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Abstract 
In this paper, by using a block-operator matrix technique, we study 
mixed-type reverse order laws for {1,3}-, {1,2,3}- and {1,3,4}-generalized in-

verses over Hilbert spaces. It is shown that ( )( ){ } ( ) ( )( )( ){ }1,31,3 1,3 1,3AB B ABB=  

and ( )( ){ } ( ) ( )( )( ){ } ( )
1,2,1,2, 1,2, 1,2, , 3, 4

ii i iAB B ABB i= =  when the ranges of 

, ,A B AB  are closed. Moreover, a new equivalent condition of ( )( ){ }1,3,4AB =  

( ) ( )( )( ){ }1,3,41,3,4 1,3,4B ABB  is given. 
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1. Introduction 

The reverse order law of generalized inverses plays an important role in theoret-
ic research and numerical computations in many areas, including the singular 
matrix problem and optimization problem. They have attracted considerable at-
tention since the middle 1960s, and many interesting results have been studied, 
see [1]-[10]. 

For convenience, we firstly introduce some notations. Let H and K be infinite 
dimensional Hilbert spaces and ( ),B H K  be the set of all bounded linear oper-
ators from H to K and abbreviate ( ),B K H  to ( )B H  if K H= . For an op-
erator ( ),A B H K∈ , ( )N A  and ( )R A  are the null space and the range of A, 
respectively. Denote by A* the adjoint of A. Recall that ( ),A B H K∈  has a 
Moore-Penrose inverse if there exists an operator ( ),G B K H∈  satisfies the 
following four equations, which is said to be the Moore-Penrose conditions: 
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( ) ( ) ( ) ( ) ( ) ( )* *1 ; 2 ; 3 ; 4 .AGA A GAG G AG AG GA GA= = = =  

If one exists, the Moore-Penrose inverse of A is unique and it is denoted by A+. 
And let { }, , ,A i j k  denote the set of all operator ( ),G B K H∈  which satis-
fy equations ( ) ( ) ( ), , ,i j k  from among the above Moore-Penrose equations. 
Such G will be called a { }, ,i j k -inverse of A and will be denoted by ( ), ,i j kA . 
evidently, { }1, 2,3, 4A A+=  when A has closed range. 

For the Moore-Penrose inverse, Greville [2] gave the necessary and sufficient 
conditions for ( )AB B A+ + +=  on matrix algebra, this result was extended to 
bounded operators on Hilbert space by Izumino [4]. Subsequently, some re-
searcher discussed the reverse order laws of other type generalized inverses, such 
as ( ) { }, 1, 2,3, 4AB B Aθ θ θ θ= ⊂  [5] [6] [8] [10]. The mixed-type reverse-order 

laws for AB like ( ) ( )AB B A AB
++ + +=  and ( ) ( )AB A AB A

++ + +=  were consi-
dered in [3] [4] when A and B are matrices. Motivated by this, Wang et al. [7] 
studied the mixed-type reverse-order laws for ( )1,3AB . Yang and Liu [9] gave the 

equivalent condition of ( )( ){ } ( ) ( )( )( ){ } ( )
1,2,1,2, 1,2, 1,2, , 3, 4

ii i iAB B ABB i= = , by using  

the extremal ranks of generalized Schur complements, when A and B are ma-
trices. The mixed-type reverse order laws of ( )( )1,3,4AB  were discussed on oper-
ator space over Hilbert space [5]. 

In this article, we study the mixed-type reverse order laws of ( )( )1,2,iAB , 
( )( )1,3AB  and ( )( )1,3,4AB  over infinite Hilbert space by using a block-operator 
matrix technique. For given A, B, it is shown that 

( )( ){ } ( ) ( )( )( ){ }1,31,3 1,3 1,3AB B ABB=  

and 

( )( ){ } ( ) ( )( )( ){ } ( )
1,2,1,2, 1,2, 1,2, , 3, 4

ii i iAB B ABB i= =  

when the ranges of A, B, AB are closed. We generalized the results from [7] and 
[9] to the case of bounded linear operators on Hilbert spaces. Moreover, a new 

equivalent condition of ( )( ){ } ( ) ( )( )( ){ }1,3,41,3,4 1,3,4 1,3,4AB B ABB=  is given. 

