
Journal of Quantum Information Science, 2011, 1, 43-49 
doi:10.4236/jqis.2011.12006 Published Online September 2011 (http://www.SciRP.org/journal/jqis) 

Copyright © 2011 SciRes.                                                                                 JQIS 

Adaptive Phase Matching in Grover’s Algorithm 

Panchi Li1*, Kaoping Song2 
1School of Computer & Information Technology, Northeast Petroleum University, Daqing, China 

2School of Petroleum Engineering, Northeast Petroleum University, Daqing, China 
E-mail: *lipanchi@vip.sina.com 

Received June 28, 2011; revised August 16, 2011; accepted August 26, 2011 

Abstract 
 
When the Grover’s algorithm is applied to search an unordered database, the successful probability usually 
decreases with the increase of marked items. In order to solve this problem, an adaptive phase matching is 
proposed. With application of the new phase matching, when the fraction of marked items is greater 

 3 5 8 , the successful probability is equal to 1 with at most two Grover iterations. The validity of the 

new phase matching is verified by a search example. 
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1. Introduction 
 
Shor’s prime factoring algorithm and Grover’s quantum 
search algorithm are two of the great quantum algorithms 
[1,2]. Grover’s search algorithm provides a dramatic 
example of the potential speedup offered by quantum 
computers [2,3]. The problem addressed by Grover’s 
algorithm can be viewed as trying to find a marked ele-
ment in an unsorted database of size N. To solve this 
problem, a classical computer would need, on average, 

2N  database queries and N queries in the worst case. 
Using Grover’s algorithm, a quantum computer can ac-
complish the same task using merely  NO   queries. 
The importance of Grover’s result stems from the fact 
that it proves the enhanced power of quantum computers 
compared to classical ones for a whole class of oracle- 
based problems, for which the bound on the efficiency of 
classical algorithms is known. At present, Grover’s quan- 
tum search algorithm has been greatly noticed and has 
become a challenging research field. However, the 
Grover’s algorithm also has some limitations. When the 
fraction of marked items is greater than a quarter of the 
total items in the database, the success probability will 
rapidly decrease, and when the fraction of marked items 
is greater than half of the total items in the database, the 
algorithm will be disabled. 

Up to now, many efforts in improving Grover’s origi-
nal algorithm have been done. Boyer et al. have given 
analytical expressions for the amplitude of the states in 

Grover’s search algorithm and tight bounds on the algo-
rithm [4]. Zalka has improved these tight bounds and 
showed that Grover’s algorithm is optimal [5]. Biron et 
al. generalized Grover’s algorithm to an arbitrarily dis-
tributed initial state [6]. Pati recast the algorithm in geo-
metric language and studied the bounds on the algorithm 
[7]. Ozhigov showed that quantum search can be further 
speeded up by a factor of 2  by parallelism [8]. Gin-
grich et al. also generalized Grover’s algorithm with par-
allelism with improvement [9]. The Grover’s original 
algorithm consists of inversion of the amplitude in the 
desired state and inversion-about-average operation [2]. 
In [10], Grover presented a general algorithm: Q   

I U I U 
 , where U is any unitary operation, U   is the 

adjoint of U, 2I I    , 2I I    ,   
is an initial state and   is a desired state. When 
U U H  , where H is the Walsh-Hadamard trans-
formation, and 0  , the general algorithm becomes 
the original algorithm. Long extended Grover’s algo-
rithm [11]. In Long’s algorithm, I  and I  are ex-
pressed as  1I I ei      and  i1I I e 

    
  , respectively. When π   , Long’s algo-

mes Grover’s original algorithm. Li et al. pro-
posed that U in Long’s algorithm can be replaced by any 
unitary operation V [12,13]. Biham generalized the 
Grover’s algorithm to deal with an arbitrary pure initial 
state and an arbitrary mixed initial state [14,15]. In [16], 
Grover presented the new algorithm by replacing the 
selective inversions by selective phase shifts of 

rithm beco

π 3 . 
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al sJust like classic earch algorithms the algorithm has a 
fixed point in state-space toward which it preferentially 
converges. Li et al. studied the changes of the approxi-
mation error in the fixed-point search algorithm obtained 
by replacing equal phase shifts of π 3  by different 
pha hifts [17]. se s

