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Abstract 
The N-body problem is an active research topic in physics for which there are 
two major algorithms for efficient computation, the fast multipole method 
and treecode, but these algorithms are not popular in financial engineering. In 
this article, we apply a fast N-body algorithm called the Cartesian treecode to 
the computation of the integral operator of integro-partial differential equa-
tions to compute option prices under the CGMY model, a generalization of a 
jump-diffusion model. We present numerical examples to illustrate the accu-
racy and effectiveness of the method and thereby demonstrate its suitability 
for application in financial engineering. 
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1. Introduction 

The standard and celebrated model for option pricing in the financial industry 
has been the Black-Scholes model [1] because of its simplicity. However, it is dif-
ficult to capture the realistic behaviors observed in option markets with this 
model. Recently, jump-diffusion models, which take into account jump behavior 
of underlying assets, have gained attention in financial engineering (the details 
are given in [2], for example). For a European option, researchers have suggested 
efficient schemes which apply numerical methods such as the fast Fourier trans-
form (FFT) [3], the Hilbert transform [4], and the Fourier-cosine (COS) [5] 
methods. The application of these methods to path-dependent options has also 
been investigated (for example, [6]). 

One approach to price options under jump-diffusion models is to solve the 
corresponding partial integro-differential equations (PIDEs) numerically, but 
the PIDEs include non-local integral operators which make the direct numerical 
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evaluation of PIDEs computationally expensive. An efficient approach for com-
puting the integral term is to use the FFT [7] [8] [9] [10], but this requires two 
FFT operations per time-step and direct use of FFT requires either a uniform 
grid or an additional interpolation scheme [11]. Also, an efficient scheme which 
transforms the PIDEs to pseudo-differential equations and applies FFT to the 
equations has been suggested [12], but this also requires two FFT operations per 
time-step for path-dependent option pricing. 

The present paper introduces an application of the Cartesian treecode [13] 
which has been used as an efficient algorithm for the N-body problem. The 
N-body problem, which simulates the interactions between individual particles 
in a multi-particle system, is an active research topic in physics. However, direct 
computation for this problem is computationally expensive and there are two 
major efficient algorithms: the fast multipole method (FMM, [14] [15] [16] [17]) 
and treecode [13] [18]. FMM is relatively complicated and the performance is 
not sufficient for the actual computation. On the other hand, although the com- 
putational burden of treecode is greater, its implementation is straightforward 
and easier to use in practice. 

Little study has been done on the application of these fast N-body algorithms 
to financial engineering. One application of FMM called the fast Gauss trans-
form (FGT, [16]) has been implemented under Merton’s jump-diffusion model 
[19] to solve the corresponding PIDE [9]. However, its computational efficiency 
was observed to be poor because the method requires more grid points than the 
FFT method to achieve similar accuracy. Recently, the improved fast Gauss 
transform (IFGT, [20]) has been applied and numerical experiments have shown 
that this method is more efficient than the FFT method [21]; however, IFGT can 
be applied only to Merton’s jump-diffusion models. 

In the present paper, we apply another efficient approach, called the Cartesian 
treecode [13], to the CGMY model ([11] [22]). To our best knowledge, this is the 
first paper applying treecode to option pricing modeling. Using numerical ex-
amples, we examine its computational accuracy and ease of implementation for 
the computation of the integral operators of the PIDE. The use of the treecode 
makes the computation of option pricing faster than the original finite difference 
method without losing accuracy. 

Furthermore, we examine whether treecode is also applicable in the field of 
financial engineering. 