2. Main Results 

To obtain our main results, we begin with some notations and lemmas. Let 
( ),A B H K∈  with closed range. It is well known that A has the following ma-

trix decomposition 

( )
( )

( )
( )

*
1

*

0
: ,

0 0

R AR AA
A

N AN A

    
 = →   
       

                (2.1) 

where 1A  is invertible. Also, A+  has the form 

( )
( )

( )
( )

*1
1

*

0
: .

0 0

R A R AA
A

N A N A

−
+

   
 = →  
       

               (2.2) 
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The {1,2,3}- and {1,3,4}-inverse has also similarly matrix form. 
Lemma 1 ([5]). Let ( ),A B H K∈  have closed range. Then 

{ }
( )
( )

( )
( )

*1
1

*
3 4

0
1,3 :

R A R AA
A

N AX X N A

−      = →   
        

, 

{ }
( )
( )

( )
( )

*1
1

*
3

0
1, 2,3 :

0

R A R AA
A

N AX N A

−      = →   
        

 

and 

{ }
( )
( )

( )
( )

*1
1

*
4

0
1,3, 4 : .

0

R A R AA
A

N AX N A

−      = →   
        

 

Let ( ),A B H K∈ , ( ),B B L H∈  and ( ),AB B L K∈  with closed ranges. 
For convenience, denote by 

( ) ( )
( )
( ) ( )

( )

1

2 1

*
3

*
4 3

,

,

,

,

H R B N A

H R B H

H N B N A

H N B H

⊥

⊥

= ∩


= Θ
 = ∩


= Θ

 
( )
( ) ( )

1

2

K R AB

K R A R AB⊥

=


= Θ
, 

and 

( ) ( )*
1 1 2 1, .L B H L R B L+ ⊥= = Θ  

then 

1 2 3 4H H H H H= ⊕ ⊕ ⊕ , ( )*
1 2K K K N A= ⊕ ⊕  

and 

( )1 2L L L N B= ⊕ ⊕ . 

Under these space decomposition, we get two useful representations of oper-
ators ( ),A B H K∈  and ( ),B B L K∈ . 

Lemma 2 ([9] [10]). Let ( ),A B H K∈ , ( ),B B L K∈  such that ( ) ( ),R A R B  
and ( )R AB  are closed. 

If 0AB ≠ , the following statements hold, 
(1) When { }1 0H ≠ , A and B have the matrix form as follows, respectively, 

( )

1
12 14 1

2
24 2

3 *

4

0 0
0 0 0 : ,
0 0 0 0

H
A A K

H
A A K

H
N AH

           = →               

             (2.3) 

( )

111 12
1

222
2

3

4

0
0 0

: ,
0 0 0
0 0 0

HB B
L

HB
B L

H
N B

H

  
    
    = →    
      

   

                 (2.4) 

where 11A , 11B , 22B  are invertible and 22A  is surjective. 
(2) When { }1 0H = , 
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( )

12 14 2 1

24 3 2

*
4

0
0 0 : ,
0 0 0

A A H K
A A H K

H N A

         = →                

              (2.5) 

( )

22 2
2

3

4

0
0 0 : ,
0 0

B H
L

B H
N B

H

   
    = →           

                   (2.6) 

where 12A , 22B  are invertible and 24A  is surjective. 
Theorem 3. Let ( ),A B H K∈ , ( ),B B L H∈  such that ( ) ( ),R A R B  and 
( )R AB  are closed. Then 

( )( ){ } ( ) ( )( )( ){ }1,2,31,2,3 1,2,3 1,2,3AB B ABB= . 

Proof If 0AB = , then ( ){ } { }1, 2,3 0AB = , the result holds. So assume that 
0AB ≠ . Next, we divide the proof into two cases. 

