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Abstract 
In relativistic mechanics the time-like vector characterize the motion in 
spacetime with speed faster than the speed of light in vacuum c in which the 
line element 2 2 2 2 2 2ds c dt dx dx dz= − − −  is less than zero (where dt  is infi-
nitesimal change in time, ,dx dy  and dz  are infinitesimal change in space), 
thus the time in relativistic mechanics can instantaneously flow [1], however 
in quantum mechanics although the time is treated as unobservable parame-
ter (without any Hermitian observable operator have engine-value equivalent 
to time) any two physical quantity described by two non-commuting observa-

ble operators Â  and B̂  fulfill ˆ ˆˆ ˆAB BA≠ , the knowledge of one imme-
diately produce the knowledge of the other [2], thus in quantum mechanics if 
two particles interacted in finite temporal epoch and then separated in space 
the gaining of knowledge by the local measurement of physical quantity runs 
on one them (for example the measurement of spin direction of one particle 
using Stern-Gerlach experiment) immediately produce the knowledge of the 
complementary physical quantity of the other particle (for example the op-
posite spin direction of the other particle), this simply called quantum entan-
glement the concept that so much advanced after publication of the Jon Bell’s 
1964 celebrated paper [3] in which he illustrated that we can add parameters 
to quantum mechanics to determine the results of individual measurements, 
without changing the statistical predictions, and then he conclude “there 
must be a mechanism whereby the setting of one measuring device can in-
fluence the reading of another instrument, however remote. Moreover, the 
signal involved must propagate instantaneously so that such a theory could 
not be Lorentz invariant”. The question now what these signals that can 
propagate instantaneously? The answer in this paper will be the time signals 
field which is defined for each constituent matter particle M and at each 
space point P as the measure of the total length of all occupation and leaving 
epochs of P by M which is representing a sequence function compactly sup-
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ported only at the space point occupied by it and indexed by the number of 
occupation epochs of P by M, thus the flow of this time signal field from the 
far future to near future through the present to the near past to the far past 
inferable by the flow of matter particles constituting the system(such as sun, 
moon earth and clocks hands). Thus the present will represent in this paper a 
local absolute feature of time signals field defined at each space point as the 
set of all occupation epochs of it by matter particle, however the past and fu-
ture will represent relativistic non-local features of the time signal field de-
fined at each space point as a set of all leaving epochs between each two se-
quential occupation epochs, so the future after one occupation epoch is 
representing a past of the next one. Thus according to current representation 
of time, the two Mc-Taggard’s A and B series of time [4] will exist together as 
temporal set and then the time is real, the A-series in current theory is a set 
of all occupation and leaving epochs of space point by the matter particle that 
is consisting of the present, past and future epochs, and the B-series is the set 
of all leaving epochs of space points between each two sequential occupation 
epochs which are taking position before or after the discrete occupation 
epochs between them and then before or after each other. 
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1. Introduction 

The direction of using the quantum entanglement in the measurement of time 
introduced by Don Page and Wooster who are argued that quantum entangle-
ment can be used to measure time [5], other theorist used quantum entangle-
ment to explain the flow of time [6]. The current investigation of time using the 
quantum entanglement will take new direction in which we can represent the 
real time state of any physical system consisting of one or more matter particles 
at any space point P as single entangled state called hereinafter the real-time 
state with dimension equivalent to the number of constituent matter particles of 
the physical system and with components equivalent to time of each one of them 
at P, the author will investigate the translation of this real-time state as quantum 
entanglement phenomena in which the measurement of occupation of P by any 
one constituent matter particle of the physical system S immediately produce the 
equivalent measurement information of the part of lengths of all leaving epochs 
of P by the rest constituent matter particles of S that occupied and left P, this 
translation as we will see implied the existence of finite set of digital states which 
are: 1) representing a basis for Entanglement Translation of the real-time state at 
each spatial position, and 2) distributed into set of sequential digital levels in 
which the real-time state of the physical system is transits from one digital level 
to the next digital level equivalently to the orbital transition. 
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2. Basis Formulation 
2.1. Why We Need for the Current Theory of Space and Time 

In order to understand why we need to the current theory of time take for ex-
ample the mechanism of forwarding the time in the analog clock, in which all 
three hands—second, minute and hour hand—are occupying and leaving their 
occupies space when the impulse system of the analog clock exerting a single 
impulse acting on all of them simultaneously, this single impulse is representing 
superposition of all electromagnetic wave that are reflecting by the surface’s 
points of underlying elementary constituent matter particle of the clock’s hands 
and its remainder parts at each exerting epoch of impulse system, however there 
is existing strong correlation between the number of exerted impulses, the num-
ber of occupation epochs of points in the space of motion of the clock’s hands by 
them and the measurable time by tracking the paths occupied by the analog 
clock’s hands, we can illustrating this correlation using the fact that the duration 
of each impulse is one second to write the time t at each point in the space of 
motion of the specified clock’s hand CH of this analog clock defined with respect 
to the join points of its hands by ( ), ,x y z  during or after the nth occupation 
epoch of ( ), ,x y z  by CH as the sequence function  
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seconds, such that ( )0 , ,t x y z  is initial leaving epoch of ( ), ,x y z  started when 
the observer starting the tracking of the motion of CH and ending at starting of 
the first occupation epoch of ( ), ,x y z  by CH, ( ), , ,I x y z k  for all  

{ }1, 2, ,k n∈   is representing the number of impulses exerted on CH by the 
analog clock’s impulse system during the kth occupation epoch of ( ), ,x y z  by 
CH, ( ), , ,T x y z m  for all { }1, 2, , 1m n∈ −  is representing the summation of 
the number of impulses exerting after the time ( )0 , ,t x y z  on CH during the 
mth occupation epoch of ( ), ,x y z  by it and the number of impulses exerted on 
it during the mth leaving epoch of ( ), ,x y z  by it, and ( ), , ,T x y z n  is average of  
( ) ( ), , ,1 , , , , 2 ,T x y z T x y z   and ( ), , , 1T x y z n −  fulfills  

( ) ( ) ( )1
11 , , , , , ,n

mn T x y z m T x y z m−

=
− = ∑ , thus ( )1

1 , , ,n
m I x y z m−

=∑  is representing 
the total lengths of all first 1n −  occupation epochs of ( ), ,x y z  by CH after 
the time ( )0 , ,t x y z , ( ) ( )( )1

1 , , , , , ,n
m T x y z m I x y z m−

=
−∑  is representing the to-

tal length of all first 1n −  leaving epochs of ( ), ,x y z  by CH occurred between 
each two occupation epochs of ( ), ,x y z  by it after the initial time ( )0 , ,t x y z  
and ( ), ,nt x y zδ  is the length of the leaving epoch of ( ), ,x y z  by CH elapsed 
after the end of the nth occupation epoch of ( ), ,x y z  by it, so if the analog clock 
is ideally perfect then ( ) ( ), , , , , , 60T x y z m T x y z m= = , 3600 or 216,000 in a case 
of ( ), , ,t x y z n  is representing the observable time measurable by tracking the 
motion second, minute or hour hand respectively, now if we have N identical 
perfect analog clocks such that for every { }1, 2, ,i N∈   the point ( ), ,x y z  is 
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representing a point in the space of motion of the specified hand of the ith analog 
clock defined with respect to the join points of its hands, in  is representing the 
number of occupation epochs of ( ), ,x y z  by iCH —which is clock hand of the 
ith analog clock that we took under consideration, ( ), , ,iI x y z k  for each  

1, 2, , ink =  , is representing the number of impulses exerted on it by the im-
pulse system of the ith analog clock during the kth occupation epoch of ( ), ,x y z  
by iCH , ( ), , ,i x y zT m  for all { }1, 2, , 1im n∈ −  is representing the summa-
tion of the number of impulses exerting on iCH  during the mth occupation 
epoch of ( ), ,x y z  by it and the number of impulses exerting on it during the 
mth leaving epoch of ( ), ,x y z  by it, and ( ), , ,i iT x y z n  is average of  
( ), , ,1i x y zT , ( ), , , 2 ,i x y zT   and ( ), , , 1i ix y zT n −  fulfills  

( ) ( ) ( )1
1, , ,1 , , ,in

i i i im x y z mn T x y z n T−

=
=− ∑  then we can define the real time state 

of this N analog clocks by  
( ) ( ) ( ) ( )( )1 1 2 22 1 , , , , , , , , , , , ,, , , , , , N NNt t x y z n n n t n tx y z x y z xn ny zt= =  , such 

that ( ) ( ) ( ) ( ) ( ) ( )0 , , 1 , , , , , , ,, , ,,
i

i
i i i i i ni it n t x y z n x y z n I x y z n t x y zx y z T δ+ − + +=  

seconds where ( )0 , ,it x y z  is initial time elapsed during the epoch started when 
the observer starting the tracking of iCH  and ending at starting of the first oc-
cupation epoch of ( ), ,x y z  by it and ( ), ,

int x y zδ  is the length of leaving 
epoch of ( ), ,x y z  by iCH  elapsed after the end of the th

in  occupation epoch 
of ( ), ,x y z  by it, now according to the classical mechanics the time is absolute 
at all occupation and leaving epochs of epoch of ( ), ,x y z  by iCH  and then if 

0 0
i jt t=  for all { }1, 2 ,, ,i j N∈   then all second, minute and hour hands of 

these identical clocks are synchronously occupy their corresponding points in 
their spaces of motion and synchronously leave them regardless of their spatial 
distribution or their surfaces orientation in space, and hence the real time state t 
according to classical mechanics should alwayslied at the equilibrium collinear 
set ( ) { }{ }21, , , | for every 1, 2, ,,N N

j iNt t t tt i Nj∈ == ∈   , however in 
general relativity Einstein followed another direction and argued the existence of 
what is now called the gravitation time dilation [1] which implied that the gravi-
tation field have different value of stress-energy-momentum tensor in different 
space points occupies by different hands of these analog clocks cause their run-
ning at different rates, so according to the general theory of relativity the real 
time state t may deviating from the equilibrium collinear set N

  as result of 
difference in gravitation field from one point of space to another point, thus we 
need mathematical formulation provide a measure to degree to which the real 
time state of any quantum system consisting of N matter Particles at any points 
inside their occupies paths from the equilibrium collinear set N

  and all 
another non-equilibrium collinear set in N

 , the author will approve that each 
equilibrium or non-equilibrium collinear set is representing vector subspace of 

N
 , and then if this vector subspaces endowed with usual dot product they will 
represent vector subspaces of n-dimensional Euclidian space which is representing 
an inner product Hilbert space. 

2.2. The Occupation Epoch Number of the Matter Particle 

The occupation epoch number of the matter particle at each space point ( ), ,x y z  
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donated by ( ), ,n x y z  is representing the number of occupation epochs of 
( ), ,x y z  by the matter particle with respect to some observer or measurement 
instrument observing the motion of matter particle during finite observation 
epoch. 

2.3. The Time of the Matter Particle at Each Space Point 

If ( ), ,n n x y z=  is the occupation epoch number of the matter particle P at the 
space point ( ), ,x y z  then the time of the matter particle P at the space point 
( ), ,x y z  is defined as the total length of all the occupation and leaving epochs of 
( ), ,x y z  by the matter particle P and then is defined as following:  

( ) ( ) ( ) ( ) ( ) ( ), , , , , , 0 1 , , , , , , , , ,t x y z n t x y z n x y z n dt x y z n t xT y z nδ δ= + − + + (1) 

( )

( ) ( )

( ) ( )1
1

, , ,1 , , ,1 , 1
1, , , , , , , , , , 1

1
0, 0

n
i

dt x y z t x y z n

x y z n dt x y z i t x y z i n
n

n

T

δ

δ−

=

+ =

= + >   −

=

∑       (2) 

where: ( ), , , 0t x y zδ  is the length of the initial leaving epoch elapsed before the 
first occupation of , ,x y z  by the matter particle with respect to some observer 
or measurement instrument observing the motion of matter particle during fi-
nite observation epoch. 

For each { }1, 2, , 1i n∈ − : 
( ), , ,dt x y z i  is the length of the ith occupation epoch of , ,x y z  by the matter 

particle. 
( ), , ,t x y z iδ  is the length of the ith leaving epoch of , ,x y z  by the matter 

particle elapsed aft the ith occupation epoch. 
( ), , ,dt x y z n  is the length of the nth occupation epoch of , ,x y z  by the mat-

ter particle. 
( ), , ,t x y z nδ  is the length of the epoch elapsed after the end of the nth occu-

pation epoch of , ,x y z  by the matter particle elapsed aft the nth occupation 
epoch. 