2. Cartesian Treecode 

In the N-body problem studied in physic, the main goal is to compute the sum-
mation of pairwise interactions over the particles in a given system (e.g., gravita-
tional forces of stars in a galaxy or the Coulomb forces of atoms in a molecule). 
Herein, we consider N particles located at 1 2, , , Nx x x . Then given coefficients 

1 2, , , NC C C  and potential ( ),K x y  which describes some relation between 
particles at positions x and y, we want to compute 
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( ) ( )
1

, .
N

i j i j
j

F x C K x z
=

= ⋅∑                     (1) 

However, naive computation of the direct summation results in an ( )2O N  
computational cost. The Cartesian treecode [13] is a type of treecode used to 
evaluate the screened Coulomb (Yukawa) potential efficiently, which involves 
potential ( ),i jK x z  given by 

( ) e, : .
j iz x

i j
j i

K x z
z x

κ− −

=
−

                      (2) 

The intuitive idea behind treecode is that one imagines wanting to compute 
gravitational force ( )iF x  of a star located at some point ix . Given clusters of 
stars which are very far from the target star, instead of summing the gravita- 
tional force of all the stars in the clusters, if D/r is very small, where D is the size 
of the cluster and r is the distance of the cluster point from the target point, then 
we can approximate the force for each cluster as that of a star whose mass is 
equal to the total sum of the stars in the cluster and is located at the center of the 
cluster (called the cluster point). Treecode applies the Barnes-Hut algorithm [18] 
to build a hierarchy of such clusters and employs an efficient recursive compu- 
tation of (far-field) Taylor coefficients to compute particle-cluster approxima- 
tions of the screened Coulomb potential, reducing the computational cost from 

( )2O N  to ( )logO N N . 
A more concrete explanation of the Cartesian treecode is as follows (see [13] 

for details). First, particles ( )1 2, , , nx x x  are divided into a hierarchy of clus-
ters c’s by the Barnes-Hut algorithm, 

( ) ( ) ( ) ( ), , .
j

i c i c i i i j
c z c

F x F x F x C K x z
∈

= = ⋅∑ ∑             (3) 

Second, truncated expansion of the Taylor series of ( ),i jK x z  up to order p 
around cluster point cz  gives 

( ) ( ) ( )
0

,1, .
!

c

kp ki
i j j ck

k z z

K x z
K x z z z

k z= =

∂
= −

∂∑               (4) 

For each cluster c, the Taylor expansion is applied if r
R

θ≤ , where r is the  

radius of the cluster, R is the distance from ix  to the cluster c, and θ  is the 
multipole acceptance criterion (MAC) parameter. If the condition is not satisfied, 
then the children of c are examined, or simple direct summation is applied if the 
cluster is a leaf of the tree. Finally, substituting (4) into (3) gives 

( ) ( ) ( )

( ) ( ) ( )

0

,
0 0

,1
!

,1 : , .
!

j
c

j
c

kp ki
c i j j ck

z c k z z

kp pki
j j c k i c c kk

k z c kz z

K x z
F x C z z

k z

K x z
C z z L x z M

k z

∈ = =

= ∈ ==

∂
= ⋅ −

∂

∂
= − =

∂

∑ ∑

∑ ∑ ∑
   (5) 

Because ( ),k i cL x z  is independent of jz  and ,c kM  is independent of ix , 
( ),k i cL x z  and ,c kM  can be calculated independently and computation of 
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( )c iF x  is more efficient (notice that in order to compute (1), the summation is 
required at each ix ). Furthermore, the upshot of this Cartesian treecode is that 
the Taylor coefficients ( ),k i cL x z  are evaluated recursively. 

Generally, FMM is a more sophisticated model for N-body problems in the 
sense that it also uses near-field expansions, which reduces the computational 
cost from ( )logO N N  to ( )O N , but the additional use of near-field expan-
sions complicates the algorithm and affects the actual performance, whereas the 
treecode method is simple and straightforward to implement. 

3. Application to Solving a PIDE 

We apply the Cartesian treecode to option pricing under the CGMY model with 
diffusion coefficients ([11] [22]). We assume the underlying stock price S to fol-
low a jump process so that the European option price ( ),V S t  satisfies the fol-
lowing PIDE (see [2] for details of the model and the derivation of the PIDE): 

( )

( ) ( ) ( ) ( )

2 21
2

e , , e 1 d ,

t SS S

z z
SR

V S V r q SV rV

V S t V S t S V f z z

σ= + − −

 + − − − ∫
           (6) 

where ( ) ( )1 e d ,z
R

f z zω = −∫  r is the risk-free rate, q is the dividend, t is the 
time to maturity, and ( )f z  is the jump measure. The initial condition is given 
by 

