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Abstract 
In this paper, we use daily stock returns from the Stockholm Stock Exchange 
in order to examine their volatility. For this reason, we estimate not only 
GARCH (1,1) symmetric model but also asymmetric models EGARCH (1,1) 
and GJR-GARCH (1,1) with different residual distributions. The parameters 
of the volatility models are estimated with the Maximum Likelihood (ML) 
using the Marquardt algorithm (Marquardt [1]). The findings reveal that neg-
ative shocks have a large impact than positive shocks in this market. Also, in-
dices for the return of forecasting have shown that the ARIMA (0,0,1)- 
EGARCH (1,1) model with t-student provide more precise forecasting on vo-
latilities and expected returns of the Stockholm Stock Exchange. 
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1. Introduction 

The development of econometrics led to the invention of adjusted methodolo-
gies for the modeling of mean value and variance. Models of generalized condi-
tional autoregressive heteroscedasticity (GARCH) are based on the assumption 
that random components in models present changes on volatility. These models 
were developed by Engle [2], in a simple form, and they were generalized later 
by Bollerslev [3]. 

The models of autoregressive conditional heteroscedasticity (GARCH) have a 
long and noteworthy history but they are not free of limitations. For example, 
Black [4] on his paper claims that stock market returns are negatively correlated 
with changes on volatility returns implying that volatility tends to rise in re-
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sponse to bad news and fall in response to good news. On the other hand, on 
GARCH models we assume that only the size of return of the conditional variance 
is defined and not the positivity or negativity of volatility’s return, which are 
unpredicted. Another crucial limitation of GARCH models is the non-negativity 
of parameters in order to ensure the positivity of the conditional variance. All 
these limitations cause difficulties in the estimation of GARCH models. 

GARCH models were applied with great success on the modeling of changing 
variability or the variance volatility on time series for measuring financial in-
vestments. After the determination of an asymmetric relationship between con-
ditional volatility and conditional mean value, econometricians focused their ef-
forts on planning methodologies for modeling this phenomenon. 

Nelson [5] suggested an exponential GARCH model (EGARCH) expressed in 
logarithms of the conditional variance volatility. The EGARCH model has be-
come popular as it presents asymmetric volatility on positive and negative re-
turns. A number of modifications on this model were made over the years. 
Glosten, Jagannathan and Runkle [6] suggest another asymmetric model known 
as GJR-GARCH which deals with the limitations of the symmetric GARCH 
models. 

The purpose of this paper is to quantify two asymmetric models using prices 
from the Stockholm stock market for the period 30 September 1986 until 11 May 
2016, representing 7,434 observations. The first 7,000 values in the model were 
used for quantification and statistical verification and the last 434 values for the 
forecast demonstration in retrospect. 

The remainder of the paper is organized as follows: Section 2 provides a brief 
literature review. Section 3 discusses the symmetric and asymmetric GARCH 
models. Section 4 summarizes the data. The results are discussed in Section 5 
and Section 6 proposes the forecasting methodology. Finally, the last section of-
fers the concluding remarks. 

2. Literature Review 

The ability of GARCH models that study the relationship between risk and re-
turn has been validated in many studies. For example, Donaldson and Kamstra 
[7] made a nonlinear GARCH model based on neural networks. They evaluated 
the model’s ability in forecasting the volatility of returns on the stock markets of 
London, New York, Tokyo and Toronto. The results of their paper showed that 
neural network models captures volatility effects and forecasting better than 
GARCH, EGARCH and GJR models. 

Nam, Pyun and Arize [8] used the asymmetric non-linear GARCH-M model 
for US market indices for the period 1926:01-1997:12. The results of their paper 
showed that negative returns on average reverted more quickly in the long term 
rather than positive returns. 

Tudor [9] uses GARCH and GARCH-M models to examine the volatility of 
US and Romanian stock markets for the period January, 03 2001 until February 
09, 2008 or a total of 1,853 daily returns. The results showed that the GARCH-M 
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model performs better and confirms the results between volatility and expected 
returns on both markets. 

Panait and Slavescu [10] use daily, weekly and monthly data for seven Roma-
nian listed companies on the Bucharest stock market for the period 1997-2012. 
Using the GARCH-in-mean model they compare the volatility of companies in 
three phases. The results of their paper showed that persistency is more evident 
in the daily returns rather than in the weekly and monthly series. Furthermore, 
the GARCH-in-mean model failed to confirm that an increase in volatility leads 
to a rise in future returns. 

Gao, Zhang and Zhang [11] use the Markov chain Monte Carlo (MCMC) 
method instead of the Maximum Likelihood Ratio method for the estimation of 
the coefficients of GARCH models. Using daily data from the stock market of 
China for the period 1 January 2000 until 29 April 2011, they compare the re-
sults of the volatility of the data with three different models and two different 
distributions. The results showed that the GED-GARCH model is better than the 
t-GARCH, and that the t-GARCH is better than N-GARCH. 

Dutta [12] examined exchange rate parities of USA and Japan for the period 1 
January 2000 until 31 January 2012. The data are estimated not only with sym-
metric but also with asymmetric GARCH models. Findings indicate that positive 
shocks are more common than the negative shocks in this return series. Also, 
asymmetric tests for volatility show a size effect on news, which is stronger for 
good news than for bad news. 

Given the different backgrounds for each market it is expected that risk and 
return differ from country to country. This paper attempts to examine the vola-
tility and return of the Stockholm stock market using symmetric and asymme-
tric models. 