( ), , ,T x y z n  is the average of the time periods:  

( ) ( ) ( ) ( )
( ) ( )

, , ,1 , , ,1 , , , , , , , 2 ,

and , , , 1 , , , 1 .

dt x y z t x y z dt x y z i t x y z

dt x y z n t x y z n

δ δ

δ

+ +

− + −



 

Important note:  
1) The temporal variable ( ), , ,t x y z n  is representing a signal indexed by the 

occupation epoch number. 
2) The term ( ) ( ) ( ), , ,0 1 , , ,t x y z n T x y z nδ + −  is representing a measure of 

the past temporal epoch before the nth occupation epoch of , ,x y z  by the mat-
ter particle, the term ( ), , ,dt x y z n  is representing the a measure of the present 
nth occupation temporal epoch and the term ( ), , ,t x y z nδ  is representing a 
measure of the future temporal epoch after the nth occupation epoch of , ,x y z  
by the matter particle. 
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2.4. Definition of the Infinitesimal Time as a Function of  
Infinitesimal Displacement of Space and Occupation Epoch  
Number 

In order to write infinitesimal time as a function of infinitesimal displacement of 
space and occupation epoch number suppose we have matter particle with rest 
mass 0m  move by speed v with respect to some local observer through some 
space point ( ), ,x y z  at the nth occupation epoch of ( ), ,x y z  by the matter par-
ticle, then according to the special relativity theory the momentum of the  

particle is given by 0
2

1

m vp
v
c

=
 −  
 

, where c is the speed of light in vacuum, now  

according of the wave-particle duality [6] if ( )nλ  is representing the wave-
length of this matter particle at the nth occupation epoch of ( ), ,x y z  by it then 
the momentum of this matter particle is also defined as following:  

( )
0 0

2

2 2
1 1

1

m v mhp
n v

v cc

λ
= = =

  −−  
 

 

where h is the Planck’s constant. 
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1 1 m n
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− =  

⟶ ( )22
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2 2 2
1 1 m n
v c h

λ
− =  

⟶ ( ) ( )2 22 2 2 2
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2 2 2 2 2
1 1 m n h m n c
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0

i j
iji j g dx dx h cv
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= =

∗
= =

+

∑ ∑
          (3) 

where 

1

2

3

dx dx
dx dy
dx dz

   
   =   
     

 is representing infinitesimal displacement vector of matter  

particle at space point ( ), ,x y z , dt  is representing infinitesimal displacement 
of time and ijg  is the component of space metric tensor at the ith row and the 
jth column. 

⟶ ( )( )2 3 32 2 2 2 2 2
0 1 1

i j
iji jh c dt h m n c g dx dxλ

= =
= + ∑ ∑  

⟶ ( ) ( )22 2 2
3 30

2 2 1 1, , , i j
iji j

h m n c
dt dt dx dy dz n g dx dx

h c
λ

= =

 +
 = =
 
 

∑ ∑     (4) 

Important notes:  
From the Equation (3) the speed of matter particle is defined by: 

( )22 2 2
0

hcv
h m n cλ

=
+

                     (5) 
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Thus speed of matter particle should always bounded by the speed of light in 
vacuum c because:  

( )22 2 2
0

hcv c
h m n cλ

= <
+

                    (6) 

For all matter particle possess non-zero mass 0 0m >  and occupies non-zero 
volume of space ( ) 0nλ > . Thus we can conclude that the speed of light in va-
cuum is representing with respect to the current theory is unsurpassable limit for 
all matter particles possess non-zero mass and occupies non-zero volume of 
space. 

2.5. The Real-Time State of Any Physical System Consisting of N  
Matter Particles at Specified Space Point 

If we have a physical system consisting of N matter particles { }1 2, , , NP P P  
then the real-time state of this physical system at each space point ( ), ,x y z  is 
defined as following:  
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n
δ δ + − + + ∈= 

=


(8) 

For all { }1, 2, ,i N∈  : 
where: in  is the occupation epoch number of the matter particle iP  at  
( ), ,x y z . 

( ), , , 0it x y zδ  is the length of the initial leaving epoch elapsed before the first 
occupation of , ,x y z  by the matter particle iP  with respect to some observer 
or measurement instrument observing the motion of matter particle iP  during 
finite observation epoch. 

( ), , ,i ix yT z n  is average time period of the first in  time periods of iP  at 
( ), ,x y z . 

( ), , ,i idt x y z n  is the length of the th
in  occupation time of ( ), ,x y z  by the 

matter particle iP . 
( ), , ,i it x y z nδ  is the time elapsed during the matter particle leaving the point 

( ), ,x y z  after the th
in  occupation epoch. 

Important notes: 

( ) ( ) ( )
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1 2 1 2 1 2

1 2

, , , , , , , , , , , , , , , , , ,

, , , , , ,
N a N r N
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+
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



   (10) 
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where: ( )1 2, , , , , ,a NP x y z n n n , ( )1 2, , , , , ,r NP x y z n n n  and  
( )1 2, , , , , ,u NF x y z n n n  are called hereinafter past, present and future real- 

time state respectively. 

2.6. The Entanglement Translation of Real-Time State of Any  
Physical System Consisting of N Matter Particles at Specified  
Space Point 

If ( )

( )
( )

( )

1 1
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1 2

, , ,
, , ,

, , , , , ,
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N
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



 is representing the real-time state  

of some physical system consisting of N matter particles { }1 2, , , NP P P  at 
starting of the thnµ  occupation of ( ), ,x y z  by the matter particle Pµ  for 
some { }1, 2, , Nµ ∈   then the measurement process of the length of the thnµ  
occupation epoch of ( ), ,x y z  by the matter particle Pµ  that result the  

( ), , ,dt x y z nµ µ  is always transform the real-time state of physical system  

( )
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



 according to the following Entangle-  

ment Translation:  

( ) ( )1 2 1 2, , , , , , , , , , , ,N Nt x y z n n n t x y z n n n dt→ +   
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       (13) 

For all { }1,2, , Nυ ∈  . 
Important note: 
1) if the { }1 2, , , NP P P  is representing a set of N elementary matter particles 

then the occupation epoch is infinitesimal thus using the Equation (4) we can 
write the entanglement translation of ( )1 2, , , , , , Nt x y z n n n  as following:  

( ) ( )1 2 1 2, , , , , , , , , , , ,N Nt x y z n n n t x y z n n n dt→ +        (14) 
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( )
( ) ( )( )
( ) ( )( )

( ) ( )( )

1 1 1
22 2

3 3 2 2 2
1 1

1

2

2 2
2

, , , , , ,

, , , , , ,

, , , , , , )

i j
ii j

N NN

j

N

t x y z n t x y z n

h m n c t x y z n t x y z ndt g dx dx
h c

t x y z n t x y z n

µ µλ

∇

∇

= =

∇



 

∗
 
 + ∗=  
 
 

∗ 












∑ ∑



(15) 

2) ( )( ), , ,t x y z nυ υ
∇

 is representing the normalized reciprocal function of 
( ), , ,t x y z nυ υ  which is normalized by removing the infinity from the range of  

reciprocal function 
( )

1
, , ,t x y z nυ υ

. 

3) ( ) ( ) ( )( ) ( ), , , , , , , , , * , , ,dt x y z n t x y z n t x y z n dt x y z nυ υ υ υ υ υ µ µ
∇

= ∗  or equi-  

valently: 
( )
( ) ( ) ( )( ), , , 1,

, , , , , ,
0, 0, , ,

n

n

dt x y z n n
t x y z n t x y z n

ndt x y z n
υ

µ

υ
υ υ

υ υ υ υµ
υµ

∇ ∈
= ∗ =  =


 which  

is always result binary digits indicate wither the matter particle Pυ  occupied 
( ), ,x y z  or not and then determine whether the υth component of the Real- 
time state ( )1 2, , , , , , Nt x y z n n n  is non-zero covariant under Entanglement 
Translation or remain zero contravariant, thus the Entanglement Translation 
is: 
I. Pure covariant transformation when 0in >  for all 1, 2, ,i N=  . 
II. Pure contravariant transformation when 0in =  for all 1, 2, ,i N=  . 
III. Mixed covariant and contravariant transformation when 0in >  and 0jn =  

for some { }, 1, 2, ,i j N∈  . 
4) according to this transformation the measurement process of the occupa-

tion of ( ), ,x y z  by the matter particle Pµ  that result ( ), , ,dt x y z nµ µ  as ob-
servable quantity is the same to the measurement process of the part of leaving 
of ( ), ,x y z  by the rest matter particles of the physical system that are occupied 
and left ( ), ,x y z , thus the time of each one of these matter particle at of 
( ), ,x y z —which is representing the total length of all occupation and leaving 
epochs of ( ), ,x y z  by the matter particle—should increase ( ), , ,dt x y z nµ µ  
immediately at the end of measurement epoch, however if some matter particle 
of the physical system does not occupy ( ), ,x y z  from the starting of observa-
tion epoch until the starting thnµ  occupation of ( ), ,x y z  by the matter particle 
Pµ  then this matter particle will never occupy ( ), ,x y z  during the thnµ  occu-

pation epoch of ( ), ,x y z  by the matter particle Pµ , and hence the time of this 
matter particle at ( ), ,x y z —which is representing of total length of all occupa-
tion and leaving epochs of ( ), ,x y z  by it—will never change from zero during 
the measurement epoch. 

5) For all { }1, 2 ,, , Nα β ∈  : 

( ) ( ) ( )( )1 2, , , , , , , , , , , , , ,

1, 0 and 0

0, either 0 or 0

ND x y z n n n dt x y z n dt x y z n

n n

n n

α
β α α β β

α β

α β

∇
= ∗

≠ ≠

= =

= 




   (16) 

Which is representing tensor field that take the contravarinat vector dt  
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and covariant vector  

( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )

1 1

2

1 1

2 2 2

, , , , , ,

, , , , , ,
, , ,

, , , , , ,N NN N

t x y z n t x y z n

t x y z n t x y z ndt dt x y z n

t x y z n t x y z n

µ µ

∇

∇
∇∇

∇

 ∗
 
 ∗ =
 
 
 ∗ 



 

and produce 2N  components of the following matrix:  

( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

1 2

,

N

N

N N N N

dt dt dt dt dt dt

dt dt dt dt dt dtD D dt dt

dt dt dt dt dt dt

∇∇ ∇

∇∇ ∇
∇

∇∇ ∇

 
 
 

= =  
 
 
 





 



 

Such that ( ), , ,dt dt x y z nα α α=  and ( ) ( )( ), , ,dt dt x y z nβ β β

∇∇
=  thus: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 1

22 1 2 2 2

1 2

1

2

N

N

N
N N N N

N

dt dt dt dt dt dt dt
dtdt dt dt dt dt dtD dt

dtdt dt dt dt dt dt

dt
dt

dt dt dt dt dt

dt

∇∇ ∇

∇∇ ∇

∇∇ ∇

∇ ∇

         =           
 
 
 = =
 
 
 







 





      (17) 

Such that: ( ) ( ) ( )1 1 2 2 N Ndt dt dt dt dt dt dt dt ∇∇ ∇∇ = + + +  is equivalent to 
the number of non-zero components of dt  and the Real-time state  
( )1 2, , , , , , Nt x y z n n n . 
Now:  

D dt dt dt dt∇=  

⟶ D dt dt dt dt o∇− =  

such that 

0
0

0

o

 
 
 =
 
 
 



 

⟶ ( )ND dt dt I dt o∇− =  

such that NI  is N × N identity matrix  

⟶

( ) ( )( )
( ) ( ) ( )
( ) ( )

1 2

1 2

1 2

, , , , , ,

, , , , , ,

, , , , , ,

N N

N N N

N N

D dt dt I t x y z n n n dt

D dt dt I t x y z n n n D dt dt I dt

D dt dt I t x y z n n n

∇

∇ ∇

∇

− +

= − + −

= −







  (18) 

Thus the Entanglement Translation:  
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( ) ( )1 2 1 2, , , , , , , , , , , ,N Nt x y z n n n t x y z n n n dt→ +   is translational inva-
riant with respect to the operator ( )ND dt dt I∇− . 

