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Abstract 
Cdc42 is a member of the Rho subfamily of Ras-related proteins, which were 
among the first oncogenic proteins to be identified as playing a significant role 
in a variety of cellular events [Barbacaid, 1987, Ann. Rev. Biochem]. Equally 
important, Protein-Protein Interactions [PPIs] involving Cdc42 continue to 
highlight the role of Ras-related proteins’ relevance to cancer. As these pro-
teins have been considered incapable of being “druggable”, due to a perceived 
lack of binding surface[s] that are amenable to small molecule targeting, there 
remains limited development of therapies to tackle diseased states caused by 
Cdc42-stimulated hyperactivity. Thusly, it has become important to charac-
terize molecular details, including dynamics, of PPIs involving Cdc42 that may 
lend themselves as potential targets for therapeutic approaches. Recently, two 
small molecules, ZCL278 and AZA197, have shown promise in directly target-
ing Cdc42 to influence PPIs that are capable of causing Cdc42-stimulated ab-
normal signaling. In this editorial, we highlight recent studies that show case 
how these two small molecules may influence Cdc42-protein interactions. 
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1. Introduction 

Ras-relatd GTPases can be involved in cell-signaling processes that underlie 
their roles in diseased states such as cancer [1]. In addition, these proteins are 
involved in cell-signaling activities that are vital to processes such as cell prolife-
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ration, and differentiation, that, if not properly regulated, can lead to hyperactiv-
ity [2]. This underlies their importance as targets for drug discovery efforts to 
control Ras-stimulated abnormal cell signaling [3]. Cell division cycle 42 
[Cdc42] is a member of the Rho subfamily of Ras-related proteins. Mutations, 
abnormal expression or protein interactions involving Cdc42 have been charac-
terized to play significant roles in events leading to cellular proliferation, inhibi-
tion of cell death, and cell transformation for quite some time [4]. As such, 
Cdc42 is a model protein system to characterize molecular details of Ras-related 
Protein-Protein Interactions [PPIs]. Progress has been made in understanding 
the pathogenesis of Cdc42-stimulated hyperactivity [5]. However, targeting 
small molecules towards PPIs involving Cdc42 have remained difficult, mainly 
because of the challenges in determining the most appropriate binding interfaces 
on the protein to target [6] [7]. Strategies that will impact the development of 
future target-based design should showcase new molecular features of Cdc42 
and its PPIs in cell signaling pathways that facilitate cell proliferation and trans-
formation, tumor invasion, and metastasis. Furthermore, it is important to un-
derstand whether structural “wavering”, or dynamics, which has been shown to 
play a critical role in the ability of Cdc42 to interact with different effectors and 
regulators [8] [9] [10] [11], can be exploited by small molecule targeting “direct-
ly” to influence PPIs and interrupt abnormal cell signaling.  

Specifically targeting Cdc42 for therapeutic purposes has seen some recent 
progress [12] [13] [14], and a few reviews have highlighted the promise of these 
new approaches [5] [15]. Cdc42, which is post-translationally modified to target 
the periphery of the inner cell membrane where it functions, cycles between ac-
tive GTP-bound and inactive GDP-bound states, and this process is regulated by 
PPIs with effector/regulatory proteins (Figure 1). Interactions with Guanine 
nucleotide Exchange Factors [GEFs] influence GDP dissociation and GTP bind-
ing, which activates the protein. Interactions with GTPase-Activating Proteins 
[GAPs] stimulate the intrinsic GTPase activity of Ras that leads to the inactive 
GDP bound form of the protein. Cdc42 interactions with Guanine Dissociation 
Inhibitors [GDIs] result in the inhibition of GDP dissociation from the protein. 
Cdc42 has a six-stranded β-sheet, five α-helices, and a guanine nucleotide- 
binding site with a conserved sequence that recognizes the guanine base, the 
β-phosphate and a magnesium ion [16] [17]. There are two important confor-
mationally dynamic regions, known as Switch 1 and Switch 2 that are involved 
in the binding of effectors to Cdc42 [8] [10] [11] [16] [18] [19] [20] [21] [22]. 
Targeting these protein-binding surfaces to influence Cdc42 involved PPIs, 
while still a daunting challenge, remains vital as Cdc42-stimulated hyperactivity 
has been a hallmark of this protein’s involvement in various cancers [23]. In ad-
dition, members of the Ras-related family of proteins have been referred to as 
“undruggable”, partly because some of the earliest structural models did not re-
veal surface-accessible binding regions available for targeting [24] [25]. It should 
be noted that studies characterizing the conformational dynamics of Ras-related 
proteins have revealed two conformational states exhibited by the Switch 1  
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Figure 1. Schematic of cyclic activity between active [GTP-bound] Cdc42 and inactive 
[GDP-bound] Cdc42. Interactions involving: Guanine nucleotide exchange factor [GEF] 
[Gray-shaded], GTPase-activating effector protein [GAP] [Orange-shaded], and Guanine 
dissociation inhibitor [GDI] [Light Blue-shaded] are highlighted. Effector interactions 
leading to other intracellular signaling effects are also shaded [Dark Blue-shaded]. 