3. Methodology 

One of the fundamental hypotheses for a stationary time series is the stable va-
riance. But there are time series, mostly financial, that have intervals of large vo-
latility. These series are characterized with periods of sharp increases and 
downturns during which their variance is varying. Thus, researchers are not in-
terested in examining the variance of such series throughout the sample period 
but only interested in the varying or conditional variance. Based on this division 
between conditional and unconditional variance, we can characterize time series 
models with conditional variance as conditional heteroskedastic models. The 
notion of “conditional” heteroscedasticity was first introduced by Engle [2]. En-
gle suggested that varying variance can be explained through an autoregressive 
scheme as a function of previous values. For this reason this model is called Au-
toregressive Conditional Heteroskedastic Model, known as ARCH. 

The varying GARCH models consist of two equations. The first one (the equ-
ation of mean) describes the data as a function of other variables adding an error 
term. The second equation (the equation of variance) determines the evolution 
of the conditional variance of the error from the mean equation as a function of 
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past conditional variances and lagged errors. The first equation (equation of the 
mean) on GARCH varying models is not of great interest, contrary to the second 
equation (equation of variance) which is the one that we pay more attention to 
in order to compare different variances on the same equation of mean. 

3.1. Symmetric GARCH Models 

The traditional measuring methods of volatility (variance or standard deviation) 
are absolute and cannot conceive the characteristics of financial data (time series) 
like volatility clustering, asymmetries, leverage effect and long memory. The ba-
sic model suggested by Engel [2] is the following: 

t t tzε σ=  

where tz  is an independent identically distributed (i.i.d.) process with mean 
zero and variance 1. tσ  is the volatility that evolves over time. The volatility 

2
tσ  in the basic ARCH (q) model is defined as: 

2 2

1

q

t i t i
i

σ ω α ε −
=

= +∑                        (1) 

where 2
tσ  is the conditional variance, 0ω >  and 0iα ≥  for 2

tσ  to be posi-
tive. 

This model shows that after a large (small) shock, it is likely that a large (small) 
shock will follow. In other words, a large (small) 2

1tε −  implies a large (small) 
2
tε  on the current period according to Equation (1) thus a large (small) variance 

(volatility). 
Finally, we can point out that large values on time lags on ARCH models pre-

suppose large periods of volatility contrary to small values of time lags that fore-
see smooth periods. This may not occur in reality. In order to overcome this 
problem, Bollerslev, Chou and Kroner [13] suggested a new model where the 
conditional variance does not depend only on previous square error values but 
also on previous values of the same variance. The model suggested is known as 
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model. 

GARCH (p, q) Model 
The generalized form of GARCH(p, q) is given as: 

t tR µ ε= +  (mean equation) 

2 2 2

1 1

q p

t i t i j t j
i j

σ ω α ε β σ− −
= =

= + +∑ ∑  (variance equation)          (2) 

where tR  are returns of time series at time t, µ  is the mean value of the re-
turns, tε  is the error term at time t, which is assumed to be normally distri-
buted with zero mean and conditional variance 2

tσ , p is the order of GARCH 
and q is the order of ARCH process, µ , ω , iα  and jβ  are parameters for 
estimation. All parameters in variance equation must be positive ( 0µ > , 0ω > , 

0iα ≥ , and 0jβ ≥  for 2
tσ  to be positive). Also, we expect the value of para-

meter ω to be small. Parameter iα  measures the response of volatility on mar-
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ket variances and parameter jβ  expresses the difference which was caused 
from outliers on conditional variance. Finally, we expect the sum 1i jα β+ <  

The model GARCH (1,1) has the following form: 

t tR µ ε= +  (mean equation) 

2 2 2
1 1 1 1t t tσ ω α ε β σ− −= + +  (variance equation)            (3) 

As we expect a positive variance, we can argue that regression coefficients are 
always positive 0ω ≥ , 1 0α ≥  and 1 0β ≥ . Also, we should point out that in 
order to achieve stationarity on the variance, regression coefficients 1α  and 

1β  should be less than one ( )1 1α <  and ( )1 1β < . Thus, on the previous mod-
el, the following relations are valid: 0ω ≥  1 0α ≥  and 1 0β ≥  for a positive 
value of 2

tσ  and 1 1α <  and 1 1β < . 
The conditional variance of the returns of Equation (3) is defined from three 

outcomes: 
• The constant given by ω  coefficient. 
• The variance part expressed from the relationship 2

1 1tα ε −  defined as ARCH 
component. 

• The part of predicted variance from past period expressed by 2
1 1tβ σ −  and is 

called GARCH. 
The sum of regression coefficients 1 1α β+  expresses the impact of variables’ 

variance of the previous period regarding the current value of volatility. This 
value is usually near to one and is regarded as a sign of increasing inactivity of 
shocks of the volatility of returns on the financial assets. 

3.2. Asymmetric GARCH Models 

The main disadvantage of GARCH models is their inappropriateness in the cases 
where an asymmetric effect is usually observed and is registered from a different 
instability in the case of good and bad news. In the asymmetric models, upward 
and downward trends of returns are interpreted as bad and good news. If the de-
cline of a return is accompanied with an increase of instability larger than the 
instability caused by the increase then it is said to have a leverage effect. 

Given that all terms in a GARCH model are squared, there will always be an 
asymmetric response in positive and negative periods. However, due to natural 
leverage in most companies, a negative shock is more damaging than a positive 
shock because it produces larger volatility. 