2.7. The Real-Time Digital State of the N Matter Particles Physical  
System at Specified Space Point 

If ( )

( )
( )

( )

1 1

2 2
1 2

, , ,
, , ,

, , , , , ,

, , ,

N

N N

t x y z n
t x y z n

t x y z n n n

t x y z n

 
 
 =  
 
  





 is representing the real-time state  

of some physical system consisting of N matter particles { }1 2, , , NP P P  at  
( ), ,x y z  then the Real-time digital state at ( ), ,x y z  that is corresponding to 
( )1 2, , , , , , Nt x y z n n n  is defined as following:  

( )

( )
( )

( )

( ) ( )( )
( ) ( )( )

( ) ( )( )

1 1 1
1 1

2 2 2 2 2
1 2

1

2

, , , , , ,, , ,
, , , , , , , , ,

, , , , , ,

, , , , , , , , ,

N

N
N

N
N N N

t x y z n t x y z nx y z n
x y z n t x y z n t x y z nx y z n n n

x y z n t x y z n t x y z n

ϕ
ϕ

ϕ

ϕ

∇

∇

∇

 ∗   
   ∗   = =   
   
    ∗ 







 (19) 

Important note: 
1) The value of ( ), , ,i ix y z nϕ  indicate wither the matter particle iP  occu-

pied the point ( ), ,x y z  or not with respect to observer or measurement instru-
ment tracking its motion of iP  through ( ), ,x y z . 

2) If ( )

( )
( )

( )

1 1

2 2
1 2

, , ,
, , ,

, , , , , ,

, , ,

N

N N

t x y z n
t x y z n

t x y z n n n

t x y z n

 
 
 =  
 
  





 is representing the real-time  

state of the physical system at starting of the thnµ  occupation of ( ), ,x y z  by the 
matter particle Pµ  for some { }1, 2, , Nµ ∈   and ( ), , ,dt x y z nµ µ  is the result 
of the measurement process of the length of the thnµ  occupation epoch of  
( ), ,x y z  by the matter particle Pµ  then the Entanglement Translation of  
( )1 2, , , , , , Nt x y z n n n  is given as following:  

( ) ( )1 2 1 2, , , , , , , , , , , ,N Nt x y z n n n t x y z n n n dt→ +   

Such that  

( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )

1 1 1

2

1

222

1 2

, , , , , ,

, , , , , ,
, , ,

, , , , , ,

, , , , , , , , ,

NN N N

N

t x y z n t x y z n

t x y z n t x y z ndt dt x y z n

t x y z n t x y z n

dt x y z n x y z n n n

µ µ

µ µ ϕ

∇

∇

∇

 ∗
 
 ∗ =
 
 
 ∗ 

=





     (20) 

Thus the Real-time digital state ( )1 2, , , , , , Nx y z n n nϕ   is representing the 
base state of Entanglement Translation of the real-time state  
( )1 2, , , , , , Nt x y z n n n . 
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However  

( ) { }

1

2
1 2, , , , , , | 0,1 for all 1, 2, ,N

N i

N

b
b

x y z n n n B b i N

b

ϕ

  
  
  ∈ = ∈ =       

 



 which is  

consisting of 2N  N-tuples of binary digits thus the Real-time digital state  
( )1 2, , , , , , Nx y z n n nϕ   as well as Entanglement Translation  
( ) ( )1 2 1 2, , , , , , , , , , , ,N Nt x y z n n n t x y z n n n dt→ +   are quantifying the mo-

tion of the constituent matter particles of the physical system through ( ), ,x y z , 
this quantification allow these matter particles move exclusively at a finite se-
quential set of digital levels defined in the following section. 

3) ( )1 2
ˆ, , , , , , N tx y z n n n D dtϕ =  

where:  

( )1 2, , , , , , Nt t x y z n n n=   

and:  

( )( )
( )( )

( )( )

1 1

2 2

, , , 0 0

0 , , , 0ˆ

0 0 , , ,

t

N N

t x y z n

t x y z nD

t x y z n

∇

∇

∇

 
 
 
 =
 
 
  





 



 

Thus we can write the Entanglement Translation of ( )1 2, , , , , , Nt x y z n n n : 

t t dt t dt→ + = +  

Such that  

( )

( ) ( )( )
( ) ( )( )

( ) ( )( )

1

2

1 1 1

2 2 2

, , , , , ,

, , , , , ,
, , ,

, , , , , ,N NNN

t x y z n t x y z n

t x y z n t x y z ndt dt x y z n

t x y z n t x y z n

µ µ

∇

∇

∇

 ∗
 
 ∗ =
 
 
 ∗ 



 

As following:  

t t dt t t
tµ

δ
δ

→ + = +                    (21) 

( ) ˆ, , , tdt x y z n D
t µ µ
µ

δ
δ

=                     (22) 

( )( )
( )( )

( )( )

1 1

2 2

, , , 0 0

0 , , , 0ˆ

0 0 , , ,

t

N N

t x y z n

t x y z nD

t x y z n

∇

∇

∇

 
 
 
 =
 
 
  





 



  (23) 

( )ˆ ˆ, , , NtT dt x y z n D Iµ µ= +                    (24) 
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2.8. The Digital Levels of Real-Time Digital States of the Physical  
System Consisting of N Matter Particles 

For any physical system S consisting of N matter particles { }1 2, , , NP P P  and 
for all 0,1, 2, ,n N=   the digital level n of S is defined as the set of all possible 
real-time digital states of S at any space point ( ), ,x y z  consisting of n compo-
nents equivalent to one and rest components equivalent to zero, thus if ( )N nσ  
is representing the set of all subsets of { }1, 2, , N  that are consisting of n ele-  

ments, and for any set A and B 
1,
0, otherwise

A
B

B A
δ

⊆
= 


 then the nth digital level of S  

is defined as following:  

( )

{ }

{ }

{ }

( )

1

2 |

s

s

N N

s
N

L n s n

δ

δ
σ

δ

  
  
   = ∈  
  
  
   



                 (25) 

which their element are defined as surjective function ( ) ( ):n N Nn L nϕ σ →  
such that for each ( )Ns nσ∈ :  

( )

{ }

{ }

{ }

1

2

s

s

n

s
N

s

δ

δ
ϕ

δ

 
 
 

=  
 
 
 



                      (26) 

Important note: 

1) If ( )

( ) ( )( )
( ) ( )( )

( ) ( )( )

1 1 1

2 2 2
1 2

2

2

, , , , , ,

, , , , , ,
, , , , , ,

, , , , , ,N

N

N N N

t x y z n t x y z n

t x y z n t x y z nx y z n n n

t x y z n t x y z n

ϕ

∇

∇

∇

 ∗
 
 ∗ =
 
 
 ∗ 





 is repre-  

senting the real-time digital state of some physical system consisting of N matter 
particles { }1 2, , , NP P P  at ( ), ,x y z , then there exists:  

( )( ) ( )( ) ( )( )
( )
( )

( )
( )( ) ( )

1 1

2 2
1 2

2 2

1

1 2

, , ,
, , ,

, , , , , , , , ,

, , ,

, , , , , ,

N

N
i ii ii

N

t x y z n
t x y z n

n t x y z n t x y z n t x y z n

t x y z n

t x y z n t x y z n

∇∇ ∇

∇

=

 
 
  = ⋅    
 
  

= ∗∑

  

and { }( )
( )

1
, , , 0i i

N

i
t x y z n

s i
=

≠

=


 fulfills:  

( ) ( )

{ }

{ }

{ }

1

2
1 2, , , , , ,

s

s

N n

s
N

x y z n n n s

δ

δ
ϕ ϕ

δ

 
 
 

= =  
 
 
 





 

2) If ( )1 2, , , , , , Nx y z n n nϕ   is real-time digital state of some physical system 
consisting of the matter particles { }1 2, , , NP P P  at ( ), ,x y z  then before the 
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first occupation epochs of ( ), ,x y z  by any matter particle belong to  
{ }1 2, , , NP P P —with respect to some observer or measurement instrument 
tracing the motion of the matter particles { }1 2, , , NP P P  through ( ), ,x y z — 
the real-time digital state of the of the physical system at ( ), ,x y z  is equivalent 
to the equilibrium state  

( ) ( ) {}( )1 2 0

0
0

, , , , , , , , , 0, 0, , 0

0

Nx y z n n n x y zϕ ϕ ϕ

 
 
 = = =
 
 
 

 



 called herei-  

nafter the falsehood digital state at ( ), ,x y z  which is representing the unique 
element of the digital level 0 of the system, then this state either stay in the 
digital level 0 along the observation epoch of the physical system or change 
due the occupation of ( ), ,x y z  by one matter particle belong to  
{ }1 2, , , NP P P  to one state in the digital level 1 which is level consisting of all 
real-time digital states with one components equal one and rest components 
equal zero, then this state either stay in the digital level 1 or change due the 
occupation of ( ), ,x y z  by new one matter particle belong to { }1 2, , , NP P P  
to one state in digital level 2 which is level consisting of all digital states with 
two components equal one and rest components equal zero, and so on until 
the digital state of the physical system reach the stationary equilibrium digital  

state ( )1 2

1
1

, , , , , ,

1

Nx y z n n nϕ

 
 
 =
 
 
 





 at the digital level N and then resisting at  

this digital state for rest of observation epoch of the physical system. However 
we must keep in mind the impossibility of transition the Real-time digital state 

( )1 2, , , , , , Nx y z n n nϕ   to another Real-time digital state belong to the same 
or lower digital level or to another Real-time digital state belong to higher dig-
ital level with ith component equivalent to zero for all { }1, 2, ,i N∈   fulfill 

0in ≠  because each components of the digital state can only change from zero 
to one when some matter particle of the physical system start its first occupa-
tion epoch, Figure 1 representing an explanation of distribution of real-time 
digital states of any physical system consisting of 4 matter particles over their 
corresponding digital levels in addition to the possible transition of the 
Real-time digital states from different digital states to the Real-time digital 
states distributed in their near higher digital level. 

3) If the constituent matter particles of the physical system { }1 2, , , NP P P  
are distributed into set of finite orbits such as the distribution of electrons in 
atoms then for each one of these orbits the real-time digital state of the physical 
system at each space point belong to it will be the same when all matter particles 
at that orbit occupy all space points belong to it, however this symmetry of digi-
tal states at that orbit can break by the jumping of one matter particles to that 
orbit which can transit all points occupied by it at that orbit to the same digital 
state belong to next higher digital level, thus the distribution of the constituent  
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Figure 1. Illustration of digital levels and all possible transition between the real-time digital 
states belong to them for any physical system consisting of 4 matter particles. 

 
matter particles into set of finite orbits is equivalent to the distribution of it into 
set of finite digital levels such that jumping of matter particle from initial orbit to 
the final orbit is equivalent to the transition of digital states at all points occu-
pied by it at the final orbit to the same real-time digital state belong to next 
higher digital level. 

2.9. The Real-Time Transition State 

For any physical system S consisting of N matter particles { }1 2, , , NP P P  the 
real-time transition state of the physical system at ( ), ,x y z  that is corresponding 
to its real-time digital state at ( ), ,x y z :  

( ) ( )

{ }

{ }

{ }

1

2
1 2, , , , , ,

s

s

N n

s
N

x y z n n n s

δ

δ
ϕ ϕ

δ

 
 
 

= =  
 
 
 





 is defined as the superposition of all  

real-time digital states at ( ), ,x y z  that the physical system can transit to it at the 
of the next occupation epochs of ( ), ,x y z  by one of its constituent matter par-
ticles which is defined as following:  

( ) ( ) ( )( )1 1Nu nn s n u n
s u

s s uσψ α ϕ α ϕ∈ + +
⊂

= +∑            (27) 

Fulfills: 

( ) ( ) ( )n̂ n nT s s sψ ϕ=                     (28) 

( ) ( ) ( )1 1n̂ n nT u s uψ ϕ+ +=                    (29) 
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For all ( )1Nu nσ∈ +  fulfills s u⊂ . 
Such that:  

( ) ( ) ( )

{ } { }( ) { } { }( ) { } { }( )
{ } { }( ) { } { }( ) { } { }( )

{ } { }( ) { } { }( ) { } { }( )

1 1 1 2 1

2 1 2 2 2

1 2

ˆ

s s s s s s
N

s s s s s s
N

n n n

s s s s s s
N N N N

T s s s

δ δ δ δ δ δ

δ δ δ δ δ δϕ ϕ

δ δ δ δ δ δ

∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇

 
 
 
 

= ⊗ =  
 
 
 
 





   



(30) 

( ) ( ) ( )

{ } { }( ) { } { }( ) { } { }( )
{ } { }( ) { } { }( ) { } { }( )

{ } { }( ) { } { }( ) { } { }( )

1 1 1 2 1

2 1 2 2 2
1 1 1

1 2

ˆ

u u u u u u
N

u u u u u u
N

n n n

u u u u u u
N N N N

T u u u

δ δ δ δ δ δ

δ δ δ δ δ δϕ ϕ

δ δ δ δ δ δ

∇ ∇ ∇

∇ ∇ ∇

+ + +

∇ ∇ ∇

 
 
 
 

= ⊗ =  
 
 
 
 





   



(31) 

sα ∈  fulfills { } 0α =  and uα ∈  for all ( )1Nu nσ∈ +  fulfills s u⊂ . 
where: ⊗  is the tensor product (outer product) operation. 