Case 1. { }1 0H ≠ . 
In this case, A, B have matrix forms (2.3) and (2.4), respectively. This implies 

that 

( ) ( )

12 22 1 1

2 2

*

0 0
0 0 0 : .
0 0 0

A B J K
AB J K

N B N A

       = →              

            (2.7) 

Using Lemma 1, we get 

( )

( )

11 1 1
11 11 12 22 1

123 21
22 2

3
31 32

4

0 0
0 0 0 : ,

0 0

H
B B B B L

H
B B L

H
F F N B

H

− − −

−

  −       = →             

        (2.8) 

and 

( )( )

( ) ( )

11 1 1
123 1 1

22 12 2 2

*
31

0 0
0 0 .
0 0

M K L
AB B A K L

M N BN A

− −

         = →              

:          (2.9) 

where 31 32 11 31, , ,F F M M  are arbitrary. Combining formulae (2.7) with (2.8), it is 
easy to get 

( )

( )

1
12 1

123 2
2

3 *

4

0 0 0
0 0 0 0 : .
0 0 0 0

H
A K

H
ABB K

H
N AH

           = →               

 

Using Lemma 1 again, we have 

( )( )( )

( )

11 1
11123123 12 2
2

31 3*

41 4

0 0
0 0

: ,
0 0
0 0

G H
K

A H
ABB K

G H
N AG H

−

    
    
   = → 
    
        

        (2.10) 
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where 1, 1,3, 4iG i =  are arbitrary. By direct computation, it is clearly from (2.8) 
and (2.10) that 

( ) ( )( )( )

( ) ( )

11 1 1
123123 123 1

22 2 2

*
31

0 0
0 0 : ,
0 0

P K L
B ABB B K L

P N BN A

−

         = →              

      (2.11) 

where 1 1 1 1
11 11 11 11 12 22 12P B G B B B A− − − −= − , 1

31 31 11 32 12P F G F A−= + . Thus, by the arbitrari-
ness of 11 31 32, ,G F F , it follows from fromulae (2.9) and (2.11) that 

( )( ){ } ( ) ( )( )( ){ }1,2,31,2,3 1,2,3 1,2,3AB B ABB=  

holds. 
Case 2 { }1 0H = . Obviously, { }1 0L = . Consequently, 2 3 4H H H H= ⊕ ⊕  

and ( )2L L N B= ⊕ . By Lemma 2, ,A B  have matrix forms (2.5) and (2.6), 
respectively. This follows that 

( )
( )

12 22 1
2

2

*

0
0 0 : .
0 0

A B K
L

AB K
N B

N A

      = →            

            (2.12) 

By Lemma 1, we get 

( )

( )

21
2123 22

3
21

4

0 0
: ,

0 0

H
LB

B H
N BF

H

−  
    = →          

            (2.13) 

and 

( )( )

( )
( )

11 1
123 222 12

2
21 *

0 0
.

0 0

K
LB A

AB K
N BM

N A

− −
 
    

= →    
    
  

:         (2.14) 

where 21 21,F M  are arbitrary. Combining formulae (2.12) with (2.13), 

( )

( )

12 2 1
123

3 2

*
4

0 0
0 0 0 : .
0 0 0

A H K
ABB H K

H N A

         = →                

 

Again from Lemma 1, 

( )( )( )

( )

1
12 1 2

123123
21 2 3

*
31 4

0 0
0 0 : ,
0 0

A K H
ABB Q K H

Q HN A

−         = →             

 

where 21 31,Q Q  are arbitrary. By direct computation, it is clearly that 

( ) ( )( )( )

( )
( )

11 1123 2123 123 22 12
21

21 12 *

0 0
: .

0 0

K
LB A

B ABB K
N BF A

N A

− −

−

 
    

= →    
    
  

     (2.15) 
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Thus, from fromulae (2.14) and (2.15), it is clear that 

( )( ){ } ( ) ( )( )( ){ }1,2,31,2,3 1,2,3 1,2,3AB B ABB=  

also holds in this case. The proof is completed. 
From the relationship of {1,2,3}-inverse and {1,2,4}-inverse, we can obtain the 

following result without proof. 
Corollary 4. Let ( ),A B H K∈ , ( ),B B L H∈  such that ( ) ( ),R A R B  and 
( )R AB  are closed. Then 

( )( ){ } ( ) ( )( )( ){ }1,2,41,2,4 1,2,4 1,2,4AB B ABB= . 

Similar to the proof of Theorem 3, we also can get the following result. 
Theorem 5. Let ( ),A B H K∈ , ( ),B B L H∈  such that ( ) ( ),R A R B  and 
( )R AB  are closed. Then 

( )( ){ } ( ) ( )( )( ){ }1,31,3 1,3 1,3AB B ABB= . 