Among the most widely known asymmetric models are the Exponential 
GARCH model (EGARCH) and the asymmetric GJR model. 

3.2.1. Asymmetric GARCH Models 
One of the most popular asymmetric ARCH models is the EGARCH model 
proposed by Nelson [5]. The EGARCH (p, q) model is given by 

2 2

1 1 1
log log

p q r
t i t k

t i j t j k
i j kt i t k

ε ε
σ ω α β σ γ

σ σ
− −

−
= = =− −

= + + +∑ ∑ ∑           (4) 

where ω , iα , jβ , and kγ  are parameters which can be estimated using the 



C. Dritsaki 
 

371 

maximum likelihood method. We should also point out that 1jβ <  and kγ  
parameter is the one that gives the result of leverage effect. In other words, we 
consider that t kε −  term is the one that establishes the asymmetry of EGARCH 
(p, q) when parameter 0kγ ≠ . Also, when parameter 0kγ < , then positive 
shocks cause short volatility in relation to negative shocks. Furthermore, we ex-
pect that parameters 0k iγ α+ > , given that parameter 0kγ < . 

The conditional variance of the above model is expressed in logarithmic form 
which ensures the non-negativity without imposing more constraints of non-  

negativity. The term t k

t k

ε
σ

−

−

 on the above equation represents the asymmetric  

effect of shocks. According to Poon and Granger [14], a negative shock that 
leads to the largest conditional variance will not be the same on a positive shock 
in the next period. 

The EGARCH (1,1) model is often used for the estimation of variance 2σ  
and has the following form: 

2 21 1
1 1 1 1

1 1

log logt t
t t

t t

ε ε
σ ω α β σ γ

σ σ
− −

−
− −

= + + +              (5) 

For a positive shock 1

1

0t

t

ε
σ

−

−

>  the above equation becomes 

( )2 2 1
1 1 1 1

1

log log t
t t

t

ε
σ ω β σ α γ

σ
−

−
−

= + + +                (6) 

whereas for a negative shock 1

1

0t

t

ε
σ

−

−

<  the above equation becomes 

( )2 2 1
1 1 1 1

1

log log t
t t

t

ε
σ ω β σ α γ

σ
−

−
−

= + + −                (7) 

The EGARCH model has many advantages when compared to the GARCH (p, 
q) model. 
• The first is the logarithmic form which does not allow the positive constraint 

among parameters. 
• Another advantage of EGARCH model is that it incorporates asymmetries in 

the change of volatility of returns. 
• Parameters α  and γ  define two important asymmetries in the condition-

al variance. If 1 0γ <  then negative changes increase volatility (instability) 
more than positive changes of the same size. 

• EGARCH model can successfully define the change of volatility. 
The form of the EGARCH model denotes that the conditional variance is an 

exponential function of the examined variables which ensures a positive charac-
ter. In other words, conditional variance ensures the exponential nature of the 
EGARCH model where external changes will have a stronger influence on the 
predicted volatility than TGARCH. An asymmetric influence is indicated by the 
no null value of γ1 coefficient whereas the presence of leverage is indicated by 
the negative value of the same coefficient. 
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3.2.2. The GJR-GARCH Model 
The GJR-GARCH(p, q) model is another asymmetric GARCH model proposed 
by Glosten, Jagannatahan and Runkle [6]. The generalized form of the GJR- 
GARCH (p, q) model is given in the following form: 

2 2 2

1 1

p q

t i t i j t j i t i t i
i j

Iδσ ω α ε β σ γ ε− − − −
= =

= + + +∑ ∑               (8) 

1     when   0
0    when   0

t i
t i

t i

I
ε
ε

−
−

−

<
=  ≥

 

when ω , iα , jβ  and iγ  are parameters under estimation 

t iI −  is a dummy variable, meaning that t iI −  is a functional index which takes 
zero value when t iε −  is positive and value one when t iε −  is negative. If para-
meter 0iγ >  then negative errors are leveraged meaning that negative innova-
tions or bad news have larger impact than good news. Finally, we assume that on 
the GJR-GARCH model parameters are positive and the relationship  

1
2

i
i j

γ
α β+ + <  is valid. 

The GJR-GARCH (1,1) model is the one that is more often used for the esti-
mation of 2σ  variance and has the following form: 

2 2 2 2
1 1 1 1 1 1t t t t tIσ ω α ε β σ γ ε− − −= + + +                   (9) 

1
1

1

1   when   0
0   when   0

t
t

t

I
ε
ε
−

−
−

<
=  ≥

 

Engle and Ng [15] compare the response of conditional variance to shocks 
implied by various econometric models and find evidence that the GJR model 
fits stock return data the best. 

3.3. Estimation of the GARCH Model 

The estimation of GARCH models can be done with the Ordinary Least Squares 
method. Due to the fact that error terms are not independently and identically 
distributed iid(0,1), it is better to avoid using the OLS method mainly on small 
samples. In this case, it is better to use the maximum likelihood method(see 
Greene, [16]). The parameters of GARCH models maximize the log likelihood 
function. The estimation of parameters on the log likelihood function derives 
through nonlinear least squares using Marquardt’s algorithm [1]. The log like-
lihood function is given below: 

( ) ( )( ) ( )2

1

1ln , ln , ln
2

T

t t t
t

L y D zθ θ υ σ θ
=

      = −      
∑         (10) 

where θ  is the vector of the parameters that have to be estimated for the con-
ditional mean, conditional variance and density function, tz  denoting their 
density function, ( )( ),tD z θ υ , is the log-likelihood function of ( )ty θ   , for a 
sample of T observation. The maximum likelihood estimator θ̂  for the true 
parameter vector is found by maximizing (10). 