( ) ( )( )n ns sϕ ϕ
∇

=  and ( ) ( )( )1 1n nu uϕ ϕ
∇

+ +=  are normalized reciprocal  

transpose of ( )n sϕ  and ( )1n uϕ +  respectively which are defined by taking 
the normalized reciprocal of the components of transpose of ( )n sϕ  and 

( )1n uϕ +  respectively. 
Important note: 
1) When the physical system at the real-time digital state:  

( ) ( )

{ }

{ }

{ }

1

2
1 2, , , , , ,

s

s

N n

s
N

x y z n n n s

δ

δ
ϕ ϕ

δ

 
 
 

= =  
 
 
 





 the next occupation epochs of  

( ), ,x y z  by one of its constituent matter particles P is either leaves the physical 
system at the real-time digital state ( )n sϕ  in a case that P occupied ( ), ,x y z  at 
the previous occupation epoch or transit the real-time digital state to some state 
at the next higher digital level ( )1n uϕ +  such that ( )1Nu nσ∈ +  fulfills  
s u⊂ , thus the real-time transition state is defined as superposition of its current 
real-time digital state and all real-time digital states at the next higher digital level 
that the physical system that can transit to them. 

2) For all 1, 2, ,i N=   the components of ( )n̂T s  and ( )1n̂T u+  at the ith row  

and the jth column which are { } { }( ) { } { }( )s s s s
i j i jδ δ δ δ

∇
=  and { } { }( ) { } { }( )u u u u

i j i jδ δ δ δ
∇
=   

respectively indicate wither both the matter particles iP  and jP  occupied 
( ), ,x y z  or not, thus ( )n̂T s  and ( )1n̂T u+  can play the role of observables oper-
ators that the Hermition matrices played in quantum mechanics because they are 
either leave the physical system at its current real-time digital state or transit it to 
one real-time digital state in next higher digital level when they act on the 
real-time transition state, however we use the normalized reciprocal as involution 
function instead of complex conjugate that used in quantum mechanics, so 



E. Naseraddeen 
 

869 

( )n̂T s  and ( )1n̂T u+  are equal to their normalized reciprocal transposes in same 
way that the Hermition matrices equal to their complex conjugate transposes. In 
computation term ( )n̂T s  and ( )1n̂T u+  are representing irreversible gates that 
forward the time of each constituent particles of the physical system only at the 
direction of increasing the number of occupation and leaving epochs of space 
points by it. 

3) we can calculate the coefficients sα  and ( ){ }| 1 fulfillsu Nu n s uα σ∈ + ⊂  
as following:  

Since for all 

1 1

2 2,

n n

x y
x y

x y

   
   
   = =
   
   
   

x y
 

 and 

1

2

n

z
z

z

 
 
 =
 
 
 

z


:  

( ) ( ) ( )

1 1 1 2 1 1 1

2 1 2 2 2 2 2
1

1 2

n

nn
i ii

n n n n n n

x y x y x y z x
x y x y x y z x

y z

x y x y x y z x

=

     
     
     ⊗ = = = ⋅
     
     
     

∑x y z y z x





     



 

the conditions:  

( ) ( ) ( )n̂ n nT s s sψ ϕ=  

( ) ( ) ( )1 1n̂ n nT u s uψ ϕ+ +=  

Implied that:  

( ) ( )( ) ( ) ( )n n n ns s s sϕ ψ ϕ ϕ⋅ =  

( ) ( )( ) ( ) ( )1 1 1n n n nu s u uϕ ψ ϕ ϕ+ + +⋅ =  

And then:  

( ) ( ) 1n ns sϕ ψ⋅ =  

( ) ( )1 1n nu sϕ ψ+ ⋅ =  

So if 1 2, , , ku u u  are representing the elements of  
( ){ }| 1 fulfillsu Nu n s uα σ∈ + ⊂  for some integer { }1, 2, ,k N∈   then:  

( ) ( ) ( )1
1

i

k

n s n u n i
i

s s uψ α ϕ α ϕ +
=

= +∑  

And:  

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

1
1

1 1 1 1 1 1 1
1

1 2 1 2 1 2 1
1

1 1 1 1
1

1

1

1

1

i

i

i

i

k

n n n n s n n i u
i

k

n n n n s n n i u
i

k

n n n n s n n i u
i

k

n k n n k n s n k n i u
i

s s s s s u

u s u s u u

u s u s u u

u s u s u u

ϕ ψ ϕ ϕ α ϕ ϕ α

ϕ ψ ϕ ϕ α ϕ ϕ α

ϕ ψ ϕ ϕ α ϕ ϕ α

ϕ ψ ϕ ϕ α ϕ ϕ α

+
=

+ + + +
=

+ + + +
=

+ + + +
=

⋅ = ⋅ + ⋅ =

⋅ = ⋅ + ⋅ =

⋅ = ⋅ + ⋅ =

⋅ = ⋅ + ⋅ =

∑

∑

∑

∑


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⟶

( )

( )

( )

1

2

1

2

1
2

1

1

1

1 1

1 1

1 1

i

i

i

k i

k

s u
i

k

s u u
i

k

s u u
i
i

k

s u u
i

n n

n n n

n n n

n n n

α α

α α α

α α α

α α α

=

=

=
≠

−

=

+ =

+ + + =

+ + + =

+ + + =

∑

∑

∑

∑



 

Now there is two possible cases of above linear system depend on the value of n 
defined as following:  
A. if n = 0 then the linear system is reduced to:  

1 2
1, 1, , 1

ku u uα α α= = ⋅⋅⋅ =  

And then:  

{}( ) ( ) ( ) ( ) { }( ) { }( ) { }( )0 1 1 1 2 1 1 1 1

1
1

1 2 .

1

ku u u Nψ ϕ ϕ ϕ ϕ ϕ ϕ

 
 
 = + + + = + + + =
 
 
 

 



 

B. If n > 0 then above linear system is defined in matrix form as following:  

( )

( )

1

1
1 1

1 1
k

s

u

u

n n n
n n n

n n n

α
α

α

    
    +     =    
    +        





   
 



 

Thus using the Cramer’s rule [3] for solving the linear system we find:  

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1

1 1
1 1 1

1 1 1 1
, , ,

1 1

1 1

1
1 1

1

1

1

k

s u

u

n n n n
n n n n

n n n n
n n n n n n
n n n n n n

n n n n n n

n n
n n

n n
n n n
n n n

n n n

α α

α

+

+ +
= =

+ +

+ +

+

=

+

+

 

 

       

 



 

 

       

 





   







   


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And hence the real-time transition state is defined as following:  

( )

( )

( )

( )

( )

( )
( )

( )

( )

( )

( )

( )

( )

( )

1 1

1

1 1
1 1 1

1 1 1 1

1 1

1 1

1
1 1

1

1

1

n n n

n k

n n n n
n n n n

n n n n
s s u

n n n n n n
n n n n n n

n n n n n n

n n
n n

n n
u

n n n
n n n

n n n

ψ ϕ ϕ

ϕ

+

+

+

+ +
= +

+ +

+ +

+

+ +

+

+

 

 

       

 

 

 

       

 





   









   



(32) 

2.10. The Analog Occupies Path of the Physical System Consisting  
of N Matter Particles 

The analog occupies path of N matter particles physical system is the path that 
consisting of all real-time states at all space point occupied or occupies at least by 
one of its constituent matter particles. 

2.11. The Digital Occupies Path of the Physical System Consisting  
of N Matter Particles 

The digital occupies path of N matter particles physical system is the path that 
consisting of all real-time digital states at all space point occupied or occupies at 
least by one of its constituent matter particles. 

3. Mathematical Formulation: An Introduction to the  
Calculus of Fluctuation 

3.1. The n-Dimensional Real Collinear Set 

For each n∈  the n-dimensional real collinear set of any two point 
, n∈p q   donated by ( ),n p q  is defined as a set of all point in n

  lied at 
the line that contains p and q. 

Example of real collinear set 
The set of real numbers is a 1-dimesional collinear set of any two real number 

x, y. i.e. ( )1 ,x y=  , ,x y∀ ∈ . 

3.2. The n-Dimensional Displacement Vector 

For all ( )1 2, , , n
np p p= ∈p    and ( )1 2, , , n

nq q q= ∈q    the n-dimensional 
displacement vector from p to q is defined as following:  



E. Naseraddeen   
 

872 

( )

( )
( )

( )

1 11

2 22

,
,

,

, n nn

q pd p q
q pd p q

q pd p q

−   
   −   = − = =   
   

−    

d p q q b






             (33) 

Important note:  
For all ( )1 2, , , n

np p p= ∈p    the author will donate to the vector  

( )

1

2,

n

p
p

p

 
 
 =
 
 
 

d o p




 by p  such that ( )0,0, , 0 n= ∈o   . 

3.3. The Equilibrium Null Point and Vector 

The equilibrium null point is the point is the point ( )0,0, , 0 n= ∈o    and the  

equilibrium null vector is vector 

0
0

0

 
 
 =
 
 
 

o




. 

3.4. The Equilibrium Unity Point and Vector 

The equilibrium unity point is the point ( )1,1, ,1 n= ∈u    and the equili-  

brium unity vector is the vector ( )

1
1

,

1

 
 
 = =
 
 
 

d o u u






. 

3.5. Conditions of Positioning in n-Dimensional Collinear Set 

For each n∈  the n-dimensional real collinear set of any two point , n∈x y   
such that ( )1 2, , , nx x x=x   and ( )1 2, , , ny y y=y   the conditions of posi-
tioning ( )1 2, , , n

nq q q= ∈q    in ( ),n x y  are defined as following:  
1) The tangent and cotangent of the angle between the line that connect x and 

q should be equal to the tangent and cotangent of the angle between the line that 
connect x and y, mathematically this condition is defined as following:  

j j j j

i i i i

y x q x
y x q x
− −

=
− −

 { }, 1, 2, ,i j n∈∀   satisfy i iy x≠  and j jy x≠ . 

2) The equivalent components of x and y should be equivalent to their cor-
responding components of q, mathematically this condition is defined as fol-
lowing: k k kq x y= =  { }1, 2, ,k n∈∀   fulfills k kx y= . 