( ) ( ), 0 max ,0 ,V S S K= −                     (7) 

where K is the strike price. Substituting ( )lnx S K=  gives 

( )

( ) ( ) ( ) ( ) ( )

21
2

, , e 1 , d

t xx x

z
xR

V V r q V rV

V x z t V x t V x t f z z

σ= + − −

 + + − − − ∫
         (8) 

with 

( ) ( ), 0 max e ,0 .xV x K K= −                    (9) 

The major drawback of this approach is that we need to compute the integral 
operator given in this PIDE at each time-step; however, use of the Cartesian 
treecode makes this efficient. Under the CGMY model, ( )f z  is expressed as 

( ) 0 01 1
e e1 1

G y My

CGMY y yY Yf y C C
yy

− −

< >+ += ⋅ + ⋅              (10) 

for 0C > , 0G ≥ , 0M ≥ , and 2Y < . The CGMY model has both finite and 
infinite activity: in the case of 0Y < , it has finite activity. Also, the CGMY mo- 
del has both finite and infinite variance: if 0 1Y< < , the process has finite va-
riance, whereas it has infinite variance in the case of 1 2Y< < . As mentioned 
previously, the CGMY model is a generalization of a jump-diffusion model in 
the sense that 0Y =  corresponds to what is also referred to as the variance 
gamma (VG) model [23] and 1Y = −  corresponds to Kou’s jump-diffusion 
model [24]. 
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Furthermore, a more general jump-diffusion model exists known as the gene-
ralized tempered stable model [2], 

( )
1 21 0 2 01 1

e e1 1 ,
| |

G y My

alpha y yY Yf y C C
y y

− −

< >+ += ⋅ + ⋅               (11) 

for 1 2, 0C C >  and 1 2, 2Y Y < , and application of the Cartesian treecode is 
straightforward. 

For numerical evaluation of the PIDE, we employed a simple scheme of the 
Crank-Nicholson method for the case of a uniform discretization of points, 
0 Si N≤ ≤  and 0 Tj N≤ ≤ , where SN  and TN  represent the numbers of dis- 
cretization points and time steps, respectively. Under this scheme, we decom- 
pose the integral part as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

min

max

max

min

, , e 1 , d

d

d

e 1 d e 1 d

e 1 d ,

i

i

z
x CGMYR

x x
i CGMY ix

x
i CGMY ix x

x xz z
x i CGMY x i CGMYx x

x z
i i x i CGMYx

V x z t V x t V x t f z z

V z V x f z x z

V z V x f z x z

V x f z z V x f z z

V x z V x V x f z z

−∆

+∆

−∆

∆

∆

−∆

 + − − − 

 ≈ − − 

 + − − 

− − − −

 + + − − − 

∫

∫

∫

∫ ∫

∫

   (12) 

where we employ the following approximation [25] for the last term: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
3

e 1 d

.
2

x z
i i x i CGMYx

CGMY CGMY xx i

V x z V x V x f z z

x
f x f x V x

∆

−∆
 + − − − 

∆
≅ −∆ + ∆ ⋅  

∫
         (13) 

Then the PIDE is solved numerically via a simple Crank-Nicholson scheme: 

( ) ( )

1 1 1
11 1 1 12

1 1 1
1 1 1 11

2 2

3 4

2 2 2 2

2 2
2

,

j j j j j j
j ji i i i i i

i i

j j j j j j
i i i i i i

i i

V V V V V Vr q L r V V
t x x

V V V V V VL
x x

L x L x

+ + +
++ − + −

+ + +
− + − +

 − − −− −  − + + +   ∆ ∆ ∆ 
 − + − +

− + ∆ ∆ 
= −

    (14) 