 
region, one state that binds strongly to effectors and the other that binds effec-
tors weakly [8] [9] [26]. These findings strongly suggest that an important ap-
proach to combating Ras-related abnormal cell-signaling should involve the tar-
geting of binding interfaces, such as Switch 1 in Cdc42, with small molecules to 
potentially disturb PPIs with effectors that might lead to hyperactivity (Figure 2) 
[1] [5] [6] [7] [26]-[32].  

Targeting PPIs involving Cdc42 directly in dynamic regions such as Switch 1 
should also foster the modulation of unwanted interactions leading to Cdc42- 
stimulated hyperactivity without disturbing the nucleotide-binding pocket. 
However, targeting Cdc42 PPIs could encompass extensive binding interface re-
gions between the proteins of interest. In addition, the conformational changes 
needed to bring the proteins together might make the binding interface unfeasi-
ble for smaller molecules to bind or influence the PPI [6]. Peptides have been 
employed in attempts to overcome this hurdle, due to their structural similarities 
to their targeted proteins of interest, as well as their larger size that may help 
cover binding interfaces [6]. However, peptides have proven to be a formidable 
challenge due to their limited ability to cross the cell membrane [6]. It is prom-
ising to consider that structural characterizations of PPIs involving Cdc42 might 
also reveal critical residues within the binding interface that could be compro-
mised by a small molecule target. Furthermore, these residues might not need to 
occupy large surfaces on the protein to influence the PPI. Recent biophysical and 
biochemical studies, using Cdc42, have characterized the structurally dynamic  
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Figure 2. Illustration of GAP, GEF, GDI and downstream effector interactions known to lead to Cdc42-stimulated hyperactivity. 
Figure designed based on data presented in reference [5]. 
 

Switch 1 region that serves as the binding interface for a GTPase inhibitor pro-
tein that fosters Cdc42 hyperactive state [10] [11]. These studies suggested that 
Switch 1 could serve as a prime region for small molecule targeting to modulate 
Cdc42 structure and conformational dynamics that may influence PPIs. There-
fore, it is important to highlight the need for continued development of thera-
peutic approaches to target PPIs involving Cdc42.  

2. Small Molecule Targeting of Cdc42 PPIs 

As mentioned previously, Cdc42 has become a model Ras-related system to aid 
our understanding of important molecular details of protein interactions with its 
effectors and regulatory proteins due to the abnormal cell signaling effects that 
may arise if these PPIs are not regulated (Figure 3(a)). In particular, interactions 
with GEFs are needed to initiate nucleotide exchange required for Cdc42 activa-
tion, due to the protein’s high affinity for GDP [33] [34]. However, the GTP- 
bound state of the protein must be properly regulated in order to prevent 
hyperactivity. Therefore, modifying GEF interactions has provided an exciting 
approach for potential therapeutic regulation by small molecules [7]. Recently, 
Friesland et al., used high throughput in silico screening to identify one mole-
cule, 4-[3-[2-[4-Bromo-2-chloro-phenoxy]-acetyl]-thioureido]-N-[4,6-dimethyl-  
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(a) 