Important note: 
From the first condition { }, 1, 2, ,i j n∈∀   satisfy i iy x≠  and j jy x≠  

( )i i i i i i
j j j j j j j

i i i i i i

i i i i
j j

i i i i

q x q x q xq x y x x x y
y x y x y x

y q q xx y
y x y x

− − −
= + − = − +

− − −

− −
= +

− −
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Also  

( )j j j j j j
i i i i i i i

j j j j j j

j j j j
i

j j j j

q x q x q x
q x y x x x y

y x y x y x

y q q x
xi y

y x y x

− − −
= + − = − +

− − −

− −
= +

− −

 

From the second condition { }1, 2, ,k n∈∀   satisfy k kx y=  we find that  

j j j j j j j j
k k k k

j j j j j j j j

j j j j
k k

j j j j

y q q x y q q x
q q q q

y x y x y x y x

y q q x
x y

y x y x

 − − − −
= + =  − − − −

−
+

− −

+

−
=

  

Also  

i i i i i i i i
k k k k

i i i i i i i i

i i i i
k k

i i i i

y q q x y q q xq q q q
y x y x y x y x

y q q xx y
y x y x

 − − − −
= + = − − − − 

− −
= +

− −

+

 

→ j j j j i i i i

j j j j i i i i

y q q x y q q x
y x y x y x y x
− − − −

= + = +
− − − −

q x y x y  

⟶
( ) ( )

{ }

1 2, , , , |

for all 1, 2, , fulfills

n n i i i i
n

i i i i

i i

y q q xq q q
y x y x

i n y x

 − −
= = ∈ = + − −


∈ ≠ 



x y q q x y  



   (34) 

3.6. The n-Dimensional Collinear Vectors Set 

If ( ),n p q  is n-dimensional real collinear such that , n∈p q   then the col-
linear vectors set of ( ),n p q  donated by ( ),n p q







 is the set of all displace-
ment vectors in n

  that their heads are belonging to ( ),n p q  and tails are 
equivalent to the equilibrium null point ( )0,0, , 0 n= ∈o   , which is defined 
as following:  

( ) ( ) ( ){ }, , | ,n n= = −= ∈p q d o x x x o x p q








           (35) 

Important note:  
For any ( ) ( )1 2, , , ,n

nx x x ∈= qx p  the exists displacement vector  
( ), =d o x x




 with components equivalent to 1 2, , , nx x x  thus for all  

{ }1, 2, ,i n∈   fulfill i ip q≠ : i i i i

i i i i

q x x p
q p q p
− −

= +
− −

x p q  

 such that ( ),=p d o p




 

and ( ),=q d o q




 because: i i i i

i i i i

q x x p
q p q p
− −

= +
− −

x p q  and the components of  

,x p  and q  are equivalent to the components of ,x p   and q  respectively. 
2 4π .Gφ ρ∇ =  

3.7. Theorem (3.2) 

For all ( ) { }1 2, , , /n
nx x x= ∈x o   the n-dimensional displacement vector set  
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( ),n o x






 is representing vector subspace of n
  and ( )( ), ,n +o x







 is repre-  

senting subgroup of ( ),n + . 
Prove: 
For all ( )1 2, , , n

nx x x= ∈x   , all { }1, 2, ,i n∈   fulfills 0ix ≠ , all  
, ,a b c∈  and all ( ), , ,n∈y z w o x



 

 such that:  

1

2 0 ,
0 0

i i i i

i i i

n

y
y x y y y

x x x
y

 
  − − = = + =
  − −
 
 

y o x x  





 

1

2 0
0 0

i i i i

i i i

n

z
z x z z z

x x x
z

 
  − − = = + =
  − −
 
 

z o x x 





 

and  

1

2 0
0 0

i i i i

i i i

w
w x w w w

x x x
w

 
  − − = = + =
  − −
 
 

w o x x   



: 

1) ( ),n n⊂o x










. 

2) 
( )0

, .
0 0

i i i i

i i i

ni i i i i

i i

ay bz ay bz
b

x x x
x

a

ay bz ay bz
x x

+
+ = + =

 − + + −
= + ∈ − − 

   



 



y z x x x

o x o x
 (Closure under ad-  

dition and scalar multiplication). 

3) 
( ) ( )

( ), .

i i i

i i i

ni i i

i

y z w
x x x

y z w
x

+ + = + + = + +

 + +
= ∈ 
 

       







y z w y z w x x x

x o x
 (Associativity of addition). 

4) ( ), .ni i i i

i i i

y z y z
x x x

 +
+ = + = + = ∈ 

 
y z z y x x x o x



       (Commutatively of  

addition). 
5) .+ = + =y o o y y    (Identity element of addition). 

6) ( )0 ,
0 0

ni i i i

i i i

y x y y
x x x

 − + − −
− = = + ∈ − − 

y x o x o x


   

  fulfills  

( ) .i i

i

y y
x
−

+ − = =y y x o   

 (Inverse element of addition). 

7) ( ) ( )

1

2

n

aby
aby

a b ab

aby

 
 
 = =
 
 
 

y y


 

 (Compatibility of scalar multiplication with field  

multiplication). 
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8) ( )a a a+ = +y z y z    (Distributivity of scalar multiplication with respect to 
vector addition). 

9) ( )a b a b+ = +y y y    (Distributivity of scalar multiplication with respect to 
field addition). 

10) 1∗ =y y   (Identity element of scalar multiplication). 

3.8. The n-Dimensional Real State Space 

For all ( ) { }1 2, , , /n
nx x x= ∈x o   such that ( )0,0, , 0 n= ∈o    the n-di- 

mensional real state space at x is the vector subspace of n
  defined by  

( )( ), , .,.n o x



 and endowed with inner product  

( ) ( ).,. : , ,n n× →o x o x
 

    such that for all ( )

1

2 ,n

n

a
a

a

 
 
 = ∈
 
 
 

a o x








 and  

( )

1

2 ,n

n

b
b

b

 
 
 = ∈
 
 
 

b o x








: 

( )T
1, .n

i ii a b
=

= ⋅ = ∗= ∑a b a b a b
  

    

Important note: 

( )( ), , .,.n o x



 is representing vector subspace of n-dimensional Euclidean  

space ( ) ( ), .,. , ., .n
n =E   thus is representing inner product Hilbert space. 

3.9. Equilibrium and Non-Equilibrium Classification of  
n-Dimensional Real State Space 

For all ( ) { }1 2, , , /n
nx x x= ∈x o   we can classify the n-dimensional real state  

space ( )( ), , .,.n o x



 as: 

1) Equilibrium n-dimensional real state space in a case of vx xµ =  for all 
{ }, 1, 2, ,v nµ ∈  . 

2) Non-Equilibrium n-dimensional real state space in a case of vx xµ ≠  for 
some { }, 1, 2, ,v nµ ∈  . 

Important notes: 

If ( )( ), , .,.n o x



 is equilibrium n-dimensional real state space then:  

( )( ) ( )( ), , .,. , , .,. .n n=o x o u 

 

 

3.10. The Normalized Reciprocal of Real Scalar 

For any x∈  the normalized reciprocal of x is defined as following:  

1 , 0

0, 0

x
x x

x

∇
 ≠= 
 =

 

Important note:  
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1) is called normalized reciprocal because the usual reciprocal of x which is  

equal 
1
x

 is contain infinity in his range when 0x = , so it is normalized by  

removing this infinity from its range: 
2) ( ) { }0,1x x xϕ ∇= ∗ ∈  is representing binary digit. 
3) The Dirac’s delta function is related to normalized reciprocal as following:  

( ) ( )1x xδ ϕ= −                        (36) 

Which is equal zero at all 0x ≠  and one at 0x = . 

3.11. The Normalized Reciprocal Transpose of the Matrix 

For any matrix 

11 12 1

21 22 2

1 2

n

n m n

m m mn

a a a
a a a

a a a

×

 
 
 = ∈
 
 
 

A







   



 the normalized reciprocal of  

A  is defined as following:  

11 21 1

12 22 2

1 2

m

n mm

n n mn

a a a
a a a

a a a

∇ ∇ ∇

∇ ∇ ∇
∇ ×

∇ ∇ ∇

 
 
 = ∈ 
 
  

A







   



                (37) 

3.12. Signal Tensor Field 

At any point ( )1 2, , , n
nx x x= ∈x    the signal tensor field is second order ten-  

sor that take x  from ( ),n o x






 and its corresponding dual vector ∇x  from 

( ),n ∇o x






 such that ( )1 2, , , nx x x∇ ∇ ∇ ∇=x   and produce 2n  components  

defined as following:  

( )
1 1 1 2 1

2 1 2 2 2

1 2

,

n

n

n n n n

x x x x x x
x x x x x x

x x x x x x

∇ ∇ ∇

∇ ∇ ∇
∇ ∇

∇ ∇ ∇

 
 
 = ⊗ =  
 
  

T x x x x





   



             (38) 

Or in tensor notation:  

( ), x xµ µ
ν ν µ ν

∇ ∇= =T T x x                     (39) 

For all { }, 1, 2, ,v nµ ∈  . 
Important notes: 
1) For all { }1, 2, , nµ ∈   the μth diagonal component of µ

νT  which is equal 
x xµ µ

∇  is corresponding to the μth components of the binary digital state binary 
state ˆ

xb D= x  so the diagonal components of µ
νT  are representing the digital 

components of it, and all the rest components of µ
νT  for all µ ν≠  are 

representing the analog normalized ratio between the components of x  at dif-
ferent indices. 

2) For all { }1, 2, ,i n∈   if 0ix =  then 0i i i j j ix x x x x x∇ ∇ ∇= = =  for all  
{ }1, 2, ,j n∈   so in the signal tensor field the present and absent of the digital 
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signal is restricted by the present and absent of its corresponding analog signals 
and vice versa. 

3) ( ) ( ), ,∇ ∇=T y y T x x     at all point ( ) ( ) { }1 2, , , /,n
ny y y ∈=y o ox  be-

cause for all { }1, 2, ,i n∈   fulfill 0ix ≠  and 0iy ≠  
0

0 0
i i i i

i i i

x y y y
x x x
− −

= + =
− −

y o x x  

thus:  

( )

1 1 1 2 1

2 2 2 2 2

, ,i i i i

i i i i

i i i i i i
n

i i i i i i

i i i i i i
n

i i i i i i

i i
n

i
n

i

y y y y
x x x x

y y y y y y
x x x x x x

x x x x x x

y y y y y y
x x x x x x

x x x x x x

y y
x x

x x

∇ ∇

∇

∇ ∇ ∇

∇ ∇ ∇

      = = ⊗         

     
     
     

     
     =   

 
 

  

 




 



   





   

T y y T x x x x

( )

2

1 1 1 2 1

2 1 2 2 2

1 2

,

i i i i
n n n

i i i i

n

n

n n n n

y y y y
x x x x

x x x x

x x x x x x
x x x x x x

x x x x x x

∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇
∇ ∇

∇ ∇ ∇

 
 
 
 
 
 
 
 
 
    
     
     
 
 
 = = ⊗ = 
 
  

 











 







x x T x x

    (40) 

4) 

( )( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 1

1 2 2 2 2

1 2

1 1 1 2 1

2 1 2 2 2

1 2

,

n

n

n n n n

n

n

n n n n

x x x x x x

x x x x x x

x x x x x x

x x x x x x
x x x x x x

x x x x x x

∇ ∇ ∇∇ ∇ ∇

∇ ∇ ∇∇ ∇ ∇∇
∇

∇ ∇ ∇∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇

 
 
 
 =  
 
 
  
 
 
 =  
 
  





   







   



 T x x

 

⟶ ( )( ) ( ), ,
∇

∇ ∇=T x x T x x                       ( 41) 

or in tensor notation:  

( )µ µ
ν ν

∇
=T T                           (42) 

For this reason ( ), ∇T x x   will play in the digital matter particle Physics the 
similar role that Herniation matrix or in general adjoin operator plays in quan-
tum physics. 

5) For all ( )1 2, , , n
nx x x= ∈x    the vector 

1

2

n

x
x

x

 
 
 =
 
 
 

x


:  
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( )

( )
( )

( )

11 1 1 2 1

22 1 2 2 2

1 2

1 1 1 2 2

2 1 1 2 2

1 1 2 2

1
1

2
1

,

n

n

nn n n n

n n

n n

n n n

n

i i
i

n

i i
i

xx x x x x x
xx x x x x x

xx x x x x x

x x x x x x x

x x x x x x x

x x x x x x x

x x x

x x x

∇ ∇ ∇

∇ ∇ ∇
∇

∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇

∇

=

=

   
   
   =    
   
    
 + + +
 
 + + +
 =
 
 

+ + +  

=

∑

∑






   











  T x x x

1

2

1

1

n

i i
i

nn

n i i
i

x
x

x x

x
x x x

∇
∇

=

∇

=

 
 
   
   
   =   
   
   
 
  

∑

∑





 

⟶ ( ), l∇ =T x x x x                             (43) 

Such that 1
n

i iil x x ∇
=

= ∑  is equivalent to the digital level of the digital state  
ˆ

xD x . 
In tensor notation this equation is given as following: 

lxµ
ν µ µ=T x                           (44) 

3.13. The Fluctuation Tensor Field 

The fluctuation tensor field is representing bilinear map [ ]., . : n n n n×× →    
—such that n n×

  is the space of all n n×  square matrix—defined for all  
( )1 2, , , n

nx x x= ∈x    and ( )1 2, , , n
ny y y= ∈y    as following:  

[ ]

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

, , ,

, , ,
,

, , ,

n

n

n n n n

 
 
 

= ⊗ − ⊗ =  
 
 
 

x y x y x y

x y x y x y
x y y x x y

x y x y x y

  



   







      (45) 

Such that ⊗  is the outer product (tensor product) operation [2] defined as 
following:  

[ ]
1 1 1 1 2 1

2 2 1 2 2 2
1 2

1 2

,

n

n
n

n n n n n

y y x y x y x
y y x y x y x

x x x

y y x y x y x

   
   
   ⊗ = =
   
   
   

y x







  



 





     (46) 

and  

[ ]
1 1 1 1 2 1

2 2 1 2 2 2
1 2

1 2

n

n
n

n n n n n

x x y x y x y
x x y x y x y

y y y

x x y x y x y

   
   
