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Abstract 
This paper will focus on pricing options in marketing with two basic assets 
with risk and one basic asset without risk. In so doing, the Black-Scholes 
model and the European options which is applicable at the due date were 
used. By investigating the European option to find the proper price, it is ne-
cessary to solve an equation with partial derivatives which has two spatial va-
riables. The finite differences will be used for such equations. Finite differenc-
es for one dimensional equations commonly ends in a three diagonal set 
which will be solved by calculation costs O(n) in which n is the number of 
discrete points. But here, since the problems are two dimensional, the Alter-
nating Direction Implicit (ADI) and Locally One-Dimensional (LOD) are 
used to reduce the calculation costs. The open cost is at the level of discrete 
points and this is the advantage of these methods. Moreover, these methods 
enjoy acceptable stability. Though ADI and LOD are equal and easy in calcu-
lations, evaluating these methods in pricing the option indicates that the ADI 
method is sensitive to discontinuity or non-derivation which is the common 
property of income function; therefore, this thesis proposes the LOD method. 
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1. Introduction 

Imagine than an option contract for two underlying assets with the present pric-
es of x and y and the future prices of X1 and X1 at the maturity time of T has 
been signed. If the volatility of the first and second assets are shown by 1 2,σ σ  
and the ρ  is the correlation coefficient between the prices of the two underly-
ing assets and r is interest rate, then ( ), ,u x y T  is the this contract price in the 
following equation which is called the two dimensional Black-Scholes equation. 
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22 2 2

1 1 1 222

1 1 1
2 2 2

.

u u u uxyyxt x yyx
u urx ry ru
x y

ρσ σ σ σ
∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂∂

∂ ∂
+ + −

∂ ∂

           (1) 

where ( ) ( ], , 0,x y t T∈Ω×  and ( ), ,u u x y t=  is the three-variate u function. 
One of the variables is t and the other two variables are the spatial variables. By 
the two dimensional Black-Scholes equation we mean that there are two special 
variables in this equation. Although pricing options problems are defined in an 
infinite set such as: 

( ] ( ) ( ) ( ]{ }0, , , | , , 0,T x y t x y t TΩ× = ∈Ω ∈  

To use numerical methods, a limited range will be considered. Therefore, Eq-
uation (1) will be considered on a finite range where M and L are selected so 
large that the error in the u price become negligible [1]. Boundary conditions are 
necessary to solve the above equation. Various forms of boundary conditions 
can be artificially added to the problem. This conditions are: 

(1) linear boundary conditions 

( )
2

2 0, , 0, 0 , 0,u y t y M t
x
∂

= ≤ ≤ ≥
∂

 

( )
2

2 , , 0, 0 , 0,u L y t y M t
x
∂

= ≤ ≤ ≥
∂

 

( )
2

2 , 0, 0, 0 , 0,u x t x L t
y
∂

= ≤ ≤ ≥
∂

 

( )
2

2 , , 0, 0 , 0.u x M t x L t
y
∂

= ≤ ≤ ≥
∂

 

(2) Dirichlet boundary conditions 

( ) ( ), 0, , 0 , 0 , 0,u x t x x L t= Λ ≤ ≤ ≥  

( ) ( ), , , , 0 , 0,u x M t x M x L t= Λ ≤ ≤ ≥  

( ) ( )0, , 0, , 0 , 0,u y t y y M t= Λ ≤ ≤ ≥  

( ) ( ), , , , 0 , 0.u L y t L y y M t= Λ ≤ ≤ ≥  

The third condition is Neumann boundary condition which is not used in the 
present thesis. A combination of the first and the second condition might also be 
used [2]. 