The models GARCH assumed Gaussian innovations, but nonetheless imply 
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non-Gaussian unconditional distributions. However, time-varying volatility 
models with Gaussian innovations generally do not generate sufficient uncondi-
tional non-Gaussianity to match certain financial asset return data (see, Poon 
and Granger [14]). 

3.3.1. Conditional Distributions 
In this section we describe the log-likelihood functions used for the estimation of 
parameters on volatility models for all theoretical distributions. 

1) Normal Distribution 
In the case of a standard normal distribution for the i.i.d. random variables 

{ }tz , the following log-likelihood function needs to be maximized. 

( ) ( ) ( )2 2

1 1

1ln , ln 2π ln
2

T T

t t t
t t

L y T zθ σ
= =

   = − + +    
∑ ∑           (11) 

where θ  is the vector of the parameters that have to be estimated for the con-
ditional mean, conditional variance and density function, T is observations. 

2) Student-t Distribution 
The Student-t distribution can handle more severe leptokurtosis. The log-  

likelihood function is defined as 

( ) ( )

( ) ( )
2

2

1

1 1ln , ln ln ln 2
2 2 2

1 ln 1 ln 1
2 2

t

T
t

t
t

L y T

z

υ υθ π υ

σ υ
υ=

 +      = Γ − Γ − −            
  

− + + +  
−   

∑
      (12) 

where ( ) 1
0

e dx x xυυ
∞ − −Γ = ∫  is the gamma function and υ  is the degree of 

freedom. 
The t-Student is symmetric around zero. The Student-t distribution incorpo-

rates the standard normal distribution as a special case when υ = ∞  and the 
Cauchy distribution when 1υ = . Hence, a lower value, υ  yields a distribution 
with “fatter tails”. 

3.3.2. Generalized Error Distribution 
Nelson [5] proposed the use of GED when estimating EGARCH since it is more 
appealing in terms of fulfilling stationarity compared tο the Student-t distribu-
tion. In the case of a t-Student distribution the unconditional means and va-
riances may not be finite in the EGARCH. The log-likelihood function for the 
standard GED is defined as 

( ) ( ) ( ) ( )1 2

1

1 1 1ln , ln 1 ln 2 ln ln
2 2

T
t

t t
t

z
L y

υυθ υ σ
λ λ υ

−

=

      = − − + − Γ −           
∑  (13) 

where 

1 2

2

1

2
3

υ υλ

υ

−

  Γ  
  =

  Γ    

 

The distribution of generalized error (GED) incorporates both normal distri-
bution when ( 2υ = ), Laplace distribution when ( 1υ = ), and the unique distri-
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bution for υ = ∞ . Specifically, we would say when 2υ =  the distribution of 
the random variable zt would be the standard normal distribution. When 2υ < , 
the distribution of the random variable zt, will have thicker tails than that of 
normal distribution. For 1υ =  the distribution of the random variable zt will 
have a double exponential distribution. For 2υ >  the distribution of the ran-
dom variable zt will have thinner tails than normal distribution, and for υ = ∞  
the distribution of the random variable zt will be a uniform distribution. 

In our paper we estimate the conditional volatility using normal distribution, 
t-student and generalized error distribution. Engle [2], who introduced ARCH 
models on the estimations of models used normal distribution. However, in the 
literature it is stated that the returns of assets do not follow a normal distribution 
thus Engle’s estimations could have been biased on these models ignoring vola-
tility. Many authors such as Brooks, Clare and Persand [17] and Vilasuso [18] 
proved that estimations on GARCH models following normal distribution had 
the lowest forecasting performance on models that reflected skewness and kur-
tosis in innovations. Bollerslev [19], in order to measure the kyrtosis on assets 
returns, introduced a standardized Student’s t distribution with 2υ >  degrees 
of freedom on GARCH models. 

4. Data and Descriptive Statistics 

The data in our study are collected from the official website  
www.nasdaqomxnordic.com. The data span is the period from 30 of September 
1986 to 11 May 2016 and comprise 7434 observations. The daily stock return is 
calculated as: 

( )1
1

ln 100 ln ln 100t
t t t

t

I
R I I

I −
−

 
= × = − × 

 
             (14) 

where tI  is the daily closing value of the stock market on day t, and tR  is the 
daily stock return. 

The daily closing values of OMX Stockholm 30 Index and its returns are dis-
played in Figure 1 and Figure 2, respectively. 

As it can be seen in Figure 1, the closing values of OMX Stockholm 30 Index 
show a random walk. 

As it can be seen in Figure 2, the daily returns of OMX Stockholm 30 Index 
are stationary. The return data is tested for autocorrelation both in returns as 
well as in squared returns and are displayed in Figure 3 and Figure 4, respec-
tively. 

The Ljung and Box Q-statistics [20] [21] on the 1st, 10th, 20th and 36th lags of 
the sample autocorrelations functions of the return series indicate significant 
serial correlations. When autocorrelation has been detected on data that we ex-
amine (Figure 3), we should find the autocorrelation form (ARMA (p, q)). 