   ⊗ = =
   
   
   

x y







 





  



     (47) 



E. Naseraddeen 
 

879 

Thus If ( )1 2, , , n
nx x x= ∈x    and ( )1 2, , , n

ny y y= ∈y    then the fluc-
tuation tensor field of x and y donated by [ ],x y  is the set of 2n  ordered real 
numbers [ ] ,

, vµ
x y  called its components indexed by ,vµ  such that  

{ }, 1, 2, ,v nµ ∈   and defined as following:  

[ ] [ ] [ ] [ ], , , ,
, , , , v vv v v v y x x yµ µµ µ µ µ

= = = = −x y x y x y x y            (48) 

The Properties of commutator tensor field: 
a Anti-symmetric because: 

[ ] ( ) [ ], ,= ⊗ − ⊗ = − ⊗ − ⊗ −x y y x x y x y y x y x         

b Alternating because: 

[ ]

0 0 0
0 0

.
0

,

0 0 0

n n×

 
 
 = ⊗ − ⊗ = ∈
 
 
 

x x x x x x





   



      

c Non-degenerate because: 
For every ( ) { }1 2, , , /n

nx x x= ∈x o   there exists ( )1 2, , , n
ny y y= ∈y    

and { }, 1, 2, ,v nµ ∈   fulfills 0xµ ≠ , 0vy ≠  and vµ ≠  implied: 

  
[ ]

0 0 0
0 0 0

,

0 0 0

 
 
 ≠
 
 
 

x y





   



 

Because [ ] ,
, 0.v vv y x y xµ µµ

= − ≠x y  

d Bilinear because for all { }, 1, 2, ,v nµ ∈  , ( ) { }1 2, , , /n
nx x x= ∈x o 

,  

( ) { }1 2, , , /n
ny y y= ∈y o 

, ( )1 2, , , n
nz z z= ∈z    and all ,a b∈ :  

[ ] ( ) ( )

[ ] [ ]

,

, ,

,

, ,

v v vv

v v v v

v v

a b z ax by z ax by

az x bz y az x bz y

a b

µ µ µµ

µ µ µ µ

µ µ

+

=

+ = + − +

= − −

+

x y z

x y y z

. 

Thus [ ] [ ] [ ], , ,aa b b+ = +x y z x y y z . 

Also 

[ ] ( ) ( )

[ ] [ ]

,

, ,

,

, ,

v v vv

v v v v

v v

a b ay bz x ay bz x

ay x bz x ay x bz x

a b

µ µ µµ

µ µ µ µ

µ µ

=

= +

+ + − +

− −

= +

x y z

x y x z
. 

Thus [ ] [ ] [ ], , ,a ba b = ++x y z x y x z . 

3.14. Theorem 3.3 

If ( )1 2, , , n
nx x x= ∈x   , ( )1 2, , , n

ny y y= ∈y    then the fluctuation tensor 
[ ],x y  is representing a measure of degree to which the point x and y deviate 
from belonging to the collinear set ( ),n o y  and ( ),n o x  respectively be-
cause:  

1) [ ], =x y 0  for all ( ),n∈p o x  vanished when there is no deviation. 

2) [ ], , ,   = + = +   x y x y dx x dy y
 

 for all ( ),n∈dx o x








 and  
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( ),n∈dy o y








 i.e. the fluctuation tensor field [ ],x y  is a invariant under pa-
rallel translation of x  with respect to the line that all elements of ( ),n o y  
lie or parallel translation of y  with respect to the line that all elements of  

( ),n o x  lie. Thus all element lie at single line parallel to the line that all ele-
ments of some collinear set S lie have a same measure of deviation from belong-
ing to S defined as fluctuation tensor field. 

Prove:  
1) for all ( ) ( )1 2, , , ,n

np p p ∈= xp o  and all { }1, 2, ,i n∈   fulfill 0ix ≠ :  
0

0 0
i i i i

i i i

x p p p
x x x
− −

+ =
−

=
−

o xp x  

and hence:  

[ ] ( ),
,

, 0., i i i i
v v v vv

i i i iv

p p p px x x x x x x x
x x x xµ µ µ µµ

µ

 
= = − − 


=


=x p x p  

⟶ [ ] 0, .=x p  

2) For all 

1

2 n

n

dx
dx

dx

 
 
 = ∈
 
 
 

dx




 

 , 

1

2 n

n

dy
dy

dy

 
 
 = ∈
 
 
 

dy






  and all { }1, 2 ,, , nvµ ∈  :  

( ) ( )

[ ]

,

, ,
.

,

, ,

v v vv

v v v v

v v

y dx x y dx x

y x x dx y x x dx
µ µ µµ

µ µ µ µ

µ µ

+

 = +  

 + = + − + 
= − −





x y dx

x y x dx

 

( ) ( )

[ ]

,

, ,

,

, ,

v v vv

v v v v

v v

y x dy y x dy

y x y dy y x y dy
µ µ µµ

µ µ µ µ

µ µ

+

 + = + − + 
= − −

= + 





x dy y

x y y dy

 

Thus if ( ),n∈dx o x








 and ( ),n∈dy o y








 then there exist four points  
( ) ( )1 2, , , ,n

np p p ∈= xp o , ( ) ( )1 2, , , ,n
nq q q ∈= xq o ,  

( ) ( )1 2, , , ,n
nr r r ∈= yr o , ( ) ( )1 2, , , ,n

ns s s ∈= xs o  fulfill  
( ),= = −dx d p q q p




, ( ),= = −dy d r s s r




 and for all { }1, 2, ,i n∈   fulfill  
0ix ≠  and i iq p≠  and all { }1, 2, ,j n∈   fulfill 0jy ≠  and j jr s≠ :  

0 ,
0 0

i i i i

i i i

x p p p
x x x
− −

= + =
− −

p o x x  

0 ,
0 0

i i i i

i i i

x q q q
x x x
− −

= + =
− −

q o x x  

0
,

0 0
j j j j

j j i

y r r r
y y y
− −

= + =
− −

r o y y  

0
,

0 0
j j j j

j j i

y s s s
y y y
− −

= + =
− −

s o y y  

⟶ ( ), i i i i

i i i

q p q p
x x x

 −
= − = −= =  

 
dx d p q q p x x x



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( ), j j j j

j j j

s r s r
y y y

 −
= − = − =   


=


dy d r s s r y y y




⟶ 

For all { }1, 2 ,, , nvµ ∈  :  

[ ] [ ]

[ ] [ ] [ ]

, ,, ,
,

, , ,

, , , , ,

, , ,

i i
v vv v

i v

i i
v v v

i

q p
x

q p
x

µ µµ µ
µ

µ µ µ

  − + =      
  = +

  

 −
=  



+



 

+ =

 

x y dx x y x dx x y x x

x y x x x y

 

[ ] [ ]

[ ] [ ] [ ]

, ,, ,
,

, , ,

, , , , ,

, , ,

j j
v vv v

j v

j j
v v v

j

s r
y

s r
y

µ µµ µ
µ

µ µ µ

  −
   + = =           

+ +

+
 −

= =  
 

 

x dy y x y y dy x y y y

x y y y x y

 

⟶ [ ], , , .   + = + =   x y dx x dy y x y
 

 

3.15. The Spin’s Fluctuation Tensor Field at Each Matter Particle’s  
Surface Point 

The spin fluctuation tensor field is defined at each surface point of any matter  

particle resisting with respect to an arbitrary observer at the position 
x
y
z

 
 =  
  

r   

as following:  

[ ]
0

, 0
0

x y x z

y x y z

z x z y

yp xp zp xp
xp yp zp yp
xp zp yp zp

 − −
 = − − 
 − − 

r p            (49) 

where: 
x

y

z

p
p
p

 
 =  
  

p  is linear and momentum vector of the matter particle. 

Important note: 
Each components of the spin’s fluctuation tensor field [ ],r p   is correspond-

ing to either positive or negative components of angular momentum vector:  

Determinat
z y

x z

x y z y x

yp zp
x y z zp xp
p p p xp yp

    −
    = × = = −    
    −    

i j k
L r p


   and vice versa, so the  

components of the spin’s fluctuation tensor field ( ),r p   are vanishes—  
becomes zero—when all component of L



 are vanishes and vice versa, also the 
components of the spin’s fluctuation tensor field [ ],r p   are conserved when 
the components of L



 are conserved and vice versa, those two strong corre-
lated feature between the components of the spin’s fluctuation tensor field 
[ ],r p   and the components of L



 allow the author to introduce the following 
theorem. 
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3.16. Theorem 3.5: Spin’s Fluctuation Theorem 

Any matter particle P possesses a non-zero mass m can possess:  
1) A non-zero spin angular momentum at arbitrary time interval [ ],t t dt+  if 

and only if all surface points of P are not moving in the same direction of its po-
sition vector during this time interval. 

2) A conserved spin angular momentum at any two arbitrary time intervals 
[ ],t t dt+  and [ ],t dt t dt dt′+ + +  if and only if any surface points of P donated 
by s located with respect to an arbitrary observer or measurement instruement at  

the position 
x
y
z

 
 =  
  

r  at the time t fulfills:  

, ,dt dt   ′ ′+ + + = +   r dr r dr dr r r dr
  













            (50) 

where:  
i) dr


 is infinitesimal displacement of s at the time interval [ ],t t dt+ . 
ii) ′dr



 is infinitesimal displacement of s at the time interval  
[ ],t dt t dt dt′+ + + . 

Prove: 
1) Suppose we have some arbitrary surface point of P resisting with respect to  

an arbitrary observer at the position 
x
y
z

 
 =  
  

r  at the time t. 

Now the spin angular momentum of P at r  is defined as a cross product of  

r  and the linear momentum vector 
x

y

z

dx
dtp
dyp m
dt

p dz
dt

 
 

   
   = =   
    

 
  

p  as following:  

z y

x z

x y z y x

yp zp
x y z zp xp
p p p xp yp

 −
 = × = = − 
 − 

i j k
L r p


 

 

In other hand the spin’s fluctuation tensor field [ ],r p   is defined as follow-
ing:  

[ ]
0

, 0
0

x y x z

y x y z

z x z y

yp xp zp xp
xp yp zp yp
xp zp yp zp

 − −
 = − − 
 − − 

r p   

Thus every component of L


 is equivalent to either positive or negative value 
of one component of [ ],r p  , so all components of L



 vanishes—becomes ze-
ro—when all components of [ ],r p   vanishes. 

Now the infinitesimal displacement vector 
dx
dy
dz

 
 =  
  

dr


, thus the fluctuation  
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tensor field of r  and +r dr


  is defined using bilinearity property of fluctua-
tion tensor field as following: 

[ ] [ ], , , , , ,dt dt
m m

      + = + = = =        
r r dr r r r dr r dr r p r p

  

           

⟶ [ ], , ,dt dt
m m
   = + =   r p r r dr r dr

 

    

 

Because dt  is representing infinitesimal non-zero change of time, the spin’s 
fluctuation tensor field [ ],r p   vanishes—and then the spin angular momentum 
vector L



—when all components of the fluctuation tensor field  

, ,   + =   r r dr r dr
 

    vanishes so according to the theorem 3.2 L


 vanishes 

when ( )3 ,+ ∈r dr o r








 or equivalently when ( )3 ,∈dr o r








. Thus the matter  

particle P possesses a non-zero spin angular momentum if and only if all surface 
points of P are not moving in the same direction of their position vectors. 