where 

( ) ( ) ( )
3

1 : ,
2 CGMY CGMY
x

L f x f x
∆

= −∆ + ∆    

( ) ( ) ( ) ( )max

min
2 : e 1 d e 1 d ,

x xz z
CGMY CGMYx x

L f z z f z z
−∆

∆
= − + −∫ ∫  

( ) ( ) ( ) ( ) ( )max

min
3 : d d ,i

i

x x x
i CGMY i CGMY ix x x

L x V z f z x z V z f z x z
−∆

+∆
= − + −∫ ∫  

( ) ( ) ( ) ( )max

min
4 : d d .i

i

x x x
i i CGMY i CGMY ix x x

L x V x f z x z f z x z
−∆

+∆
 = ⋅ − + −  ∫ ∫  

The boundary conditions are given by 

( )
0, ,

,
e e , .x r

x
V x t

K K xτ−

→ → −∞
 − → +∞
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Use of an iterative scheme [11] is also possible as a means of maintaining 
second-order accuracy with respect to time, but for simplicity ( )3 iL x  and 

( )4 iL x  are computed explicitly. ( )3 iL x  is computed via the Cartesian tree- 
code and in this case the Taylor coefficients of CGMYf  are computed recursively 
as described in the next section. In the numerical evaluation of 2L , ( )3 iL x , and 

( )4 iL x , approximation using the trapezoid rule is employed. In addition, the 
construction of the hierarchy of clusters is executed only at the initial time-step 
because the grid points are fixed under the Crank-Nicolson scheme. 

4. Recursive Computation of ( )iL x3  

The Taylor coefficients can be evaluated as follows. Let 1
e z x

Yz x

κ− −

+Φ =
−

 and 

e ,
z x

z x

κ− −

Ψ =
−

 where 0 0: 1 1z x z xG Mκ − < − >= ⋅ + ⋅ . Then Yz x− Φ = Ψ  and differ- 

entiating with respect to z k times ( 2k ≥ ) gives 

( ) ( )

( ) ( )

1
2

1

2 1
2

2 1

2 1

1 2 .

k k

k k

k k
Y

k k

z x k Y z x
z z

k k Y z x
zz z

−

−

− −
−

− −

∂ Φ ∂ Φ
− + − + −  ∂ ∂

∂ Φ ∂ ∂Ψ + − − + = −     ∂∂ ∂  

          (15) 

On the other hand, 
2 1 ,Yz x z x

z
κ− ∂Ψ

− =  + − Φ ∂
                   (16) 

and differentiation with respect to z k times ( 2k ≥ ) gives 

( ) ( ) ( )

( ) ( )

( )

1 3
2 1

31 3

2

2

1

1

1 2 1

1 1 2

1 .
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Y

kk k

k

k

k

k

z x k k z x z x
zz z

k z x
z

z x z x
z

κ

κ

κ

− −
− −

≥− −

−

−

−

−

∂ ∂Ψ ∂ Φ − = − − − − − ⋅ ∂∂ ∂ 
∂ Φ

− − + −
∂
∂ Φ

− −  + −   ∂

   (17) 

From (15) and (17), we get 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2
2

1 2

3
1
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2 1

2 1
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Finally, dividing by !k  and substituting ix x=  and cz z=  gives the fol-
lowing recursive equation for ( ),k

i cL x z : 

( )
( ) ( )
( ) ( )

( ) ( )

2

1

2

1 3
3

,

2 1 ,

1 2 ,

, 1 .

k
c i i c

k
c i c i i c

k
c i i c

k
c i c i i c k

k z x L x z

z x k Y z x L x z

k Y z x L x z

z x z x L x z

κ

κ

κ

−

−

− −
≥

−

 = − − − + + − 
− − + + −

− − − ⋅

           (19) 

