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Abstract 
This work proposed a coupled model of diffusion. It adopted two forms of 
coupled movement, the interacting and non-interacting driven forms of 
movement of a solution particle of efavirenz concentration measured in blood 
plasma. Data from projected pharmacokinetics in a patient on efavirenz were 
used. A relationship between interacting and non-interacting diffusion was 
suggested through a stochastic differential equation. The solution particle with 
a small value of relative acceleration drift to its active neighbourhood was 
projected to have a corresponding high transport/interacting diffusion. 
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1. Introduction 

The work attempted to combine two forms of diffusion starting with phenome- 
nological approach motivated by Fick’s laws and their mathematical solutions 
and the “random walk” of diffusing particles suggested by Robert Brown. This 
random walk of microscopic particles in suspension in a fluid has since been 
adopted as the “Brownian motion” in honour of Brown. The mathematical form 
of the Brownian motion was derived by Einstein [1]. The Fick’s laws follow from 
Fourier’s law of thermal conduction [1] [2] [3] [4]. 

The research encouraging modelling of random fluctuations found in PK/PD 
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(Pharmacokinetic and Pharmacodynamic) relations has been suggested. It has 
been noted that there is an increasing need to extend the deterministic models 
which are currently favoured to models including a stochastic component in 
modelling pharmacological processes [5]. 

The transport diffusion is the concentration gradient dependent driven 
movement and describes the change in concentration of a solution particle. The 
transport diffusion can further be studied from Fick’s laws by use of partial dif-
ferential equations, however reseachers have used different variable spaces to 
study this flow [6] [7] [8]. Furthermore, in this work we tracked the transport 
diffusion by making use of the one to one function relationship between sec-
ondary saturation and concentration [9]. It is also noted that concentration is 
not a movement parameter as compared to secondary saturation. The self diffu- 
sion is a concentration gradient independent driven movement and describes 
the non-interacting movement of solution particle in the volume space. The ob-
servation of self diffusion component has been attributed to Brown [1]. 

The work has allowed for a proposition on the possibility to study the two 
movements in the 24 h dosing period that aid the process of diffusion by consi-
dering stochastic differential equations [5] [10]. It describes the movement of an 
interacting particle. Inferences were proposed on the possible relationship be-
tween the two movements (interacting and non-interacting). Numerical solu-
tions on diffusional constituent movement characterisation were derived for a 
patient on efavirenz. This work presents a stochastic coupled diffusion model. 
This enables us to study the relationship between transport and self forms of 
diffusion. Stochastic coupled models have been applied on combined PK/PD 
processes [5]. In addition, in this case the coupling is in modelling the relation- 
ship of the two separate diffusional movements. A measure is developed to esti-
mate the extent of gradient driven diffusion with the aid of a coupled stochastic 
differential equation. The Verhulst model is proposed to estimate the logistic re-
lation obtained from modeling the self and transport forms of diffusion [11].  

2. Methods 

Simulated projected data on secondary saturation movement, time and concen-
tration was taken from pharmacokinetic projections made on Patient P on 600 
mg dose considered in Nemaura [9] [12]. Stochastic differential equations, Or-
dinary differential equations and linear and non-linear regression models are 
used to model diffusion in plasma. The following softwares, MATLAB and R 
were used for development of models. The solution of the Stochastic Differential 
Equations are approximated with the Euler-Maruyama scheme. 

2.1. Deterministic Models for Concentration and  
Gradient Driven Movements 

Initially there was modelling of the concentration profile of a solution particle of 
patient P in time. Letting ( )x t  model concentration of solution particle at time 
t and was given by,  
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( ) ( )d
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x t
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θ=                          (1) 

for some ( )tθ . The process ( )x t  was sufficiently modelled by the following 
equation,  

( ) e .rtx t qt −=                           (2) 

We modelled the gradient driven movement ( )Gx  by initially considering, 
the derived secondary saturation movement ( )( ),F x t , for some patient P, in 
Nemaura (2014) from relations found which were informed from Nemaura 
(2015). The diffusant was the drug efavirenz in blood plasma. We gave the esti-
mation of the secondary saturation movement in patient P with respect to time 
and concentration,  
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The following was noted,  

d d d ,
d d d

Gx x F
t F t
=                          (4) 

where ( )( ) ( ): .Gx x F t x t= =  Thus,  

( )d d dd d d ,
d d dG

x F xx t F t t
F t F

′= =                  (5) 

and, 
d d1 .
d d
F x
x F
=                          (6) 