In addition, in Figure 4 (Squared Daily Stock Returns), the Ljung and Box 
Q-statistics [20] [21] on the 1st, 10th, 20th and 36th lags of the sample autocor-
relations functions are statistically significant, thus indicating that there is an  

http://www.nasdaqomxnordic.com/
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Figure 1. Daily closing values of OMX stockholm 30 Index in the period from 30 September 1986 to 11 May 
2016. 

 

 
Figure 2. Daily stock returns of OMX stockholm 30 Index in the period from 30 September 1986 to 11 May 
2016. 
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Figure 3. Correlogram of daily stock returns of the OMX Stockholm 30 Index. 
 

ARCH effect. Since we have detected that there is an ARCH effect (Figure 4), we 
have to find the most suitable GARCH model which can adjust the data on the 
autocorrelation form. 

The summary of the descriptive statistics for the daily logarithmic stock index 
returns of the OMX Stockholm 30 Index is presented in Figure 5. 

The results in Figure 5 show that the daily return rates do not follow normal 
distribution. In other words, the returns of the Stockholm stock market present 
positive asymmetry and kurtosis (leptokurtic), suggesting that the return distri-
bution is a fat-tailed one. In Figure 6 the Q-Q plot is presented, which displays 
the quantiles of return data series against the quantiles of the normal distribu-
tion. 
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Figure 4. Correlogram of squared daily stock returns of the OMX Stockholm 30 Index. 

 
The Q-Q plot, which displays the quantiles of return data series against the 

quantiles of the normal distribution, shows that there is a low degree of fit of the 
empirical distribution to the normal distribution. 

The leptokurtic behavior of the data is confirmed by the normal quintile and 
empirical density graph presented in Figure 7. 

The summary of the descriptive statistics, normality tests, ARCH tests and 
unit root tests for the daily stock index returns of the OMX Stockholm 30 Index 
is presented in Table 1. 

After the detection of series stationarity, we define the form of the ARMA (p, 
q) model from the correlogram of Figure 3. Parameters p and q can be deter-
mined from partial autocorrelation coefficients and autocorrelation coefficients 
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Figure 5. Summary descriptive statistics for the daily returns of the OMX Stockholm 30 Index. 

 

 
Figure 6. Q-Q plot of daily stock returns of the OMX Stockholm 30 Index. 
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Figure 7. Normal density graphs of daily stock returns of the OMX Stockholm 30 Index. 
 
Table 1. Summary descriptive statistics, normality tests, ARCH tests and unit root tests for the daily returns of the OMX Stock-
holm 30 Index. 

Descriptive statistics Normality tests ARCH tests Unit root tests 

Mean 0.031 J-B 5601.1 Q2(10) 2857.0 ADF −84.319 

Median 0.070 p-value 0.000 p-value 0.000 p-value 0.000 

Maximum 11.02 Lilliefors 0.057 Q2(20) 4467.3 P-P −84.332 

Minimum −8.52 p-value 0.000 p-value 0.000 p-value 0.000 

Std. Dev. 1.462   Q2(30) 5521.5   

Skewness 0.025   p-value 0.000   

Kurtosis 7.252       

 

respectively, compared to the critical value 2 2 0.023
7433n

± = ± = ± . There-, 

fore the value of p will be between 0 3p≤ ≤ , and respectively, the value of q 
will be between 0 3q≤ ≤ . Thereafter, we create Table 2 with the values of p 
and q as follows: 

The results from Table 2 indicate that according to the criteria of Akaike 
(AIC), Schwartz (SIC) and Hannan-Quinn (HQ), the most suitable model is the 
ARIMA (0,0,1) model. 

After the estimation of the above model in Figure 8, we test for the existence  
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Table 2. Comparison of models within the range of exploration using AIC, SIC and HQ. 

ARIMA model AIC SC HQ 

(1,0,0) 3.5977 3.6005 3.5986 

(2,0,0) 3.5977 3.6005 3.5986 

(3,0,0) 3.5977 3.6005 3.5986 

(1,0,1) 3.5977 3.6005 3.5986 

(2,0,1) 3.5977 3.6005 3.5986 

(3,0,1) 3.5977 3.6006 3.5987 

(1,0,2) 3.5977 3.6006 3.5987 

(2,0,2) 3.5977 3.6006 3.5987 

(3,0,2) 3.5968 3.6033 3.5990 

(1,0,3) 3.5968 3.6021 3.5986 

(2,0,3) 3.5967 3.6032 3.5990 

(3,0,3) 3.5977 3.6007 3.5987 

(0,0,1) 3.5966 3.6004 3.5984 

(0,0,2) 3.5977 3.6006 3.5987 

(0,0,3) 3.5977 3.6007 3.5989 

 

 
Figure 8. Estimation of the ARIMA (0, 0, 1) model. 
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of conditional heteroscedasticity (ARCH(q) test) from the squared residuals of 
the above model. Figure 9 gives these results. 

From the results of Figure 9 we can see that autocorrelation coefficients and 
partial autocorrelation coefficients are statistically significant. Consequently, the 
null hypothesis for the absence of ARCH or GARCH procedure is rejected. 

5. Empirical Results 

Since there are ARCH effects in the Stockholm stock return data, we can proceed 
with the estimation of the ARIMA(0,0,1)-GARCH models. 