2) Lets represents a surface point of P resisting with respect to an arbitrary ob-  

server at the position 
x
y
z

 
 =  
  

r  at the time t, let 
x

y

z

dx p
dt dtdy p
m m

dz p

   
   = = =   
      

dr p


  is  

representing the infinitesimal displacement of the matter particle’s surface  

points during the time interval [ ],t t dt+ , 
x dx x'

r' y dy y'
z dz z'

+   
   = + =   
   +   



 is the position  

of the matter particle’s surface point s at the time t dt+ , and let  
x

y

z

dx p
dt dtdy p
m m

dz p

′ ′   
′ ′   ′ ′ ′ ′= = =   

   ′ ′   

dr p
 

 is representing the infinitesimal displacement of  

the matter particle’s surface points during the time interval [ ],t dt t dt dt′+ + + , 
now the spin angular momentum vectors of the matter particle at s during the 
time interval [ ],t t dt+  and [ ],t dt t dt dt′+ + +  and donated by L



 and ′L


 
respectively are given as following:  

Determinat
z y

x z

x y z y x

yp zp
x y z zp xp
p p p xp yp

    −
    = × = = −    
    −    

i j k
L r p


   

Determinat
z y

x z

x y z y x

y p z p
x y z z p x p
p p p x p y p

  ′ ′ ′ ′   −
    ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = = −    
    ′ ′ ′ ′ ′ ′ ′−

×

   

i j k
L r p
  

 

Also the spin’s fluctuations tensor fields of the matter particle at s during the 
time interval [ ],t t dt+  and [ ],t dt t dt dt′+ + +  and donated by [ ],r p   and 

, ′ ′ r p
 

 respectively are given as following:  

[ ]
0

, 0
0

x y x z

y x y z

z x z y

yp xp zp xp
xp yp zp yp
xp zp yp zp

 − −
 = − − 
 − − 

r p   
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0
, 0

0

x y x z

y x y z

z x z y

y p x p z p x p
x p y p z p y p
x p z p y p z p

′ ′ ′ ′ ′ ′ ′ ′ − −
  ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − −  
 ′ ′ ′ ′ ′ ′ ′ ′− − 

r p
 

 

Thus every component of L


 is equivalent to either positive or negative value 
of one component of [ ],r p   and every component of ′L



 is equivalent to ei-
ther positive or negative value of one component of , ′ ′ r p

 

, so ′=L L




 if and 
only if [ ], , ′ ′=  r p r p

 

   and then if and only if:  

, ,dt dt
m m

′   ′= +      
r dr r dr dr

  

   

or equavently if and only if:  

, ,dt dt   ′ ′= +   r dr r dr dr
  

    

or equivently if and only if:  
Because  

[ ], , , ,     + = + =     r r dr r r r dr r dr
  

      

and 

, , , ,       ′ ′ ′+ + + = + + + + = +       r dr r dr dr r dr r dr r dr dr r dr dr
        

      , 

[ ], , ′ ′=  r p r p
 

   

if and only if:  

, ,dt dt   ′ ′+ + + = +   r dr r dr dr r r dr
   

    

Important Notes: 
1) The first part of the above theorem implied that if the matter particle pos-

sesses non-zero mass and non-zero spin angular momentum then it’s all surface 
points should move in different direction of all position vectors defined with re-
spect to all observers observing them, thus the first part of the above theorem 
approve that the non-zero spin angular momentum of any matter particle pos-
sesses non-zero mass is intrinsic property independent from the observer’s loca-
lization with respect to its surface point. 

2) The second part of the above theorem illustrate the relation between spatial 
and temporal coordinates of the surface points of any matter particle possesses 
non-zero mass and conserved spin angular momentum. 

3.17. Theorem 3.6 

If ( )1 2, , , n
nx x x= ∈x   , ( )1 2, , , n

ny y y= ∈y   , ( )1 2, , , n
nz z z= ∈z     

and ( )1 2, , , n
nw w w= ∈w    such that ≠x y , ≠w z , ( ),n x y  is not pa-

rallel to ( ),n z w  and ( ) ( ) { }, , , , ,n n ∉x y z w x y z w   then ( ),n x y  and 
( ),n z w  are intersected at the point ( )1 2, , , n

nt t t= ∈t    fulfills:  
1)  

( ) ( ) [ ] [ ] ( ) ( ) [ ] ( ) ( )
( ) ( ) ( )

, , ,,

,

, , , , , , ,, , ,

, , ,,
v vv

v

t
d

µ ϕ µ ϕµ ϕ µ µµ
ϕ

µµ

  + − 
=

  

z w z w z w

z

d x y d x y x y d d x y d x y d x y

d wx y d x y

 

 
 (51) 
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For all { }1, 2, , nϕ ∈   and all { }1, 2 ,, , nvµ ∈   fulfill  

( ) ( ) ( )
,

0, ,, ,
v µµ

  ≠ d d dx z w xy y
 

. 

2) if , ,a b a′ ′= + = + = +x t dt y t dt z t dt
  

 and b′ ′= +w t dt


 for some  

{ }, , , / 0a b a b′ ′∈  fulfill a b≠  and a b′ ′≠ , and some 

1

2 n

n

dt
dt

dt

 
 
  ∈
 
 


=



dt






 and  

1

2

n

dt
dt

dt

′ 
 ′ ′
 
 ′ 

=dt






 fulfill 0dtµ ≠ , 0vdt′ ≠ , λ′ ≠dt dt
 

 for all λ ∈—i.e. ′dt


 is not 

parallel to dt


—and either 0vdt ≠  or 0dtµ′ ≠ , then:  

( ), , , ,
, , , .,

v v v
t dt dt dt dt dtϕ µ µ ϕ µ ϕµ µ ϕ µ µ

       ′ ′ ′− −       =dt dt t dt t dt t dt
    

    (52) 

For all { }1, 2, , nϕ ∈   and all { }1, 2 ,, , nvµ ∈   fulfill 
,

, 0
v

dtµµ
 ′ ≠ dt dt
 

. 

Prove: 
Suppose we have ( )1 2, , , n

nx x x= ∈x   , ( )1 2, , , n
ny y y= ∈y   ,  

( )1 2, , , n
nz z z= ∈z    and ( )1 2, , , n

nw w w= ∈w    such that ≠x y , ≠w z , 
( ) ( ) { }, , , , ,n n ∉x y z w x y z w   and ( ),n x y  is not parallel to ( ),n z w , 

suppose that ( )1 2, , , n
nt t t= ∈t    is intersection point of ( ),n x y  and  

( ),n z w : Now for all { }1, 2 ,, , nvµ ∈   fulfills x yµ µ≠ , v vz w≠  and either  

v vx y≠  or z wµ µ≠ —i.e. ( ) ( )
,

, , , 0
vµ
≠  d x y d z w :  

( )1 2, , , n

y t t x
t t t

y x y x
µ µ µ µ

µ µ µ µ

− −
+ =

− −
x y 

                (a) 

and  

( )1 2, , ,v v v v
n

v v v v

w t t z
t t t

w z w z
− −

+ =
− −

z w                  (b) 

⟶ v v v

y t t x
x y t

y x y x
µ µ µ µ

µ µ µ µ

+
− −

=
− −

 

v v v v

v v v v

w t t z
z w t

w z w zµ µ µ
− −

−
=+

−
 

⟶ v v v v
v

y x t x t y x y
t

y x
µ µ µ µ

µ µ

− + −
=

−
 

v v v v

v v

w z t z t w z w
t

w z
µ µ µ µ

µ

− + −
=

−
 

⟶
( )v v v v

v

t y x y x x y
t

y x
µ µ µ

µ µ

− + −
=

−
 

( )v v v

v v

t w z w z z w
t

w z
µ µ µ µ

µ

− + −
=

−
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⟶
( ) v vv v

v

y x x yy x
t t

y x y x
µ µ

µ
µ µ µ µ

−−
+ =

− −
                  (c) 

( ) v v
v

v v v v

w z w z z w
t t

w z w z
µ µ µ µ

µ

− −
+ =

− −
                  (d) 

Now by substituting vt  from Equation (c) into Equation (d) we find:  

( ) ( )v v v v

v v v v

w zy x x y w z z wyv xv
t t

y x y x w z w z
µ µµ µ µ µ

µ µ
µ µ µ µ

 − − −−
 + + =   − − − −  

 

⟶
( )( )
( )( )

( )( )
( )( )

v v v v v v

v vv v v v

y x w z y x x y w z w z z w
t t

w zy x w z y x w z
µ µ µ µ µ µ µ µ

µ µ
µ µ µ µ

− − − − −
+ + =

−− − − −
 

⟶
( )( ) ( )( ) ( )( )
( )( )
v v v v v v

v v

t y x w z y x x y w z w z z w y x

t w z y x

µ µ µ µ µ µ µ µ µ µ µ

µ µ µ

− − + − − + − −

= − −
 

⟶
( )( ) ( )( )
( )( ) ( )( )

v v v v

v v v v

t w z y x t y x w z

y x x y w z w z z w y x

µ µ µ µ µ µ

µ µ µ µ µ µ µ µ

− − − − −

= − − − −+
 

( )( ) ( )( )
( )( ) ( )( )
v v v v

v v v v

y x x y w z w z z w y x
t

w z y x y x w z
µ µ µ µ µ µ µ µ

µ
µ µ µ µ

− − + −

− −
=

−

− − −
         (e) 

Now from Equation (a):  

y t t x
t x y

y x y x
µ µ µ µ

ϕ ϕ ϕ
µ µ µ µ

−
+

− −
=

−
 

For all { }1, 2, , nϕ ∈  . 

⟶
y x t x t y x y

t
y x

µ ϕ µ ϕ µ ϕ µ ϕ
ϕ

µ µ

=
− + −

−
 

⟶
y x x y y x

t t
y x y x

µ ϕ µ ϕ ϕ ϕ
ϕ µ

µ µ µ µ

=
− −

+
− −

                  (f) 

Now by substituting tµ  from Equation (e) into Equation (f) we find:  

( )( ) ( )( )
( )( ) ( )( )
v v v v

v v v v

y x x y w z w z z w y xy x x y y x
t

y x y xw z y x y x w z
µ µ µ µ µ µ µ µµ ϕ µ ϕ ϕ ϕ

ϕ
µ µ µ µµ µ µ µ

− − + − −− −
+

− − −
=

−− − −
 

⟶
( )( ) ( )( )

( )( ) ( )( )
v v v v

v v v v

y x x y w z z w w z y xy x x y y x
t

y x y xy x w z w z y x
µ µ µ µ µ µ µ µµ ϕ µ ϕ ϕ ϕ

ϕ
µ µ µ µµ µ µ µ

− − − − −− −
+

−
=

−− − − − −
 

⟶
[ ]

( )
[ ] ( ) [ ] ( )

( ) ( )
( )
( )

, , ,

,

, , , , , ,
, ,, , ,

v v

v

t µ µµ ϕ µ µ ϕ
ϕ

µ µµ

−
+

  
=

x y x y d z w z w d x y d x y
d x y d x yd x y d z w

 

⟶
( ) ( ) [ ] [ ] ( ) ( ) [ ] ( ) ( )

( ) ( ) ( )
, , ,,

,

, , , , , , , , , ,

, , , ,
v vv

v

t
µ ϕ µ ϕµ ϕ µ µµ

ϕ
µµ

+ − 






=





d x y d z w x y x y d z w d x y z w d x y d x y

d x y d z w d x y

 

 
 

For all { }1,2, , nϕ ∈   and all { }1, 2 ,, , nvµ ∈   fulfill x yµ µ≠ , v vz w≠  
and either v vx y≠  or z wµ µ≠ . 
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This proves the first part of the theorem, now to prove the second part we can 
use the first proved part as following:  

( ) ( ) [ ] [ ] ( ) ( ) [ ] ( ) ( )
( ) ( ) ( )

, , ,,

,

, , , , , , , , , ,

, , , ,
v vv

v

t
µ ϕ µ ϕµ ϕ µ µµ

ϕ
µµ

+ − 






=





d x y d z w x y x y d z w d x y z w d x y d x y

d x y d z w d x y

 

 

 

⟶
( ) ( ) ( )

( ) ( ) [ ] [ ] ( ) ( ) [ ] ( ) ( )
,

, , ,,

, , , ,

, , , , , , , , , ,

v

v vv

tµ ϕµ

µ ϕ µ ϕµ ϕ µ µµ
 =

  

+ − 

 

 

d x y d z w d x y

d x y d z w x y x y d z w d x y z w d x y d x y
 

⟶
( ) ( ) ( ) ( ) ( ) [ ]

[ ] ( ) ( ) [ ] ( ) ( )
,, ,

, ,

, , , , , , , ,

, , , , , ,
v v

v v

tµ ϕ µ ϕµ µ

µ ϕ µ ϕµ µ

  

−

 −  

=

   

d x y d z w d x y d x y d z w x y

x y d z w d x y z w d x y d x y
 

⟶
( ) ( ) ( ) [ ]( )
[ ] ( ) ( ) [ ] ( ) ( )

,,

, ,

, , , , ,

, , , , , ,
v

v v

tϕ µ µ ϕµ

µ ϕ µ ϕµ µ

−  

−=

 

d x y d z w d x y x y

x y d z w d x y z w d x y d x y
 

Thus if , ,a b a′ ′= + = + = +x t dt y t dt z t dt
  

 and b′ ′= +w t dt


 for some  

{ }, , , / 0a b a b′ ′∈  fulfill a b≠  and a b′ ′≠ , and some 

1

2 n

n

dt
dt

dt

 
 
  ∈
 
 


=



dt






 and  

1

2

n

dt
dt

dt

′ 
 ′ ′
 
 ′ 

=dt






 fulfill 0dtµ ≠ , 0vdt′ ≠ , λ′ ≠dt dt
 

 for all λ ∈—i.e. ′dt


 is not 

parallel to dt


—and either 0vdt ≠  or 0dtµ′ ≠ , then:  

( ) ( ) ( )( )
( ) ( )

( ) ( )

, ,

,

,

, ,

,

,

v

v

v

b a b a t b a dt a b

a b b a dt b a dt

a b b a dt b a dt

ϕ µµ µ ϕ

µ ϕµ

µ ϕµ

   ′ ′ ′− − − − + +   

  ′ ′ ′+ + − − 

 ′ ′ ′ ′

=

− + + − − 

   

 

 

dt dt t dt t dt

t dt t dt

t dt t dt

 

⟶

( )( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

, ,

,

,

, ,

,

,

v

v

v

b a b a t b a dt b a

b a b a dt b a dt

b a b a dt b a dt

ϕ µµ µ ϕ

µ ϕµ

µ ϕµ

   ′ ′ ′− − − − −   

  ′ ′ ′= − − − 

 ′ ′ ′− − − − 

dt dt t dt

t dt

t dt

  





 

⟶ ( ), , , ,
, , , ,

v v v
t dt dt dt dt dtϕ µ µ ϕ µ ϕµ µ ϕ µ µ

       ′ ′ ′− = −       dt dt t dt t dt t dt
    

 

For all { }1,2, , nϕ ∈   and all { }1, 2 ,, , nvµ ∈   fulfill 0dtµ ≠ , 0vdt′ ≠  
and either 0vdt ≠  or 0dtµ′ ≠ . 