 
(b) 

Figure 3. (a) Illustrating the concept of inhibiting effector-stimulated Cdc42 hyperactivity by using a small 
molecule. (b) Molecular structures of ZCL278 and AZA197. 

 
pyrimidin-2-yl] benzenesulfonamide, known as ZCL278 (Figure 3(b)), that 
could target the Switch 1 binding pocket of Cdc42 and “mimic” an interaction 
between Cdc42 and a GEF, Intersectin [12]. Results revealed that the Cdc42- 
ZCL278 interaction suppressed several Cdc42-stimulated functions including 
abolishment of microspike formation, a reduction of perinuclear accumulation 
of active Cdc42, Cdc42-regulated neuronal branching, and actin-stimulated mo-
tility. Furthermore, the specificity of this small molecule for Cdc42 was com-
pared to NSC23766, a known Rac (another member of the Ras superfamily) in-
hibitor. In vivo results suggested that only ZCL278 was able to inhibit Cdc42 
function [12].  

Molecular details of the Cdc42-ZCL278 interaction are currently still lacking. 
Nevertheless, Friesland et al. [12] did confirm direct binding of ZCL278 to 
Cdc42 using fluorescence spectroscopy and surface plasmon resonance, as Kd 
values were found to be in the low μM range. Moreover, poses taken after in si-
lico docking of the small molecule to Cdc42 suggested that ZCL278 could inte-
ract with several residues in the Switch 1 region that are key to the Cdc42- In-
tersectin interaction [12]. While experimental validation is still needed, these 
findings highlight that the Switch 1 binding region may serve as a prime region 
for small molecules to bind and possibly alter Cdc42-effector interactions. Stu-
dies from this laboratory have characterized how backbone dynamics changes in 
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the Switch 1 region of a Cdc42 variant can alter a protein interaction with a pep-
tide derivative of a GTPase inhibitor and restore normal GTP hydrolytic activity 
[10]. Therefore, it should be possible for a small molecule such as ZCL278 to 
bind to the Switch 1 region in Cdc42 and change its structure or alter backbone 
dynamics of the protein to disturb or block the Cdc42-effector PPI. Subsequent 
experiments to test these possibilities will certainly provide valuable insight into 
the Cdc42-ZCL278 interaction. Overall, the work of Friesland, et al., highlighted 
ZCL278 as a possible prime target toward the Switch 1 region of Cdc42. 

The previously mentioned compound NSC23766 was also used to identify 
another small molecule that has shown promise as a potential therapeutic agent 
against Cdc42-stimulated hyperactivity leading to colorectal cancers [35] [36]. 
Through virtual screening studies, derivatives of NSC23766 revealed that 
N2-[4-Diethylamino-1-methyl-butyl]-N4-[2-[1H-indol-3-yl]-ethyl]-6-methyl-py
rimidine-2,4-diamine, known as AZA197 (Figure 3(b)), influenced Cdc42- sti-
mulated function [13]. Results from the experiments of Zins et al. showed that 
AZA197 could target GTP-bound Cdc42 and inhibit Cdc42-stimulated hyperac-
tivity, as characterized by the suppression of proliferation of SW620 colon can-
cer cells, a reduction of the migration and invasion potential of these cells, and 
the inhibition of cell growth in vivo [13]. In vitro studies showed that the small 
molecule inhibited a Cdc42-GEF interaction involving Dbs, a Dbl guanine nuc-
leotide exchange factor homolog that also interacts with Cdc42 in the Switch 1 
region [37], as judged by sharp changes in the fluorescence intensity of a fluores-
cent guanine nucleotide derivative, [2'-[or-3']-O-[N-Methylanthraniloyl]-GDP 
[Mant-GDP] [13]. This result suggested that AZA197, like ZCL278, might target 
the Switch 1 region of Cdc42 to modulate PPIs that could potentially stimulate 
Cdc42 over-activity. Moreover, Cdc42 signaling pathways involving binding to 
the downstream effector PAK1, and its involvement in ERK pathway were down 
regulated by AZA197 [13]. These studies highlighted the potential influence that 
the small molecule AZA197 could have on a PPI that leads to Cdc42-stimulated 
hyperactivity. However, further development will be needed in the use of 
AZA197 because, due to toxicity, only low μM concentrations of the small mo-
lecule could be used [13]. Zins et al., also pointed out that, at concentrations > 
20 μM, this molecule destroyed the plasma membrane of SW620 and HT-29 co-
lon cancer cells, as well as S3T3 fibroblast cells. Therefore, significant challenges 
remain.  