2. Weight Methods for the Two Dimensional Black-Scholes 
Equation 

The two dimensional Black-Scholes equation can be discretized as the one di-
mensional Black-Scholes equation. To simplify the computations, the discrete 
operator L is defined as follows [3]. 
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( )
( )

( )
( )

( ) ( )

( ) ( )

2 2
2 21, , 1, , 1 , , 11 2

2 2

1, 1 , 1 1, ,
1 2

1, 1, , 1 , 1
,

2 2
,

2 2

.
2 2

n n n n n n
i j i j i j i j i j i jn

ij

n n n n
i j i j i j i j

n n n n
i j i j i j i j n

i j

u u u u u u
Lu i x j y

x y

u u u u
i x j y

x y
u u u u

r i x r j y ru
x y

σ σ

ρσ σ

+ − + −

+ + + +

+ − + −

− + − +
= ∆ + ∆

∆ ∆

− + +
+ ∆ ∆

∆ ∆

− −
+ ∆ + ∆ −

∆ ∆

    (2) 

The explicit method is as follows 
1

,
n n
ij ij n

ij

u u
Lu

t

+ −
=

∆
                         (3) 

And the implicit method is as follows 
1

, , 1
, .

n n
i j i j n

i j

u u
Lu

t

+
+−

=
∆

 

In general form, CrankNicolson method is as follows 

( )
1

, , 1
, ,1

n n
i j i j n n

i j i j

u u
Lu Lu

t
θ θ

+
+−

= − +
∆

 

There is no need to solve the set in the explicit method since 
1 ,n n n

ij ij iju u tLu+ = + ∆  

However, the explicit method has conditional stability and its stability domain 
is much smaller than the one dimensional mode. In fact, as the number of di-
mensions increase, the stability domain of the explicit method become smaller. 
The implicit method is stable and need to solve the linear equation set. 

1
, , 1

, .
n n
i j i j n

i j

u u
Lu

t

+
+−

=
∆

 

The dimensions of this set equals the numbers of points in the net. Since in 
the two dimensional mode the number of points is twice the number of points in 
the one dimensional mode; therefore, we have a large set of ,x yN N  dimensions 
which is too expensive to solve. The same can be found in Crank Nicolson me-
thod for 0 1θ≤ ≤  Therefore these methods are not recommended. ADI and 
LOD methods will be proposed in the next section. These methods are both un-
conditionally stable and have low computational costs. In these methods, by de-
composing the L operator to two x and y operators at each step, a number of 
three diagonal sets with xN  or yN  dimension will be solved to be able to go 
to the next step [4]. 

3. ADI Method for the Two-Dimensional Black-Scholes 
Model 

To obtain the Alternating Direction Implicit (ADI), the time derivation will be 
estimated as, 

1 1 1 1
1 11 2 2 2 2

, , , , , , , , , , .
n n n nn n n nn n

i j i j i j i j i j i j i j i j i j i ju u u u u u u uu u u
t t t t t

+ + + ++ ++ − + − − −−∂
≅ = = +

∂ ∆ ∆ ∆ ∆
    (4) 
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In fact, we added and subtracted one intermediate step 1
2

n
t
+

 and divided the 

time derivation into two parts. Now, by the using the LOD of L, we try to find 
the following equation to solve the equation. 

1 1
1 12 2

, , , , 12 .
n nn n

ni j i j i j i j n
x i y i

u u u u
L u L u

t t

+ ++
+ +− −

+ = +
∆ ∆

               (5) 

We will explain the way of obtaining the above mentioned equation in the 
following. To get from n−  to ( )1n− +  in ADI method, we first solve 

1
12

, , 2
,

n n
ni j i j

x i j

u u
L u

t

+
+−

=
∆

                       (6) 

For 1, , yj N=  , and every one of them is a three diagonal set from the xN   

dimension. By this action, the values of u will be obtained in 1
2

n +  stage. Then,  

to obtain u in ( )1n +  phase, we solve 
1

1 2
, , 1

,

nn
i j i j n

y i j

u u
L u

t

++
+−

=
∆

                       (7) 

For 1, , xi N=   every one of them is a set from the yN  dimension. Refer-
ring to the above explanations and considering the fact that solving three di-
agonal sets has ( )O N  cost, we conclude that getting from n−  to ( )1n− +  
step equals the rank of the number of network points. 