 

 
Figure 9. Q-statistics for the standardized squared residuals. 
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First of all, we estimate the symmetric ARIMA(0,0,1)-GARCH(1,1) model 
with normal distribution, t-student distribution as well as the Generalized error 
distribution (GED). The estimation of parameters is done with the maximum li-
kelihood method using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) (see 
Press et al. [22]) algorithm which is a repeating method for solving non-linear 
optimization problems without constraint. The parameters (coefficients) of es-
timated models and the residuals’ test of normality, autocorrelation and condi-
tional heteroskedasticity are provided in Table 3. A higher log-likelihood value 
yields a better fit. 

Table 3 gives both the estimation of parameters along with the value of the 
log-likelihood function as well as the residual tests of normality, autocorrelation 
and conditional heteroskedasticity. From the above table we point out that coef-
ficients are statistically significant with all distributions. Also, there is no auto-
correlation and conditional heteroskedasticity problem. Furthermore, the 
ARIMA(0,0,1)-GARCH(1,1) model has the largest value in logarithmic likelih-
ood (LL) with t-student distribution. Thus, we can use this model for forecast-
ing. 

We proceed with the following asymmetric (non linear) GARCH models such 
as the ARIMA(0,0,1)-EGARCH (1,1) model as well as the ARIMA(0,0,1)-GJR- 
GARCH(1,1) model with the normal distribution, t-student distribution and 
Generalized error distribution (GED). The estimation of parameters is done with 
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm Marquardt [1]. The 
parameters (coefficients) of estimated models and the residuals test of normality, 
autocorrelation and conditional heteroskedasticity are provided in Table 4. 

From the results of Table 4 we can see that all the coefficients of non-linear 
GARCH models are statistically significant. These results show that asymmetry 
exists. Furthermore, diagnostics tests of non-linear GARCH models seem to be  
 
Table 3. Estimated symmetric GARCH models for the daily returns of the OMX Stock-
holm 30 Index. 

ARIMA(0,0,1)-GARCH(1,1) 

Parameter Normal Student’s-t GED 

ω 0.037(0.000) 0.025(0.000) 0.030(0.000) 

α1 0.096(0.000) 0.095(0.000) 0.096(0.000) 

β1 0.885(0.000) 0.894(0.000) 0.890(0.000) 

  D.O.F = 9.056 (0.000) PAR = 1.499(0.000) 

Persistence 0.981 0.989 0.986 

LL −12245.51 −12112.3 −12148.7 

Jarque-Bera 2610.0(0.000) 3408.1(0.000) 2982.4(0.000) 

ARCH(10) 2.783(0.986) 3.034(0.980) 2.911(0.983) 

Q2( 30) 12.142(0.998) 16.335(0.980) 14.439(0.993) 

Notes: 1. The persistence is calculated as α1 + β1 for the ARMA(0,0,1)-GARCH(1,1) model. 2. Values in 
parentheses denote the p-values. 3. LL is the value of the log-likelihood. 
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Table 4. Estimated asymmetric GARCH models for the Daily Returns of the OMX 
Stockholm 30 Index. 

ARIMA(0,0,1)-EGARCH(1,1) 

Parameter Normal t-Student GED 

Ω −0.111(0.000) −0.122(0.000) −0.118(0.000) 

α1 0.158(0.000) 0.167(0.000) 0.163(0.000) 

β1 0.975(0.000) 0.978(0.000) 0.977(0.000) 

γ1 −0.088(0.000) −0.089(0.000) −0.087(0.000) 

T-Dist.Dof  10.128(0.000) 1.546(0.000) 

Persistence 0.975 0.978 0.977 

LL −12159.04 −12044.66 −12082.75 

Jarque-Bera 2199.27(0.000) 2601.59(0.000) 2397.07(0.000) 

ARCH(10) 4.521(0.920) 3.162(0.977) 3.647(0.961) 

Q2(30) 12.667(0.998) 13.641(0.995) 12.869(0.997) 

ARIMA(0,0,1)-GJR-GARCH(1,1) 

Parameter Normal t-Student GED 

Ω 0.040(0.000) 0.033(0.000) 0.036(0.000) 

α1 0.023(0.000) 0.026(0.000) 0.025(0.000) 

β1 0.891(0.000) 0.890(0.000) 0.890(0.000) 

γ1 0.127(0.000) 0.131(0.000) 0.128(0.000) 

T-Dist.Dof  10.198(0.000) 1.555(0.000) 

Persistence 0.9775 0.9815 0.979 

LL −12155.06 −12042.88 −12080.43 

Jarque-Bera 2105.14(0.000) 2534.87(0.000) 2308.25(0.000) 

ARCH(10) 3.521(0.966) 4.555(0.918) 3.989(0.947) 

Q2(30) 12.492(0.998) 15.569(0.986) 13.923(0.995) 

Notes: 1. The persistence is calculated as 1β  for ARIMA(0,0,1)-EGARCH(1,1) model, and 1 1 12α γ β+ +  
for ARIMA(0,0,1)-GJR-GARCH(1,1) model. 2. Values in parentheses denote the p-values. 3. LL is the value 
of the log-likelihood. 

 

satisfactory. Also, the results from the models show that Q-statistics for the 
standardized squared residuals and the ARCH-LM test are insignificant with 
high p values. From the above table we can see that ARIMA(0,0,1)-GJR- 
GARCH(1,1) model has the largest logarithmic likelihood (LL) value with 
t-student distribution. Thus, this model can be used for forecasting. 