The methods mentioned above cannot solve the prob-
lem that the algorithm efficiencies decrease as the 
marked items increase. In this paper, we study the phase 
matching in Grover’s algorithm, and propose an adaptive 
matching, namely,  f     , where   is the 
fraction of marked items, and f   is the polynomial 
for  . With application of the new phase matching, 
when   is a rational number in range  3 5 8  to 
1/4, the probability of getting correct results is equal to 1 
with two Grover iterations, and when   is greater than 
1/4, the probability of getting correct results is equal to 1 
with only one Grover iteration. 

This paper is organized as follows: In Section 2, we 
introduce Grover’s algorithm and its drawbacks. Section 
3 is used to propose an adaptive phase matching with the 
higher success probability. Section 4 gives an example to 
verify the validity of new phase matching. Section 5 
summarizes the whole paper. 
 
2. Grover’s Algorithm and Its Problem 
 
2.1. Grover’s Algorithm Summary 
 
Suppose we wish to search through a search space of N 
elements. Rather than search the elements directly, we 
concentrate on the index to those elements, which is just 
a number in range 0 to . For convenience we as-
sume , so the index can be stored in n qubits, and 
that the search problem has exactly M solutions, with 

1N 
2nN 

1 M N . The algorithm begins with the state 0
n

. 
The Walsh-hadamard transform is used to put the state 
0

n
 in the equal superposition state, 

11 N

0x

x
N




 


                 (1) 

The Grover quantum search algorithm then consists of 
repeated application of a quantum subroutine, know as 
the Grover iteration or Grover operator, which we denote 
G. The Grover iteration may be broken up into four 
steps. 

1) Apply the oracle O. The oracle is a unitary operator 
defined by its action on the computational basis 

   O x q x q f x             (2) 

where x is the index register,   denotes addition 
modulo 2, and the oracle qubit q  is a single qubit 
which is flipped if , and is unchanged other-

wise. 

  1f x 

2) Applying the Walsh-Hadamard transform nH  . 
3) Perform a conditional phase shift, with every com-

putational basis state except 0  receiving a phase shift 
of –1,   01 xx x

   . 
4) Applying the Walsh-Hadamard transform nH  . 
It is useful to note that the combined effect of steps 2, 

3, and 4 is 

 2 0 0 2n nH I H I           (3) 

where   is the equally weighted superposition of 
states, (1). Thus the Grover iteration, G, may be written 
as  2G I   O . 

Let M N  , and CI(x) denote the integer closest to 
the real number x, where by convention we round halves 
down. Then repeating the Grover iteration 

 
 

arc cos
CI

2arc sin
R





 


 




                (4) 

times rotates   to within an angle arc sin π 4   
of a superposition of marked states [18]. Observation of 
the state in the computational basis then yields a solution 
to the search problem with probability at least one-half. 
 
2.2. Grover’s Algorithm Success Probability 
 
In fact, the Grover iteration can be regarded as a rotation 
in the two-dimensional space spanned by the starting 
vector   and the state consisting of a uniform super-
position of solutions to the search problem. Let   
represent a normalized states of a sum over all which are 
not solutions to the search problem, and   represent a 
normalized states of a sum over all which are solutions to 
the search problem. Simple algebra shows that the initial 
state   may be re-expresses as 

   cos sint t                 (5) 

where arc  sint  . After R Grover iterations, the 
initial state is taken to 

  
  

cos 2 1 arc sin

             sin 2 1 arc sin

RG R

R

  

 

 

 
    (6) 

Hence, the success probability is 

  sin 2 2 1 arc sinP R             (7) 

The curve of P is shown in Figure 1. 
 