( ) ( ) ( )y x x y x yN O N N O N O N N+ =  

This is the least possible calculation cost. Now, we explain how we can obtain 

xL  and yL  and equation sets. First, the time step of 1,n nt t +  is divided into the  

two steps of 1
2

,n n
t t

+

 
 
 

 and 1 1
2

, nn
t t +
+

 
 
 

. in the first time step, the derivations  

should be implicitly estimated in relation to x and the derivations will be expli-
citly estimated in relation to y variable. In other words, we write ( )x y h∆ = ∆ =  

1 1 1 1
2 22 2 2 2

, , 1, , 1, , 1 , , 12 21 2
2 2

1, 1 1, 1 1, 1 1, 1
1 2 2

1 1
12 2

1, , , 1 , 2
,

2 2
1 2 2
2

1
2 4

.

n n n nn n n n
i j i j i j i j i j i j i j i j

i j

n n n n
i j i j i j i j

i j

n n n n
ni j i j i j i j

i j i j

u u u u u u u u
x y

h ht

u u u u
x y

h

u u u u
rx ry ru

h h

σ σ

ρσ σ

+ + + +

+ − + −

+ + − − + − − +

+ +
++ +

− − + − +
= +

∆

+ − −
+

− −
+ + −

    (8) 

In the second time step, i.e. in 1 1
2

, nn
t t +
+

 
 
 

 we will act in reverse. In other  

words, we implicitly estimate the derivation in relation to y and explicitly in 
relation to x. Therefore, we have 
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1 1 1 1
1 1 1 12 22 2 2 2

, , 1, , 1, , 1 , , 12 21 2
2 2

1 1 1 1
2 2 2 2

1, 1 1, 1 1, 1 1, 1
1 2 2

1 1
2 2

1, , , 1

2 2
1 2 2
2

1
2 4

n n n nn n n n
i j i j i j i j i j i j i j i j

i j

n n n n

i j i j i j i j
i j

n n n
i j i j i j

i j

u u u u u u u u
x y

h ht

u u u u
x y

h

u u u
rx ry

h

σ σ

ρσ σ

+ + + ++ + + +
+ − + −

+ + + +

+ + − − + − − +

+ +

+ +

− − + − +
= +

∆

+ − −
+

−
+ + , 1

,

1
.

n
i j n

i j

u
ru

h
+− +

−

   (9) 

In the above equations, the derivation of 
2u

x y
∂
∂ ∂

 is explicitly written and y in  

the last sentence is implicitly written. Now, if we multiply the two sides of the 

Equation (8) by 1
2

 and defne the left side with 
1
2

,

n

x i jL u
+

, also if we multiply the 

two sides of the Equation (9) by 1
2

 define the left side with 1
,
n

y i jL u + , we get the  

(8) and (9) equations. Now, if j is constant in (8)) equation and transfer the value  

in 1
2

n +  step to the left, the unknown values are. 

1 1 1
2 2 2

, 1, 1,, ,
n n n

i j i j i ju u u
+ + +

− +  

In the present equations, the coefficient 
1
2

1,

n

i ju
+

−  is 

2
21

24i i
t x

h
σα
 ∆

= − 
 

 

And cofficient 
1
2

,

n

i ju
+

 is 

2
21

2
1 11

2 2 2i i i
t tx rx r

hh
σβ

 ∆ ∆
= + − + 
 

 

Coefficient 
1
2

1,

n

i ju
+

+  is 

2
21

24 2i i i
t r tx x

hh
σγ
 ∆ ∆

= − + 
 

 

if we transfer the values in the n−  step to the right side and define 

( )2 , 1 , , 1 , 1 ,
, 2 2

1, 1 1, 1 1, 1 1, 1
1 2 2

2
:

4 2

.
2 4

n n n n n
i j i j i j i j i jn

ij i j j j

n n n n
i j i j i j i j

i j

u u u u ut tf u y ry
hh

u u u ut x y
h

σ

ρσ σ

+ − +

+ + − − − + + −

− + −∆ ∆
= + +

+ − −∆
+

 

then, we get to the below equation 
1 1 1
2 2 2

1, , 1, , .
n n n

i i j i i j i i j i ju u u fα β γ
+ + +

− ++ + =  

For constant j and for 1, 2, , xi N=   in the above equation, the equation set 
is defined which is a three diagonal set. 
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1 1