3. Summary and Future Considerations 

Ras-related proteins, such as Cdc42, play crucial roles in the regulation of cell 
signaling [38]. Therefore, the proper regulation of these proteins, in the face of 
events that facilitate unwanted activity, remains important. In this editorial, we 
have highlighted recent findings on two small molecules that alter Cdc42- sti-
mulated hyperactivity by binding to specific sites on the protein where PPIs oc-
cur. ZCL278 binds to the Switch 1 region of Cdc42 and shows the potential to 
mimic a GEF protein interaction that renders the protein unable to be activated 
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via nucleotide exchange [12]. In addition, AZA197 appears to block an interac-
tion between Cdc42 and a GEF [Dbs] in-vitro [13]. In both cases, evidence sug-
gested that targeting these small molecules to binding surfaces where Cdc42 PPIs 
occur might be a viable approach to regulating Cdc42-stimulated hyperactivity. 
Moreover, these studies suggested that the small molecules could possibly be 
targeted to these binding surfaces without disturbing the structural integrity of 
the nucleotide-binding active site of Cdc42. The logical next steps in uncovering 
the influence that these small molecules could potentially have on Cdc42 in-
volved PPIs should involve the structural elucidation of Cdc42 bound to each of 
these small molecules. The results of these experiments can be expected to be vi-
tal in contributing information on the conformational and/or dynamics differ-
ences in important binding regions of Cdc42 that might be influenced by small 
molecules such as ZCL278 and AZA197. Nonetheless, results of the studies dis-
cussed indicate that it is promising to consider that there may be surfaces within 
the structural framework of Cdc42, and possibly other Ras-related proteins, that 
could be susceptible to small molecule targeting to help modulate abnormal 
cell-signaling activity. Finally, in addition to strategies that use small molecules 
to directly bind and influence PPIs, it may be also important to consider the use 
of small molecules as potential protein binding targets to restrict conformational 
flexibility as an approach to disturb PPIs that lead to Ras-stimulated hyperactiv-
ity. 
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Abbreviations and Acronyms  

Ras: Rat Sarcoma 
Cdc42: Cell division cycle 42 
PPI: Protein-Protein Interactions  
GEF: Guanine nucleotide Exchange Factors  
GTP: Guanosine triphosphate 
GDP: Guanosine diphosphate 
Kd: Dissociation Constant 
GAP: GTPase-Activating Protein 
GDI: Guanine Dissociation Inhibitor 
DBS: Diazepam binding inhibitor 
Mant-GDP : [2'-[or-3']-O-[N-Methylanthraniloyl]-GDP [Mant-GDP] 
AZA197: N2-[4-Diethylamino-1-methyl-butyl]-N4-[2-[1H-indol-3-yl]-ethyl]-6- 
methyl-pyrimidine-2,4-diamine 
ZCL278: 4-[3-[2-[4-Bromo-2-chloro-phenoxy]-acetyl]-thioureido]-N-[4,6-di- 
methyl-pyrimidin-2-yl] benzenesulfonamide 
NSC23766: N6-[2-[[4-[Diethylamino]-1-methylbutyl]amino]-6-methyl-4-pyri- 
midinyl]-2-methyl-4,6-quinolinediamine trihydrochloride N6-[2-[[4-[Diethy- 
lamino]-1-methylbutyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinoli- 
nediamine trihydrochloride 
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