5.1. Asymmetric and Leverage Effects 

Asymmetry and leverage effects results are examined for non-linear variances of 
ARIMA(0,0,1)-EGARCH(1,1) and ARIMA(0,0,1)-GJR-GARCH(1,1) models 
from three different distributions. Since the coefficients are statistically signifi-
cant in all cases, asymmetry exists. Positive signs of the coefficients on the 
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ARIMA(0,0,1)-GJR-GARCH(1,1) models as well as negative signs on the 
ARIMA(0,0,1)-EGARCH(1,1) models indicate that there are leverage effects. In 
addition, bad news has more impact on volatility than good news in all distribu-
tions that we used. In the following Table 5, we present the models with the 
three distributions indicating that bad news have more impact on volatility. For 
example, on the ARIMA(0,0,1)-GJR-GARCH(1,1) model and t-student the effect 
of bad news on conditional volatility is 6.03 times higher than good news. 

5.2. Test of Asymmetries 

In order to examine if an asymmetric model is suitable for forecasting, Engle and 
Ng [15] created a test known as the sign and size bias test defining if an asym-
metric model is suitable for the examined series or to what extent the symmetric 
GARCH model is considered adequate. The Engel-Ng [15] test is usually applied 
to the residuals of a GARCH fit to the returns data. The sign and size bias test is 
based on the significance of b1 coefficient of the following regression: 

2
0 1 , 1t̂ i t tb b D vε −

−= + +                       (15) 

where 
2
t̂ε  are the squared residuals from the symmetric GARCH model. 

, 1i tD−
−  is a dummy variable which takes the value 1 if t iε −  is negative and 0 

otherwise, and gives the slope dummy value. 

tv  is an i.i.d. error term. (see Dutta [14]). 
If b1 coefficient is statistically significant in positive and negative changes rela-

tively to conditional variance then there is asymmetry on the GARCH model. 
A test for sign bias can also be conducted using the following regression: 

2
0 1 1 1t̂ t t tb b D vε ε−

− −= + +                      (16) 

Like regression (15), the statistical significance of b1 coefficienton regression 
(16) indicates that the size of a shock will have an asymmetric impact on volatil-
ity. Regression (16) tests the negative bias size. For the positive bias size we use 
the following regression: (see Dutta [14]) 

( )2
0 1 1 1ˆ 1t t t tb b D vε ε−

− −= + − +                   (17) 

A joint test can be conducted through defining 1tD+
−  as 11 tD−

−−  which indi-
cates a positive size bias. The joint test for positive sign bias and positive or neg-
ative size bias is presented on the following regression: 
 
Table 5. The magnitude of news impact on volatility. 

 ARIMA(0,0,1)-EGARCH(1,1) ARIMA(0,0,1)-GJR-GARCH(1,1) 

 Normal t-Student GED Normal t-Student GED 

Bad News 1.088 1.089 1.089 0.150 0.157 0.153 

Good News 1.012 0.911 0.913 0.023 0.026 0.025 

Notes: The asymmetry is calculated as 11 γ− , and 11 γ+  for the ARIMA(0,0,1)-EGARCH(1,1) model, 

1 1α γ+  , and 1α  for the ARIMA(0,0,1)-GJR-GARCH(1,1) model. 
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2
0 1 1 2 1 1 3 1 1t̂ t t t t t tb b D b D b D vε ε ε− − +

− − − − −= + + + +              (18) 

The significance of b1 coefficient of regression (17) shows the existence of sign 
bias where positive and negative changes have different consequences in volatil-
ity compared to the symmetric GARCH model. On the other hand, the signific-
ance of b2 and b3 coefficients of regression (18) indicates not only size bias but 
also if the size of change is significant. The test follows a χ2 distribution with de-
grees of freedom equal to 3. The joint test statistic is given from the formula TR2. 
The null hypothesis for the joint test is that there is no asymmetric result. (see 
Brooks, [23], pp. 474-475). Table 6 presents the results of the asymmetry and 
volatility tests. 

The results of Table 6 show that the sign bias test is statistically significant on 
both models. Thus, there is asymmetry. This result is also confirmed from two 
size bias tests having large statistical significance. Also, from the results of the 
above table we can see that the size effect of bad news is stronger than that of 
good news. 

5.3. Likelihood Ratio Tests 

The Likelihood ratio (LR) tests consist of estimations on two models, (an unre-
stricted model and a restricted one). The null hypothesis that is examined is 

0 1: 0H γ = . The maximized values of log-likelihood function (LLF) are used on 
this test according to the following: 

( ) ( )22 r uLR LLF LLF mχ= − − →               (19) 

where 

rLLF  is the value of maximum likelihood function from the constrained 
model 

uLLF  is the value of maximum likelihood function from the unconstrained 
model 

m  the number of constraints. 
The Likelihood ratio (LR) tests follow asymptotically χ2 distribution with m 

degrees of freedom. Table 7 presents the maximized values from all estimated 
models with the corresponding distributions. 
 
Table 6. Tests of asymmetries. 

 ARIMA(0,0,1)-EGARCH(1,1) ARIMA(0,0,1)-GJR-GARCH(1,1) 

 Normal t-Stud. GED Normal t-Stud. GED 

Sign bias 0.030* 0.056* 0.039* 0.203* 0.054* −0.053* 

Negative size bias −0.265* −0.055* −0.015* −0.684* −0.048* −0.030* 

Positive size bias 0.331* 0.043* 0.111* 0.039 0.036* 0.019* 

Joint test (F-test) 2614.8 853.4 9212.3 1115.06 432.36 13409.3 

p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Notes: 1. (*) denotes significance at the (1%); 2. The t-statistics for the sign bias, negative size bias and pos-
itive size bias tests are those of coefficient b1 in regression (15), (16) and (17), respectively. 3. The F-statistic 
is basedon regression (18). 4. Values in parentheses denote the p-values. 
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Table 7. Likelihood-ratio test results. 