2 2 2

1 1 1

0 0 0
0 0

0 0

0 0 0

0 0 0
x x x

x x

x

N N N

N N

A

β γ
α β γ

α β γ

α β
− − −

 
 
 
 
 =
 
 
 
  





   

     



 

The sentence 
1
2

1 0,

n

juα
+

 in the first line and the sentence 
1
2
1,x x

n

N N juγ
+

+  in the last  

line will be transferred to right and will be subtracted from , 1,,
xN j jf f  respec-

tively. These sentences will be substituted from the boundary condition and the 
left side of the rectangular area of [ ] [ ]0, 0,L MΩ = × . the new values will be  

presented by ,î jf  values will be obtained in 1
2

n +  step [1]. The algorithm of  

this half-step is 
for 1: yj N=  
for 1: xi N=  

set , ,i i iα β γ  and ijf . 
end 

solve 
1
2

1: , 1: ,
ˆ

x x

n

x N j N jA u f
+

=  by using Thomas algorithm. 

end 
Considering the (9), we follow the same procedure for the second half-step. 

First, we define 
2

22
24j j
t y

h
σα
 ∆

= − 
 

 

ana 
2

22
2

1 11
2 2 2j j j

t ty ry r
hh

σβ
 ∆ ∆

= + − + 
 

 

and 
2

22
24 2j j j
t r ty y

hh
σγ
 ∆ ∆

= − + 
 

 

1 1

2 2 2

1 1 1

0 0 0
0 0

0 0

0 0 0

0 0 0
y y y

y y

y

N N N

N N

A

β γ
α β γ

α β γ

α β
− − −

 
 
 
 
 =
 
 
 
 
 





   

     



 

which is a three diagonal set. The sentence 1
1 ,0

n
iuα +  In first line and the sentence 

1
, 1y y

n
N i Nuγ +

+  in the last line will be transferred to the right of the set and their val-
ues will be substituted considering the border condition of the sides in top and 
bottom of [ ] [ ]0, 0,L M×  of the rectangle area. The new values are presented by 
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,ˆi jg  the set xN  will be solved for 1, 2, , xi N=   and the u value will be ob-
tained at 1n +  step. 

( )
1 1 1 1 1

1 2 2 2 2 2
2 1, , 1, 1, ,2

, 1 2

1 1 1 1
2 2 2 2

1, 1 1, 1 1, 1 1, 1
1 2 2

2
:

4 2

.
2 4

n n n n n
n i j i j i j i j i j

ij i j i i

n n n n

i j i j i j i j
i j

u u u u ut tg u x rx
hh

u u u ut x y
h

σ

ρσ σ

+ + + + +
+ + − +

+ + + +

+ + − − − + + −

− + −∆ ∆
= + +

+ − −∆
+

 

therefore, the following equation will be obtained. 
1 1 1

, 1 , , 1 , .n n n
i i j i i j i i j i ju u u gα β γ+ + +

− ++ + =                   (10) 

The second phase algorithm is as follows. 
for 1: xi N=  

for 1: yj N=  
set , ,j j jα β γ  and ijg . 

end 

solve ( ) ( )1
,1: ,1:y y

T T
n

y i N i NA u g+ =  by using Thomas algorithm. 

end 
As it can be seen, in the first half-step of yN , the three diagonal set will be 

solved from the dimension of xN  and in the second half-step of xN , the three 
diagonal set will be solved from the dimension of Therefore, the calculation cost 
of the method to get from the n step to the 1n +  step is from the rank of yN  

xN , that is, the rank of the number of the network points. 