2.3. The Drawback of Grover’s Algorithm 
 
It is easy to deduce from Equation (4) and Equation (7) 
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Figure 1. The success probability of Grover’s algorithm. 

 
that when  3 5 8 0.14645,    P  decreases rap-
idly. When 0.14645 1 4,   P  inc eases rapidly. When r
1 4 1 2,   P  decreases rapidly. When 1 2,   

0R  , Pthere is  , and the algorithm is disabled. 
Hence, the Grover's algorithm is no longer useful when 

1 4  . 
The reason for the problem is that the two phase rota-

tions in Grover iteration are fully equivalent in both am-
plitude and direction, namely . According to Ref. [18], 
the result of such phase rotations is that, for the one Grover 
iteration, the phase of the 

π

  increases 2arc sin   
radians, and that rotating through at least arc cos    

radians takes the   to  . When 
3 5

, 1
8


 

  
 


, 

there are only 1

1

4
   and 2

3 5

8
 

  make R an inte-

ger, namely, 1
1

1

arccos
1,

2arcsin
R




   2

2

2

arccos
2

2arcsin
R




  . 

 
3. The Adaptive Phase Matching for 

Grover’s Algorithm 
 
3.1. The Adaptive Phase Matching 
 
The two phase shift operators in the Grover’s algorithm 
may be generally expressed as follows 

 
1

1 e
M

i
m m

m

U I   


                 (8) 

 1 e eiV i I                    (9) 

In the Grover’s original algorithm, there is π   . 
According to the postulates of quantum mechanics [18], 
the evolution of a closed quantum system is described by 

a unitary transformation. So as far as the unitarity of op-
erators described by Equation (8) and Equation (9) is 
concerned, we have the following conclusions. 

Theorem 1 The operators described by Equation (8) 
and Equation (9) are unitary. 

Proof   
1

U 1 e
M

i

m

I   



     

      

 

  
1 1

2

1

2 e e

          1 e 1 e

M M
i i

m m

M
i i

m

U U I

I

 

 

 

 

 

 





   

     
 




 

Hence, the operator described by Eqaution (8) is uni-
tary. 

 

 
  
 

1

1 e e

1 e 1 e

          e e 2

M
i i

m

i i

i i

V I

V V

I I

 

 

 

 

   

 

  



 



  

  

    



 

Hence, the operator described by Equation (9) is uni-
tary.  

For the matching of   and  , we propose an adap-
tive phase matching described by Theorem 2. 

Theorem 2 

1) When 1 4 1   and 
2 1

arc cos
2

 

     

 
, 

the success probability 1P   can be obtained after only 
one iteration. 

2) When 
3 5 1

8 4


   and 

3 5
arc cos 1

4
 


 

     
 

, 

the success probability 1P  can be obtained after only 
two iterations. 

Proof 1) For   described by Equation (1), applying 
one Grover iteration gives 

 1 3

1
j kUV A x B x

N
     

where 

  
1

0

e e e
N M

ii i

j

A M N  
 





M        

    
1

0

e e 1
M

i i i

k

B N M Me   






      
 

 

Let    e e 1p N M Mei i i        , the success 

probability P is equal to  2
3 .M p  When N ,    
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using some simple algebra gives 3 28 12 4     
 3 2 3 28 12 4 cos 4 8 5 .           cos When    

 2 1 2  , namely,   arc cos 2 1 2       ， 

 
 

23 2

3 2
max 3 2

8 12 4
4 8 5 1

4 3 4
P P

  
  

 

 
     


. 

From cos 1  , the range 1 4 1   may be ob-
tained. 

2) Reapplying one Grover iteration to 1  gives 

 2 1 5

1
j kUV A x B x

N
     

where 

 

    

 
     

  
      

1

0

1

0

2 2

1 e e

               1 1 e 1 e

1 e e

               1 1 e 1 e

e e e

e e e e

N M
i i

j

i i

M
i i

k

i

ii i

i i i i

A N C

N M C M D

B N D

iM D N M C

C M N M

D N M M

 

 

 



  

     

 









 

  

      

  

      

    

    






D

 

Let 

    
  
1 e e 1 1 e

     1

i i i

i

p N D M

N M e C

  



     

  
 

the success probability P is equal to  2
5M p N . 

Where    , use some simple algebra gives 

   
 
 
 

5 4 4 5 4 3 3

5 4 3 2 2

5 4 3 2

5 4 3 2

16 16 cos 64 112 48 cos

 96 240 188 44 cos

64 208 232 100 12 cos

16 64 92 56 13 .

P      

    

     

    

    

   

    

    



 

where 
3 5

cos 1
4





  , max 1P P  . 