This equation is representing the fundamental fluctuation tensor field equa-
tions which are invariant under any arbitrary change of t , dt



 and ′dt


 by any  

( )1 2, , , n
nτ τ τ= ∈ τ , 

1

2 n

n

d
d

d

τ
τ

τ

 
 
  ∈
 
 


=



d




τ  and 

1

2 n

n

d
d

d

τ
τ

τ

′ 
 ′ ′ ∈
 
 ′ 

=d




τ  respectively  
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such that λ′ ≠d d
 

τ τ  for all λ ∈ , thus:  

( ), , , ,
, , , ,

v v v
d d d d dϕ µ µ ϕ µ ϕµ µ ϕ µ µ

τ τ τ τ τ τ       ′ ′ ′− = −       d d d d d
    

τ τ τ τ τ τ τ τ  

For all { }1, 2, , nϕ ∈   and all { }1, 2 ,, , nvµ ∈   fulfill 0d µτ ≠ , 0vdτ ′ ≠  
and either 0vdτ ≠  or 0d µτ ′ ≠ . 

3.18. Orthogonal n-Dimensional Real Collinear Sets 

For each , , , n∈x y z w   the two collinear sets ( ),n x y  and ( ),n z w  are 
called orthogonal if and only if:  

1) ( ) ( ) { }, ,n n ≠ ∅x y z w  . 
2) ( ) ( ), , 0⋅ =d a b d e d

 

, for all ( ),, n∈ ya b x  and ( ),, n∈ wd e z . 
Such that ( ) ( )− ⋅ −b a d e  donate to the dot product of ( )−b a  and ( )−d e . 

3.19. N-Dimensional Real Collinear Sets Space 

The n-dimensional real collinear sets local space at n∈t   donated by [ ]n t  
is the space of all n-dimensional real collinear sets intersected at the point t, 
which is given as following: 

[ ] ( ) { } { }{ }ful, | / fi0 an ld , / 0 .ln n na b a b a b= + + ∈ ∈ ≠t t dt t dt dt
  

     

Important note 
Any ( )1 2, , , n

nt t t= ∈t    is representing the origin of [ ]n t  fulfills for any  
two collinear sets ( ),n a b+ +t dt t dt





 

 and ( ),n a b′ ′ ′ ′+ +t dt t dt
 

  belong to  

[ ]n t , such that 

1

2 n

n

dt
dt

dt

 
 
  ∈
 
 


=



dt






, 

1

2

n

n

dt
dt

dt

′ 
 ′ ′ ∈
 
 ′

=



dt






, fulfill λ′ ≠dt dt
 

 for all  

λ ∈ —i.e. ′dt


 is not parallel to dt


—and { }, , , / 0a b a b′ ′∈  fulfill a b≠  
and a b′ ′≠  the equations:  

( ), , , ,
, , , ,

v v v
t dt dt dt dt dtϕ µ µ ϕ µ ϕµ µ ϕ µ µ

       ′ ′− = −       dt dt t dt t dt t dt
    

 

For all { }1, 2, , nϕ ∈   and all { }1, 2 ,, , nvµ ∈   fulfills 0dtµ ≠ , 0vdt′ ≠  
and either 0vdt ≠  or 0dtµ′ ≠ , these equations are invariant under any arbi-
trary change of dt



 and ′dt


. 

3.20. The n-Dimensional Real Collinear Sets Bundle 

The n-dimensional real collinear sets bundle is the union of all n-dimensional 
real collinear sets spaces at all points in n

  which is given as:  
[ ] [ ]( )n
n n

∈
=

t
t



 



                   (53) 

3.21. The n-Dimensional Real Coplanar Set 

For all n, , ∈p q r   the n-dimensional coplanar set of p, q and r donated by
( ), ,n p q r  is a set of all point in n  lied at the n-dimensional plane contains 
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p, q and r, which is defined as following:  

( ) ( ) ( )( ) ( ){ }
( ) ( )( ) ( ){ }
( ) ( )( ) ( ){ }

, , , | , and

, , , | , and

, , , | , and .

, ,n n

n

n

x x x

y y y

z z z

= + + = − ∈

= + + = − ∈

= + + = − ∈

p q r p d q r q d q r d q r r q

q d r p r d r p d r p p r

r d p q p d p q d p q q p

  

  

  

 

 

 



 (54) 

3.22. The n-Dimensional Real Coplanar Space 

The n-dimensional real coplanar space at each point ( ) 3, ,x y z ∈  donated by 
[ ], ,n x y z  is defined as following:  

[ ] ( ) ( ) ( )( ){
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( )}

| fulfill , , ,

, , , , , ,

, , , , ,

, , , , ,

,

, , ,

,n n n n

n n

n n

n

x x

y y y y

z z

y

z

z

x

x

x

z

∈ + +

+ + = + +

+ + =

=

+ +

+ +

p d q r q d q r

q d r p r d r p q d r p r d r p

p d p q r d p q p d q r q d q r

p q r p q

p p q r d p q

r

d

 

   

   

 

 



   



 



 

(55)

 
Important notes: 

[ ], ,n x y z  is defined as the space of all coplanars ( ), ,n p q r  that are con-
taining some point ( ) ( )1 2 , ,, , , n

nt t t= ∈ rt p q   represents intersection point 
of collinear sets then using the theorem (3.6) we find:  

( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( )

( ) ( ) ( )

, ,

,

,

,

, ,

, , , , , , , ,

, , , , ,

, , , ,

, , ,

, , , , , , ,

,

v

v

v

v

vv v

v

x x x x
t

y y

y y y y

q r

µ ϕµ ϕ µ
ϕ

µ µµ

ϕµ

µ

ϕϕ α

   + + + +   
+

  

 + + 
−

  

   + + + +   

=

= +

p d q r q d q r p d q r q d q r d q r d p q

d p q d p q d q r d p q

q d r p r d r p d p q

d p q d q r

q d r p r d r p q d r p r d r p d r p d

d

   

 

 

 

   

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

,

,

,

, ,

,

,

,

, , , ,

, , , ,

, , ,

, , , , , , , ,

, , , , ,

, , , ,

, ,

vv

v

v

z z

z z z z

x q r x q r

α

ϕα

α

α ϕα ϕ α µ

α αα µ

ϕα µ

  

 + + 
−

  

   + + + +   
= +

  

 + + 
−

q r

d q r d r p d q r

r d p q p d p q d q r

d q r d r p

r d p q p d p q r d p q p d p q d p q d r p

d r p d r p d p q d r p

p d q d d r p

d r p d

 

 

 

   

 

 

 

( )
,

,
α µ

  p q

(56) 

For all { }1, 2, , nϕ ∈   and all { }, , 1, 2, ,v nµ α ∈   fulfills  

( ) ( ) ( )
,

, , , , 0
v µµ

  ≠ d p q d q r d p q
 

, ( ) ( ) ( )
,

, , , , 0vv α
  ≠ d q r d r p d q r
 

 and  

( ) ( ) ( )
,

, , , , 0αα µ
  ≠ d r p d p q d r p
 

. 

3.23. The n-Dimensional Real Coplanar Bundle 

The n-dimensional real coplanar bundle is union of all n-dimensional real cop-
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lanar spaces at all space point in 3
  which is defined as following:  

[ ]( )( ) 3
3

, ,
, ,n n

x y z
x y z

∈
  =  

  



               (57) 

3.24. The N-Dimensional Real Space-Time 

For any physical system consisting of N matter particles, the N-dimensional real 
space-time is the section of N-dimensional real coplanar bundle that consisting 
of all real-time states of the physical systems at each all space point occupied by 
one or more constituent matter particles of the physical system during finite 
epoch with respect to an arbitrary observer. Thus if { }| 0N r r+ = ∈ ≥  then 
at each space point ( ) 3, ,x y z ∈  occupied by one or more constituent matter 
particles of the physical system the real-time state of the physical system is 
representing an element of the section of [ ], ,N x y z  that defined as following:  

[ ] ( ){
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )}

ST , , , , | , , fulfill

, , ,

, , ,

, , ,

, , ,

, , ,

, , ,

N N
a r u a r u

N
a r u r u

N
r u a u u a

N
r u a u u a

n
a a r u a r

N
a r u r r u

N
a a r u a r

x y z

x x

y y

y y

z z

x x

z z

+= ∈

+ +

+ +

= + +

+ +

= + +

+ +

r

P P F P P F

P d P F P d P F

P d F P F d F P

P d F P F d F P

P d P P F d P P

P d P F P d P F

P d P P F d P P

 

 



 



 







 









 







      (58) 

Important notes:  
If the real-time state of the physical system at the space point ( ) 3, ,x y z ∈  

occupied by one or more constituent matter particles of it is defined according 
to the equation 9 as following:  
( ) ( )

( ) ( )
1 2 1 2

1 2 1 2

, , , , , , , , , , , ,

, , , , , , , , , , , ,
N a N

r N u N

t x y z n n n P x y z n n n

P x y z n n n F x y z n n n

=

+ +

 

 

,  

then there exist at least in principle , , N
a r u

+∈P P F   fulfill  
( )1 2, , , , , ,a a NP x y z n n n=P



 , ( )1 2, , , , , ,r r NP x y z n n n=P


 ,  
( )1 2, , , , , ,u u NF x y z n n n=F



  and  

( )
( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

1 2, , , , , ,

, , ,

, , ,

, , ,

, , ,

, , ,

, , ,

N

N
a r u r u

N
r u a u u a

N
r u a u u a

n
a a r u a r

N
a r u r r u

N
a a r u a r

t x y z n n n

x x

y y

y y

z z

x x

z z

= + +

+ +

= + +

+ +

= + +

+ +

 

 







 





 

 

 

 



 

rP d P F P d P F

P d F P F d F P

P d F P F d F P

P d P P F d P P

P d P F P d P F

P d P P F d P P

          (59) 

4. Conclusion 

As the spatial coordinates x, y and z which are representing the lengths between 
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origin ( 0,0,0 ) and ( ,0,0x ), ( 0, ,0y ) and ( 0,0, z ) respectively, the time coor-
dinate is representing the total length of all occupation and leaving epochs of 
space point including the length of the initial leaving epoch elapsed before the 
first occupation of space point by the matter particle during finite observation 
epoch, this implied that the direction of time of any matter particle at each space 
point P occupied by it is the direction of increasing the number of occupation 
and leaving epochs of P by it, and the measurement of occupation of space point 
by one constituent matter particles of the physical system produce the same 
measurement of the time of the rest matter particles of the physical system that 
occupied and left the space point during finite observation epoch regardless of 
their distribution in space, this give simple reinterpretation of quantum entan-
glement. The motion of the constituent matter particles on separated orbits is 
equivalent to their motion in separated digital levels, and their transitions from 
one orbit to another one is equivalent to their transition from one digital level to 
another. 
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