4. LOD Method 

The LOD method, similar to ADI method is divided into two steps in each time 
step. The first stage estimations are implicit and in relation to x and the second 
step is explicit and in relation to y. the Black-Scholes model is rewritten as [5], 

( )

( )

2 2 2
1

1 22

2 2 2
2

1 22

1 1 1
2 2 2 2 2

1 .
2 2 2

xu u u u u rrx xy u
t t x x yx

y u u u rry xy u
y x yy

σ
σ σ ρ

σ
σ σ ρ

 ∂ ∂ ∂ ∂ ∂ + = + + − ∂ ∂ ∂ ∂ ∂∂  
 ∂ ∂ ∂ + + + − ∂ ∂ ∂∂  

    (11) 

in which the derivations for x and y are written separatel y. The derivation 
2u

x y
∂
∂ ∂

 and the u are divided between the two groups. Now, the time step of 

[ ]1,n nt t +  will be divided into two steps of 1
2

,n n
t t

+

 
 
 

 and we will solve the first 

half-step, that is, 1
2

,n n
t t

+

 
 
 

 of the equation 

( )2 2 2
1

1 22
1 1 .
2 2 2 2

xu u u u rrx xy u
t x x yx

σ
σ σ ρ

 ∂ ∂ ∂ ∂ = + + − ∂ ∂ ∂ ∂∂  
        (12) 
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We will solve the half-step 1 1
2

, nn
t t +
+

 
 
 

 of the equation. 

( )2 2 2
2

1 22
1 1 .
2 2 2 2

yu u u u rry xy u
t y x yy

σ
σ σ ρ

 ∂ ∂ ∂ ∂ = + + − ∂ ∂ ∂ ∂∂  
         (13) 

Both equation will be fragmented implicitly. In this way, the operators ,o o
x yL L  

defined as follows. 

( )
1 1 1 1 1

21 12 2 2 2 2
1, , 1, 1, ,12 2

,2

1, 1 1, 1 1, 1 1, 1
1 2 2

2
: ,

2 2
1
2 4

n n n n n
n ni j i j i j i j i jio

x ij i i j

n n n n
i j i j i j i j

i j

u u u u ux rL u rx u
hh

u u u u
x y

h

σ

σ σ ρ

+ + + + +
+ +− + +

+ + − − − + + −

− + −
= + −

+ − +
+

     (14) 

and 

( )2 1 1 1 1 1
2 , 1 , , 1 , 1 ,1 1

,2

1 1 1 1
2 2 2 2

1, 1 1, 1 1, 1 1, 1
1 2 2

2
2 2

1 .
2 4

n n n n n
j i j i j i j i j i jo n n

y ij j i j

n n n n

i j i j i j i j
i j

y u u u u u rL u ry u
hh

u u u u
x y

h

σ

σ σ ρ

+ + + + +
− + ++ +

+ + + +

+ + − − − + + −

− + −
= + −

+ − +
+

      (15) 

Now the two following sets are made. 
1

12
, , 2

, ,
n n

ni j i j o
x i j

u u
L u

t

+
+−

=
∆

                      (16) 

and 
1

1 2
, , 1

, ,
nn

i j i j o n
y i j

u u
L u

t

++
+−

=
∆

                      (17) 

which are called the first phase and the second phase sets respectively. Therefore, 
the algorithm of LOD method has two phases. In the first phase, the Equation 
(12) will be fragmented and summarized. 

1 1 1
2 2 2

1, , 1, ,

n n n

i i j i i j i i j i ju u u fα β γ
+ + +

− ++ + =  

The coefficients of iα , iβ , and iγ  are defined as 
2 2 2 2 2 2
1 1 1

2 2 2, 1 , .
22 2

i i i
i i i i i

x t x t x tt r trx rx
h hh h h

σ σ σα β γ
 ∆ ∆ ∆∆ ∆

= − = − − + = − − 
 

 

Also, the right side of ,i jf  is 

1, 1 1, 1 1, 1 1, 1
1 2 2 .