  LLFr LLFu LR 

ARIMA(0,0,1)-GARCH(1,1) Normal −12245.51   

 t-Student −12112.3   

 GED −12148.7   

ARIMA(0,0,1)-EGARCH(1,1) Normal  −12159.04 172.94* 

 t-Student  −12044.66 135.28* 

 GED  −12082.75 131.9* 

ARIMA(0,0,1)-GJR-GARCH(1,1) Normal  −12155.06 180.9* 

 t-Student  −12042.88 138.84* 

 GED  −12080.43 136.5* 

Note: (*) denotes significance at the (1%) level, LLFr is the value from maximum likelihood function from 
the constrained model, LLFu is the value from maximum likelihood function from the unconstrained model 
and LR is Likelihood ratiotest. 

 
The results from Table 7 show that null hypothesis is rejected so asymmetry 

exists. Thus, we can use both models of forecasting due to existence of asymme-
try (Engle and Ng, and LR test). Furthermore, the negative value of 1γ  coeffi-
cient on the ARIMA(0,0,1)-EGARCH(1,1) model and the positive value of 1γ  
coefficient on the ARIMA(0,0,1)-GJR-GARCH(1,1) model denote the presence 
of leverage. 

6. Forecasting the Volatility of the Stockholm Stock 
Exchange Index Returns ex Post 

In this section we present the forecasting results from the two asymmetric mod-
els. In our paper we forecast for future values on rate of return and volatility on 
the Stockholm stock market using the static1-step ahead method based on esti-
mated parameters of the two asymmetric models. The last 434 series observa-
tions were used for an ex-post forecast, with the main focus on the forecast of 
volatility. In the literature, a variety of statistics has been used which evaluates 
and compares the forecasts of returns. The optimal forecasting value is evaluated 
through Mean Squared Error. Other statistical indices usually used for the return 
of forecasting are the Mean Absolute Error (MAE), the Root Mean Square Error 
(RMSE), the Mean Absolute Percentage Error (MAPE) and the (Theil U-Theil 
index [24]). The lower the values of the RMSE, MAE and MAPE indices, the 
better the forecast of models. Figure 10 and Figure 11 of the two models for the 
period we analyze are given below: 

The above figures show that estimation intervals are stable on both models. 
However, there are some indices that help us to test the forecast of a model. The 
first one is referred to as the Mean Square Error. According to Patton [25] this 
criterion is the most powerful for the evaluation of models. However, the mean 
square error has some constraints on the forecasting of variance. According to 
Vilhelmsson [26], this index is sensitive to outliers. So, Vilhelmsson suggests the  
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Figure 10. Ex-post forecast of the volatility of the Stockholm Stock Exchange index returns 
(ARIMA(0,0,1)-EGARCH(1,1). 

 
 

Figure 11. Ex-post forecast of the volatility of the Stockholm Stock Exchange index returns 
(ARIMA(0,0,1)-GJR-GARCH(1,1). 
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mean absolute error index which is more robust to outliers. According to the 
Mean Absolute Error (MAE), the Root Mean Square Error(RMSE) and Mean 
Absolute Percentage Error (MAPE), the ARIMA(0,0,1)-EGARCH(1,1) model 
provides more exact forecasts on the returns of the Stockholm stock market. 

7. Conclusions 

The modeling and forecasting of volatility in financial markets used to be a fun-
damental issue for many researchers. The importance of this problem increased 
over the last years as there is upheaval in the financial world. The aim of this 
paper is to compare various volatility models and forecast for future values re-
garding the rate of return and volatility of the Stockholm stock market using 
1-step ahead. Measuring the period from 30 September 1986 until 11 May 2016 
and using as a sample 7,434 daily observations for different models we con-
cluded that the asymmetric models give better results on the returns and volatil-
ity of the Stockholm stock market. More specifically, we estimated the symme-
tric ARIMA(0,0,1)-GARCH(1,1) model, as well as the asymmetric models 
ARIMA(0,0,1)-EGARCH(1,1) and ARIMA(0,0,1)-GJR-GARCH(1,1) models 
with different residual distributions. The analysis of estimations indicated that 
t-student distribution is considered the most suitable on the estimation of para-
meters for all models. These results are in accordance with the empirical works 
by (Hamilton and Susmel [27]), (Poon and Granger [28]) and many others do-
cumented conditional non-Gaussianities in financial data. Moreover, an effort 
was made to test the asymmetric response of volatility on the positive and nega-
tive changes of models. The results of our paper, as far as the asymmetric tests 
are concerned, showed that negative changes are more frequent and more po-
werful (robust) on the returns of the Stockholm stock market. 

To sum up, the results of our paper confirm previous findings that GARCH 
models with normal errors do not seem to fully capture the leptokurtosis in em-
pirical time series (see, e.g. Kim and White [29]). Contrary to t-student distribu-
tion and GED, which provide a better frame on conditional volatility, we can 
better test the time-varying heteroskedasticity, skewness and kurtosis of the se-
ries. This is accomplished by allowing the parameters of the two distributions to 
vary through time. Finally, the asymmetric models appear to better formulate 
the different responses to different past shocks and to explain conditional vola-
tility. 
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