2.2. Stochastic Model 

The secondary saturation movement followed a one to one relation with concen- 
tration and was thus used as compared to other forms of secondary movement 
that is convection and advection [9]. The process ( ) ( )1y t h−  modelled both the 
interaction and non-interacting diffusion movement of the solution particle in 
the volume space. The process ( )y t  modelled these two diffusion forms of the 
solution particle and was thus given by,  

( )


( )( ) ( )( ) ( ) ( )d d , d , d   0 0,
D I

E

G
M M

y t x t x t t t x t b t yµ σ= + + =






        (7) 

where the process ( )b t  modelled the independent standard Brownian motion 
(Weiner process), ( )( ) ( )2,t x t hµ −  was the relative acceleration drift of a solu-
tion particle that allowed for the exchange of concentration material to its 
neighbourhood, DM -auxilliary concentration gradient dependant driven 
movement, IM -auxilliary concentration gradient independant driven move-
ment and E -as the random term in IM . Additionally,  

( )( ), ,t x t mµ ≤                         (8) 

where at ( )( ) ( ) ( )( ), ,  , 0t x t m y t x tµ ρ= =  for ( ) 0x t > . The parameter, m is 
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the least upper bound of drift for possible positive gradient driven process to 
occur. Thus the following:  

( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )
2

d d , d , d    0 0,
v x t

y t F t t x t t t x t b t y
uv

µ σ
+

= + + =     (9) 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )
2

d , d , d ,
v x t

y t F t t x t t t x t b t
uv

µ σ
 +
 ′= + +
 
 

     (10) 

( ) ( )( ) ( )( ) ( )d , d , d ,y t t x t t t x t b tϕ σ= +              (11) 

where, 

( )( ) ( )( ) ( ) ( )( )
2

, , .
v x t

t x t F t t x t
uv

ϕ µ
 +
 ′= +
 
 

           (12) 

Furthermore, for ( ),t xϕ  and ( ),t xσ  and ,t A +∀ ∈ ⊂   ,x z B +∈ ⊂   
and some C < ∞  the following conditions are satistified,  

( ) ( ) ( ) ( ), , ,  , , ,t x t z C x z t x t z C x zϕ ϕ σ σ− ≤ − − ≤ −        (13) 

( ) ( ) ( ) ( ), 1 ,  , 1 .t x C x t x C xϕ σ≤ + ≤ +             (14) 

Conditions 13 and 14 allowed for the existence and uniqueness of solutions 
for Equation (11) [10].  

3. Results 
3.1. Modelling Concentration and the Concentration Gradient  

Driven Movement in the Absence of Self Diffusion 

We estimated the parameters in Equation (1) for the concentration-time curve 
(Table 1). 

Furthermore, we estimated the parameter values for the derived secondary 
saturation ( ),F x t  with respect to time and concentration in Patient P (Table 2 
and Table 3). 
 
Table 1. Parameter estimates in modelling deterministic solution particle concentration. 

Parameters Estimate Std Error t value ( )Pr t>  

q 2.7996445 0.0280670 99.75 162 10−< ×  

r 0.1168398 0.0007906 147.79 162 10−< ×  

 
Table 2. Parameter estimates in modelling saturation movement rate with respect to t 
(Model (3(i))). 

Parameters Estimate Std Error t value ( )Pr t>  

1λ  0.623106 0.012214 51.02 162 10−< ×  

2λ  0.022465 0.001203 18.68 155.35 10−×  

3λ  0.439258 0.017354 25.31 162 10−< ×  
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Table 3. Parameter estimates in modelling saturation movement rate with respect to x 
(Model (3(ii))). 