From cos 1  , the range  3 5 8   1  may be 

obtained. Taking into account the only iteration is needed 

when 1 4 1  , hence, the range for   takes the form 

 3 5 8 1   4 , and the adaptive phase matching 

takes the form   arc cos 1 3 5 4       . □ 
According to thorem 2, applying the adaptive phase 

matching, the Equation (8) and Equation (9) can be re- 
expressed as follows 

 
1

1 e
M

i

m

U I   


              (10) 

 V 1 e ei Ii               (11) 

On the basis of the adaptive phase matching, the suc-
cess probability curve is shown in Figure 2. 
 
3.2. The Algorithm Description Based on the 

Adaptive Phase Matching 
 
According to  , we divide the search process into three 
cases. 

1) When  0 3 5   8 , the original phase 
matching is applied. 

2) When  3 5 8 1   4

 create the phase of 

, the adaptive phase 
matching is applied. The search process can be described 
as follows: 

Step 1 Applying Equation (10) to
the marked states rotate     arc cos 4 3 5 4      
radians, namely, 1 U  . 

Step 2 Applying Equation (11) to rotate the system 

superposition state 1  to 1 , namely, 1 1V   

 1V U  . 

Step 3 Reapplying Equation (10) to 1 , namely, 

2 1U  . 

Step 4 Reapplying Equation (11) to 2 , namely, 

2  2 1V V U   . 

Step 5 Measuring 2 . 

3) When 1 4 1  , the adaptive phase matching is 
applied. The search process can be described as fol-
lows: 
 

 

Figure 2. Comparison of success probability curves between 
Grover’s original algorithm and improved ones, where 

  1 arc cos 2 1 2 ,        2 arc cos 1 3 5 4 .     
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Step 1 Applying Equation (10) to create the phase o

the marked states rotate 

f 

    arc cos 2 1 2     

T e 2. The mbers an es. 

Serial bers Marked states 
radians, namely, 1 U  . 

Step 2 Applying Equation  

superposition stat

 (11) to rotate the system

e 1  to 1 ,  namely, 1 1V   

 V U  . 

Step 3 Measuring 1 . 
 
4. Searching Example 

ss whose serial numbers are 
 range 0 to 31. 1) The search targets are the students 

 
There are 32 students in a cla
in
whose serial number satisfies   CI 5 3 3 ,n k   where 

0, 1, , 18k   . The target serial numbers and marked 
states are shown in Table 1. 2) are the 

 serial number satisfies 9 2,n k   where 
0, 1, 2, 3k  . The target serial numbers and marked 

states are shown in Table 2. 
wo searches, 32n

The search targets 

In these t

students whose

 , using 5 qubits can 
store all serial numbers. The initial state of the   is 
ex

erial numbers and marked states. 

pressed as follows 

 
Table 1. The target s

k Serial numbers Marked states 

0 1 00001  

1 3 00011  

2 4 00100  

3 6 00110  

4 8 01000  

5 9 01001  

6 11 01011  

7 13 01101  

8 14 01110  

9 16 10000  

abl target serial nu d marked stat

k num

0 2 00010  

01011  1 11 

2 20 10100  

3 29 11101  

 

 1
0 1 31

4 2
      

1) In this search, 19 32M N   . According to 
eorem 2, applyingth      arc cos 2 1 2        

 arc cos 3 19  
correct 

to this search, the probability of getting 
results is equal to 1 only one Grover iteration. 

Th  described as foe search process can be llows 

 

10 18 10010  

11 19 10011  

12 21 10101  

13 23 10111  

14 24 11000  

15 26 11010  

16 28 11100  

17 29 11101  

18 31 11111  

  

1

1 1

, 1,
1

    e , 1, e , e , 1, e , 1, e , e , 1, e ,
32

1, e , e , 1, e , 1, e , e , 1, e

1 e e

, , , , , , , , , , ,1
     

32 32

i

i i i i i i i

i i i i i i

i i

I

I

a b a b b a b a b b a



      

     

 



    

  


 

  
  
 

  


, , , , ,

, , , , , , , , , , , , , , ,

b a b b a

b a b b a b a b b a b a b b a b

 
 
 

 

where 

1

1 e

1, e , 1, e , e , 1, e , 1, e , e

M
i

m m
m

i i i i i



    

  





 





 19 e e 6 0,i ia       19e 13e 26i ib      

512 32 32

19 19
i  . The probability of finding the marked  

states is given as follows 
22 2

1 512 32 32
19 1.