5. Numerical Examples 

We conducted the following numerical experiments, which were executed in 
Python. The following parameter settings were used [22]: r = 0.06, q = 0.00, C = 
0.42, G = 4.37, M = 191.2, Y = 1.0102, and T = 0.25. In the case of the Cartesian 
treecode, we used publicly available Python code1 using the settings 0.5θ = , P = 
15, and MP = 30, where MP  is the maximum number of particles in each node 
of the hierarchy of clusters, and so using a smaller value for MP results in a dee-
per hierarchy of clusters. The vertical axis in Figure 1 above indicates the price 
error computed as the difference between the reference price of the Fourier 
transform method [3] and the price computed using (14), where ( )3 iL x  is 
computed using the Cartesian treecode (Treecode 1). Treecode 2 indicates the 
difference between the reference price of the Fourier transform method [3] and 
the price whose ( )3 iL x  is computed at only one-eighth the number of grid 
points ix  equally distributed and spline interpolation is employed for the other 
grid points. The vertical axis in Figure 1 bellow indicates the computation time 
in case of Treecode 1 and Treecode 2. As shown, there is little difference in Price 
Error between the cases of FFT and Treecode 1. 

 

  
Figure 1. Comparison of price errors and computation time (S = 100, K = 100). The horizontal axis i indicates the integer i used in 

the numbers of discretization points and time steps under the Crank-Nicolson scheme (14): ( ) ( )1 1, 1000 2 ,150 2i i
S TN N − −= ⋅ ⋅  for 

1,2,3i = . 

 

 

1The code is available at https://bitbucket.org/cdcooper/yukawatree 

https://bitbucket.org/cdcooper/yukawatree
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The flexibility of treecode allows it to achieve higher efficiency of decreasing 
computational time by choosing target grid points to compute ( )3 iL x , as is 
done in Treecode 2. 

For Treecode 2, because ( )3 iL x  is a smooth curve with respect to ix , it suf-
fices to only compute one-eighth the number of grid points ix  equally distri-
buted and interpolating the other grid points via a spline scheme for evaluation 
of ( )3 iL x . As shown in Figure 1, we can achieve similar price errors in the case 
of Treecode 2, while reducing computational time. This method would be espe-
cially useful for path-dependent option pricing and a detailed investigation is left 
for future research. 

Figure 2 shows the price and delta values of a European call under the CGMY 
model for different values of Y using Treecode 2. Here, Y = 0.75 indicates that 
the process has finite variance and therefore the prices are lower than the case of 
Y = 1.0102, whose process has infinite variance. Figure 3 shows the price and 
delta values of a European call under the CGMY model with Y = 0.0 (therefore 
this model corresponds to a VG model) using Treecode 2, where the following 
parameter settings [26] were used: r = 0.00, q = 0.0, C = 5.9311, G = 20.2648, M 
= 39.784, Y = 0.00, and T = 0.5. Both figures demonstrate the smoothness of 
price and delta with respect to stock price. 

6. Conclusion 

In this article, we describe applying one of the fast N-body algorithms used in 
physics, the Cartesian treecode [13], to the evaluation of the integral operator in 
a PIDE under the CGMY model. Numerical examples are presented and the re-
sults verify the accuracy and efficiency of the treecode method. The recursive 
computation of coefficients is efficient and by choosing the grid points to be 
computed and applying interpolation for the other grid points, we can achieve  

 

  
Figure 2. European call option under CGMY model (K = 100): Price and Delta. These are computed using (14), where ( )3 iL x  is 

computed at only one-eighth the number of grid points ix  equally distributed and spline interpolation is employed for the other 
grid points. 



T. Sakuma   
 

316 

  
Figure 3. European call option under VG model (Y = 0.0, K = 100): Price and Delta. These are computed using (14), where 

( )3 iL x  is computed at only one-eighth the number of grid points ix  equally distributed and spline interpolation is employed for 

the other grid points. 
 
high efficiency compared to the original finite difference method without losing 
accuracy. In addition, the Cartesian treecode can be directly applied to a non- 
uniform grid, and the use of transformation maps [10] to increase accuracy is 
also possible. In this paper, we consider a one-dimensional case, but the treecode 
method is applicable to up to three-dimensional cases, and therefore we can ap-
ply the code to a two-dimensional PIDE for pricing basket and spread options. 
On the other hand, because the treecode method is only applicable to up to 
three-dimensional cases, the limitation of this approach is that we cannot com-
pute the price of a multi-asset option which involves more than three assets. Ap-
plication to path-dependent option pricing is also interesting and left for future 
research. 
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