Parameters Estimate Std Error t value ( )Pr t>  

u 0.801936 0.005934 135.1 162 10−< ×  

v 5.624198 0.126684 44.4 162 10−< ×  

 
There was consideration of how the concentration ( )x t  and movement 
( ) ( )1y t h−  processes informed potential relationships. The relationship of the 

concentration gradient driven movement and concentration rate of change was 
established by observing the relationship between equation 1 and 7. The follow-
ing was initially considered where 0IM =  and with ( )( ), 0t x tη =  and 

( )( ), 0.t x tσ =  There were two types of movement considered that were post-
ulated to contribute to diffusion. The part DM  modelled the auxilliary trans-
port constituent of diffusion and IM  measures the auxilliary self aspect of dif-
fusion. A high correlation value was obtained of ( ) ( )( ), 0.9667x t y tρ =  (esti-
mated the extent of transport diffusion) in the 24 h dose interval, where 
( ) ( ),x t y t  were solutions of Equations (1) and (7) (Figure 1). 
Informed by results herewith there was an adoption that transport diffusion 

was driven by concentration. Thus concentration could be used as a substitute 
parameter for transport diffusion. 

3.2. Stochastic Model: Modelling the Solution Particle Movement  
with Variable Relative Acceleration (Drift) 

The following case was considered where ( )( ), 0t x tµ ≥  and ( )( )0 , 1.t x tσ≤ ≤  
However, it was projected that at 23.2h mµ −= =  the solution particle move-
ment ( )( )y t  had zero correlation with the concentration process ( )x t . In the 
interval where ( )( ) 2, 3.2t x t hµ −≥ , a solution particle movement was projected 
to have no transport diffusion. A solution particle with increasing relative acce-
leration drift to its neighbour would have less magnitude of extent with respect 
to transport diffusion. However, a solution particle with low relative drift to its 
neighbour had a high potential of transport diffusion. That is transport diffusion 
was more pronounced in neighbouring particles with relatively low acceleration 
drift. A relationship of the correlation between ( )x t  and ( )y t , and the drift 
in self diffusion was proposed (Figure 2). 

An equation for the logistic decay relationship [11] was proposed,  

( ) ( )( ) ( )( ) ( )( ),

1, ,        0 , 3.2,
1 el t x t

x t y t t x t
k µ

ρ µ= ≤ ≤
+

         (15) 

where k and l (decay) are constants (Table 4). We obtained an analogous para-
meter to the Malthusian parameter and had a value of  

3.99269 3.2 12.776608 1.lm = × = >  

where m generally defines the `carrying capacity’ however in this case it was the 
value of supremum of acceleration drift that enables transfer of concentration 
material [11]. 
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(a) 

 
(b) 

Figure 1. (a) Projected concentration and solution particle movement(transport diffusion 
with no self diffusion); (b) projected Estimated solution particle movement from the fit-
ted equation ( ) ( )1.1259 0.0271y t x t= −  and RMS value of 1.9554. 

 
Table 4. Parameter estimates in modelling solution particle concentration and solution 
particle movement correlation relationship in relation to relative acceleration drift. 

Parameters Estimate Std Error t value ( )Pr t>  

l 3.99269 0.25592 15.601 144.6 10−×  

k 0.10301 0.01616 6.374 61.37 10−×  
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Figure 2. Projected solution particle concentration and solution particle movement cor-
relation in relation to relative acceleration drift ( )2hµ −  with 0,0.25,0.5,0.75σ =  and 

1. 
 

It is important to note that the relationship between concentration change and 
solution particle movement was inferred to be predominantly affected by relative 
acceleration drift. 

4. Conclusions 

Other researchers have been able to correlate self and transport forms of diffu-
sion from experimental observations [8]. Transport diffusion has been shown to 
thrive in neighbouring solution particles that have zero relative drift. The trans-
port diffusion in a neighbourhood of a solution particle was projected to be af-
fected by drift. Considering an increased level of self diffusion of a solution par-
ticle relative to its active neighbourhood, showed that it will give out less in 
terms of concentration material to be exchanged through gradient. A logistic re-
lation was projected between this correlation and drift. An elaborate study of the 
dynamics of the logistic decay curve proposed was done in Gonze, and consi-
dering the “Malthusian parameter value” resulted in an unstable steady state and 
unstable cycles for the system derived for Patient P since it had a value greater 
than 1 [11]. Relatively slow movement of neighbouring solution particles was 
projected to enable optimum drug transfer through transport diffusion in the 
plasma. 

Throughout this work, there was an inherent assumption that the particles 
were already in orientation that enabled transport diffusion. This was because 
for transport diffusion to occur the particles should be in such an orientation 
which enables progression of that process [8]. The extent of the transport diffu-
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sion of a solution particle was projected to decrease with increasing relative drift 
to an active neighbourhood.  
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