19 1932
 

32
P

              

matching, as 

    
 

For the original phase 19 32 0.5   , 
gure 1 is Pthe success probability, according to Fi   . 

ds rapidly In fact, here, the success probability descen
after applying a Grover iteration, which is described as 
follows 

1
1

2
M

m m
m

I   


   
 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1

    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
32

1, 1, 1, 1, 1, 1, 1, 1, 1, 1

      
        
       

 





Copyright © 2011 SciRes.                                                                                 JQIS 



P. C. LI  ET  AL. 48 

 1 12

, , , , , , , , , , , , , , , ,1
     ,

, , , , , , , , , , , , , , ,32 32

I

a b a b b a b a b b a b a b b a

b a b b a b a b b a b a b b a b

    

 
 

 

 

where 
2) In this search, 

11a   , 5b  . 
1 8M N   . According to theo-

rem 2, applying  arc cos 2 5 5   arc cos 2 5 5   
getting correct results is to this search, the probability of 

equal to 1 after only two Grover iterations. The search 
process can be described as follows 

 

  

1
i    

1

1 1

1 e

, , , , , , , , , , , , , , , ,1
      

, , , , , , , , , ,32 32

M

m m

i i

I

a a b a a a a a a a a b a a a a

a a a a b a a a a a a



 

 


 





, , , , ,a a b a a

 
 
 

where 

1, 1, e , 1, 1, 1, 1, 1, 1, 1, 1, e , 1, 1, 1, 1,1
     

32 1, 1, 1, 1, e , 1, 1, 1, 1, 1, 1, 1, 1, e , 1, 1,

1 e e

m

i i

i i I

 

     

 


   

 

  

 



 4 e e 24i ia     ,  28 2 e 4ei ib     . 

 2 1
1

1 e

, , , , , , , , , , , , , , , ,1
      

, , , , , , , , , , , , , , ,32 32

M
i

m m
m

I

a a c a a a a a a a a c a a a a

a a a a c a a a a a a a a c a a

   


    
 

 
  

 


 

where ,  4 e e 24i ia       228 2e 1 4i ic e    . 

  2 2

2

1 e e

, , , , , , , , , , , , , , , ,1
      

, , , , , , , , , , , , , , ,32 320

i i  

d d f d d d d d d d d f d d d d

d d d d f d d d d d d d d f d d

     

 
  

 

I

where 

 

   2 216 e e 320 e e 352 0i i i id          , 

  
2i i i i     216e 448e 134 112e 2016

  512 4 5 4 5 1 20 5 44 .i

    

    
 

The probability of finding the marked states is given 
as follows 

4ef

     
2 22 2

2

512
4 4 5 4 5 1 20 5 44 1

32 32
P

   
        

   
 

For the original phase matching, π   , the  
mber of iterations is 

 nu-

 
 

 arc cos arc cos 1 8
R

   
   
 

2
2arc sin( 1 8)2arc sin 

 
 

   

 

The search process can be described as follows 

1
1

1, 1, 1,1
     

m m
m

 
 


  

 
2

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 132

M

I     

 
  



 1 12

1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1,1
     

1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 5,2 32
 

 1, 1
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2 1
1

2
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m m
m
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 2 22
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, , , , , , , , , , , , , , ,4 32

I

a a b a a a a a a a a b a a a a

a a a a b a a a a a a a a b a a

    

 
  

 

 

1,a    11b  . where 
2

11
4 0.9453125.

4 32
P

 
  

 
 

 
5. Conclusions 
 
An adaptive phase matching in Grover's algorithm is 

d. Wit pplication of the new phase matching, 
fraction of arked items is greater than 

propose h a
when the  m

 3 5
equal

8 , the probability of getting correct results is 
 to 1 after at most two Grover iterations. The valid-

y of the new phase matching is verified by two search 

esearch Foundations of Heilongjiang Provin-
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