2 4

n n n n
i j i j i j i j

ij i j

u u u utf x y
h

ρσ σ + + − − − + + −+ − −∆
=  

The only difference between ADI and LOD is in the right hand side value of  

,i jf . on the LOD, the discrete values of 
2

2
u

y
∂
∂

 and 
u
y
∂
∂

 do not exist. Therefore,  

the algorithm of the first phase of the LOD method is similar to ADI method 
and the only difference is in the right side. In the second phase of the fragmenta-
tion of the Equation (13), we have 
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1 1 1
, 1 , , 1 ,
n n n

j i j j i j j i j i ju u u gα β γ+ + +
− ++ + =  

The coefficients of jα , jβ , and jγ  are defined as 
2 2
2

2

2 2
2

2

2 2
2

2

,
2

1 ,
2

.
2

j
j

j
j j

j
j j

y t
h
y t t rry

hh
y t try

hh

σ
α

σ
β

σ
γ

∆
= −

∆ ∆
= − − +

 ∆ ∆
= − −  

 

 

And the right side values are defined as 
1 1 1 1
2 2 2 2

1, 1 1, 1 1, 1 1, 1
1 2 2 .

2 4

n n n n

i j i j i j i j
i j

u u u ut x y
h

ρσ σ
+ + + +

+ + − − − + + −+ − −∆  

This phase is similar to the second phase of the ADI method. The only differ-  

ence is that the right side does not include the fragmented values of 
2

2
u

x
∂
∂

 and 

u
x
∂
∂

. 

5. Meassuring the Numerical Method Error 

If x is the exact value of a numerical quantity and x̂  is an approximate quantity. 
Absolute error is defined as 

ˆx x x∆ = −                            (18) 

But if the purpose is estimating a function such as ( ), ,u x y T , instead of one 
number of the function value ( ), ,u x y T  in the points ( ),i jx y  which 
1 ,xi N≤ ≤  1 yj N≤ ≤  should be investigated. Therefore, the definition of (18) 
is corrected. If the exact response value for t T=  with the function. 

( ) [ ] [ ], , , 0, , 0,eu x y T x L y M∈ ∈  

And the approximate values in the points ( ),i jx y  with ( )ˆ , ,i ju x y T . In this 
way, the error is 

1 1
ˆmax max

x y

e
ij iji N j N

e u u
∞ ≤ ≤ ≤ ≤
= −  

Defined as the “extreme norm error” or “the maximum error”. The “norm 
error of two” or “mean square error” is defined as 

( )( )2

2
1 1

1 ˆ, , .
yx NN

e
i j ij

i jx y

e u x y T u
N N = =

= −∑∑              (19) 

While applying the numerical results in a real market, all ,i ju  won’t be used 
since the basic assets cannot be numerical and if the two basic assets in problem 
are ,x y  respectively. Neighborhood around 1x  is considered as x. the error 
must be investigated in a limited area of the present prices. This area is called G 
[1]. 
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( ){ }1 1 2 2, | 0.9 1.1 ,0.9 1.1G x y X x X X x X= ≤ ≤ ≤ ≤  

The neighborhood gure is as follows. 
In which every ( ),i jx y  is in G. Therefore, the following will be done. 

1 1
1 10.9 1.1 0.9 1.1 ,i

X XX x X i
x x

   ≤ ≤ ⇒ ≤ ≤ − −   ∆ ∆   
 

similarly, we have 

2 20.9 1.1 .X Xj
y y

   
≤ ≤ − −   ∆ ∆   

 

The number of ( ),i j  which are in this neighborhood are defined as 

1 1 2 21.1 0.9 1 1.1 0.9 1 .X X X XN
X X y y

        = − − − + − − − +         ∆ ∆ ∆ ∆         
    (20) 

We also use the root mean square error (RMSE) on a specific region. The 
RMSE is defined as 

( )2

, 2,
,

1 ˆ
N

e
i j ij G

i j
RMSE u u e

N
= − =∑  

where N is the number of points on the gray region show in Figure 1. 

6. All Cash or None 

First, the option of two cash assets or none will be considered. We assume that 
by having two assets x, y the income of option is as follows [3]. 
 

 
Figure 1. Limitation in asset price. 
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( ) 1 2cash ,
,

0 unless
x X y X

x y
≥ ≥

Λ = 


                 (21) 

where X1, X2 are the prices of x, y. 
The function figure is as follows. 
The following values will be used for the numerical simulation of the parame-

ters. 