In [5], the author gave a necessary and sufficient condition of 

( )( ){ } ( ) ( )( )( ){ }1,3,41,3,4 1,3,4 1,3,4AB B ABB= . Next, we give a new equivalent condition 

of the mixed-type reverse order law for ( )( )134AB . 
Theorem 6. Let ( ),A B H K∈ , ( ),B B L H∈  such that ( ) ( ),R A R B  and 
( )R AB  are closed. If 0AB ≠ , the following statements are equivalent, 

(1) ( )( ){ } ( ) ( )( )( ){ }1,3,41,3,4 1,3,4 1,3,4AB B ABB= ; 

(2) ( ) ( )* * * .R BB A R A⊂  

Proof We divide the proof into two cases. 
Case 1. { }1 0H ≠ . Using Lemma 2, A, B have matrix forms (2.3) and (2.4), 

respectively. The operator AB has the matrix decomposition (2.7). Then 

( )

1
1

12 2*
2

3*

14 24 4

0 0 0
0 0

:
0 0 0

0

H
K

A H
A K

H
N AA A H

∗

∗ ∗

    
    
   = → 
    
        

             (2.16) 

and 

( )

112 12 12
1

2* * 22 12 12
2

3*

4

0 0
0 0

:
0 0 0
0 0 0

HB B A K
HB B ABB A K
H

N A H

∗ ∗

∗ ∗

        
   = →              

         (2.17) 

by direct computation from (2.3) and (2.4). Therefore, comparing (2.16) with 
(2.17), it is natural that ( ) ( )* * *R BB A R A⊂  if and only if 12 12 12 0B B A∗ ∗ = . So 

( ) ( )* * *R BB A R A⊂  if and only if 12 0B =  since 12A  is invertilbe. 
On the other hand, it follows from Lemma 1 that 
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( )

( )

11 1 1
11 11 12 22 1

134 21
22 2

3
33 34

4

0 0
0 0 0 : ,
0 0

H
B B B B L

H
B B L

H
F F N B

H

− − −

−

  −       = →             

      (2.18) 

and 

( )( )

( ) ( )

12 13 1 1
134 1 1

22 12 2 2

*
32 33

0
0 0 .

0

M M K L
AB B A K L

M M N BN A

− −

         = →              

:       (2.19) 

where ( )33 34, , , 1,3, 2,3ijF F M i j= =  are arbitrary. 
Combining formulae (2.7) with (2.18), it is easy to get 

( )

( )

1
12 1

134 2
2

3 *

4

0 0 0
0 0 0 0 :
0 0 0 0

H
A K

H
ABB K

H
N AH

             = →             

. 

Using Lemma 1 again, we have 

( )( )( )

( )

12 13 1
11134134 12 2
2

32 33 3*

42 43 4

0
0 0

: .
0
0

G G H
K

A H
ABB K

G G H
N AG G H

−

    
    
   = → 
    
        

      (2.20) 

where ( )1,3, 4, 2,3ijG i j= =  are arbitrary. By direct computation, it is clearly 
from (2.18) and (2.20) that 

( ) ( )( )( )
1 1 1 1 1

11 12 22 12 11 12 11 13
134134 134 1 1

22 12

33 32 34 42 33 33 34 43

0 0 .
0

B B B A B G B G
B ABB B A

F G F G F G F G

− − − − −

− −

 −
 

=  
 + + 

(2.21) 

Comparing (2.21) with (2.19), we have 

( )( ){ } ( ) ( )( )( ){ }1,3,41,3,4 1,3,4 1,3,4AB B ABB=  

if and only if 1 1 1
11 12 22 12 0B B B A− − −− = , that is, 12 0B = . Therefore, ( )( ){ }1,3,4AB =  

( ) ( )( )( ){ }1,3,41,3,4 1,3,4B ABB  if and only if ( ) ( )* * *R BB A R A⊂ . 

Case 2 { }1 0H = . Then A, B have matrix forms (2.5) and (2.6), respectively. 
By similarly discussing to case 1 and case 2 in the proof of Theorem 3.2, it is easy 

to get that ( )( ){ } ( ) ( )( )( ){ }1,3,41,3,4 1,3,4 1,3,4AB B ABB=  and ( ) ( )* * *R BB A R A⊂  al-  

ways hold in this case. 
So the proof is completed. 
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