )
( )

1 2
2 2 2

1 2

1
c

k

k k k

γ γ
λ

γ γ

−
=

− +
 

which consists with Ref [14]. The infected medium is affected the epidemic 
threshold. 

(4) If ( ) , 1, 0, 0k kϕ δ µ α= = = =  and 1 2 0γ γ = , then the system (1) be-
comes the standard SIS model without the influence of the infective medium. 
Then the epidemic threshold 2

c k kλ = , which consists with Ref [15]. The 
epidemic threshold only correlated with network topology. 

(5) If ( )k kϕ =  and 1 2 0γ γ =  then the system (1) becomes the standard SIS 
model with feedback mechanism, which consists with Ref [16]. 

From above we discussed, the simulation can show our result in detail. The 
disease-free equilibrium 0E  is stable when 0 1R < ; and the disease is perma-
nent on the network when 0 1R > . The medium can influence the epidemic 
outbreak, feedback parameter can’t change the threshold but can weaken the 
epidemic outbreak. 

4. Numerical Simulations 

For epidemic spreading with infected medium and feedback mechanism on 
scale-free network, we know that the stability of the disease-free equilibrium and 
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locally equilibrium depend on threshold. In this section, we study by Runge- 
Kutta numerical simulations to discuss the effects of some parameters on the 
epidemic threshold. We consider the system (1) on a scale-free network with the 
degree distribution ( ) rP k kξ −=  where 3r =  and ( )1 1n

i P i
=

=∑ , 1000n = . 
We set the initial density of infected nodes to be 0.9, like studies [17]. Birth rate 
is proportional to death rate, which keeps the population stable from beginning.  

In Figure 1. Where we choose ( )20.2, 0.4, 0.4, 0.3, k kδ µ β γ ϕ= = = = = . It 
illustrates that medium has great influence on epidemic spreading. We can see 
that the easier epidemic outbreak as the spreading rate of infected medium in-
crease. The infected mediums contribute to epidemic outbreak, it satisfies our 
common sense. 

In Figure 2, the parameters are chosen as  

1 20.4, 0.1, 0.1, 0.6, 0.01, 0.4,l λ α δ γ γ= = = = = =  0.4,β =  0 0.459R = , with 
the infected initial value ( )100 0 0.1I = . We can see that when 0 1R < , kI  ap-
proach to zero, i.e., the infectious individuals will ultimately disappear. 

In Figure 3, the parameters are chosen as  

10.3, 0.35, 0.1, 0.25, 0.2,l λ α δ γ= = = = =  0.4,β =  2 0.2,γ =  0 3.45R = . We 
can see that when 0 1R > , kI  grows to a stable value, i.e., the epidemic disease 
is permanent and the number of infected individual will converge to a positive 
value. 

In Figure 4, the parameters are chosen as  

1 20.4, 0.1, 0.6, 0.01, 0.4,l λ δ γ γ= = = = =  0.4,β =  0 0.459R = , 5,3,1,0.1α =  
from bottom to top. We can see that the corresponding 100I  decreases signifi-
cantly as the feedback parameter increases α, i.e., a larger feedback parameter 
can weaken the spreading of disease. 

In Figure 5, the parameters are chosen as  

1 20.4, 0.4, 0.2, 0.2, 0.2, 0.4,l λ δ γ γ β= = = = = =  5,3,1,0.1α = , from bottom to 
top, 0 1.398R = . We can see that the 100I  corresponding decreases significant-
ly as the feedback parameter α increases, i.e., a larger feedback parameter can 
reduce the endemic level. 
 

 
Figure 1. The influence of medium influences the epidemic outbreak. 
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Figure 2. The time series of system (1) with 0 1R <  and initial values  

( ) ( )0 0.1, 50,100,200,500.kI k= =  

 

 
Figure 3. The time series of system (1) with 0 1R >  and initial values  

( ) ( )0 0.1, 50,100,200,500.kI k= =  

 

 
Figure 4. The prevalence 100I  versus t  with 0 0.459R =  to different α  with iden-

tical initial value ( )100 0 0.1I = . 
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Figure 5. The prevalence 100I  versus t  with 0 1.389R =  to different α  with identic-

al initial value ( )100 0 0.1I = . 

5. Conclusion 

To study the influence of the spread of the disease and the topology of the net-
work, we proposed a modified SIS model on scale-free network with infected 
medium and feedback mechanism. By using some mathematical analytic method, 
we found the basic reproduction number 0R  and equilibriums. Theoretical re-
sults indicate that the basic reproduction number is dependent on the topology 
of the underlying networks. The simulation has shown that the disease-free 
equilibrium 0E  is stable when 0 1R < ; and the disease is permanent on the 
network when 0 1R > . Here the rigorous proof that we could not complete will 
be discussed in the future. In addition, we added the medium into the normal 
SIS model, it shows medium contributes to epidemic spreading. As for feedback 
mechanism, we take note of that epidemic threshold bears no relation to the 
feedback parameter, but formulate shows that it can accelerate the extinction of 
the disease and weaken the endemic level, which complies with our realistic 
sense. The study may give us valuable guiding in effectively predicting and pre-
venting epidemic spreading. 
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