1 2 1 20.3, 0.03, 0.5, cash 1, 100,r X Xσ σ ρ= = = = = = =  

We consider the calculation domain as [ ] [ ]0,300 0,300Ω = ×  for this exam-
ple, in Figure 2 with the mentioned parameters, the exact answer is 

( ) ( ) ( ) ( )( )1 2, cash exp , , ,V x y rt Y x y Y x yρ= − Ψ  

( )
2
1

1
11

1, log ,
2

xY x y r T
XT

σ
σ

  
= + −     

 

( )
2
2

2
22

1, log .
2

yY x y r T
XT

σ
σ

  
= + −     

 

Note that ρΨ  is a bivariate normal cumulative distribution function, i.e., 

( )
2 2

2 2

1, : exp d d .
2π 2 1 2 1

a b x y xya b x yρ
ρ

ρ ρ−∞ −∞

 + Ψ = − +
 − − 

∫ ∫  

For this example, the errors of both ADI and LOD methods with different 
time and location step length are presented in Table 1 and Table 2. 
 

 
Figure 2. The income function of option of two cash assets or none. 
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7. Result 

As shown in Table 1, the ADI shows better convergence than the LOD method 
with relatively large space step sizes. However, with smaller space step size 
(equivalently large temporal step size), convergence the method ADI shows the 
results which have big error while the method LOD make convergent results. To 
investigate what made blowup solutions for the ADI scheme, we compare solu-  

tions, 
1
2u  ana 1u , and source terms, f and g, generated from the ADI and LOD  

methods. We used time step size, 0.5t∆ = , and space step size 5h = . In Fig-
ure 3, the first and the second columns show the numerical results at each step 
of the ADI and LOD for a two-asset cash or nothing option, respectively. As we 
can see from the figure, the numerical result of the ADI with a relatively large 
time step shows oscillatory solution along the lines 1x X=  and 2y X= , source 
terms in the first steps are shown. 
 
Table 1. The results of ADI program. 

RMSE 
2

e  e
∞

 h Δt 

2.6819 × 10−20 3.5622 × 10−4 4.4095 × 10−5 5.0 0.05 
1.184 × 10−4 5.5920 × 10−5 2.3593 × 10−6 2.5 0.025 

1.8877 × 10−69 2.4637 × 10−11 1.3877 × 10−7 1.25 0.0125 
N.A N.A N.A 0.625 0.00625 

 
Table 2. The results of LOD program. 

RMSE 
2

e  e
∞

 h Δt 

1.6230 × 10−20 5.639 × 10−4 2.2564 × 10−4 5.0 0.05 
2.9567 × 10−42 2.2343 × 10−4 9.9937 × 10−5 2.5 0.025 
1.0266 × 10−72 1.1897 × 10−4 4.2046 × 10−5 1.25 0.0125 
5.8791 × 10−144 8.3722 × 10−5 1.8680 × 10−5 0.625 0.00625 

 

 
(a) Matrix f in ADI method. 
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(b) Matrix f in LOD method. 

 
 

(c) Matrix 
1
2u  in ADI method. 
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(d) Matrix 
1
2u  in LOD method. 

 
(e) Matrix g in ADI method. 
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(f) Matrix g in LOD method. 

 
(g) Matrix 1u  in ADI method. 
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(h) Matrix 1u  in LOD method. 

Figure 3. Numerical results of cash or nothing using the ADI and LOD. (a) source term f 

at step1, (b) solution 
1
2u  at step 1, (c) source term g at step 2, and (d) solution u1 at step 

2. 
 

The source term in the ADI method exhibits oscillation around 2y X=  
which is from the y-derivatives in the source term. On the other hand, for the 
LOD method, we don’t have the y-derivatives in the source term and solution 

1
2u  is monotone around 2y X= . Therefore, for the ADI we have an LOD 

solution at the first step. After one complete time step, the result with the ADI 
shows nonsmooth numerical solution. However, the LOD method results in a 
smooth numerical solution [1]. 
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