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Abstract 
In this paper, we construct MDS Euclidean self-dual codes which are extended 
cyclic duadic codes. And we obtain many new MDS Euclidean self-dual codes. 
We also construct MDS Hermitian self-dual codes from generalized Reed- 
Solomon codes and constacyclic codes. 
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1. Introduction 

Let q  denote a finite field with q elements. An [ ], ,n k d  linear code C over 

q  is a k-dimensional subspace of n
q . These parameters n, k and d satisfy 

1d n k≤ − + . If 1d n k= − + , C is called a maximum distance separable (MDS) 
code. MDS codes are of practical and theoretical importance. For examples, 
MDS codes are related to geometric objects called n-arcs. 

The Euclidean dual code C⊥  of C  is defined as  

1
: : 0, .

n
n
q i i

i
C x x y y C⊥

=

 = ∈ = ∀ ∈ 
 

∑                 (1) 

If 2q r= , the Hermitian dual code HC⊥  of C  is defined as  

2
1

: : 0, .
n

H n r
i ir

i
C x x y y C⊥

=

 = ∈ = ∀ ∈ 
 

∑                (2) 

If C satisfies C C⊥=  or HC C⊥= , C is called Euclidean self-dual or Hermi-
tian self-dual, respectively. In [1] [2] discussing Euclidean self-dual codes or 
Hermitian self-dual codes. If C is MDS and Euclidean self-dual or Hermitian 
self-dual, C is called an MDS Euclidean self-dual code or an MDS Hermitian 
self-dual code, respectively. In recent years, In [2]-[9] study the MDS self-dual 
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codes. One of these problems in this topic is to determine existence of MDS 
self-dual codes. When 2 | q , Grassl and Gulliver completely solve the existence 
of MDS Euclidean self-dual codes in [5]. In [6], Guenda obtain some new MDS 
Euclidean self-dual codes and MDS Hermitian self-dual codes. In [8], Jin and 
Xing obtain some new MDS Euclidean self-dual codes from generalized Reed- 
Solomon codes. 

In this paper, we obtain some new Euclidean self-dual codes by studying the 
solution of an equation in q . And we generalize Jin and Xing’s results to MDS 
Hermitian self-dual codes. We also construct MDS Hermitian self-dual codes 
from constacyclic codes. We discuss MDS Hermitian self-dual codes obtained 
from extended cyclic duadic codes and obtain some new MDS Hermitian 
self-dual codes. 

2. MDS Euclidean Self-Dual Codes 

A cyclic code C of length n over q  can be considered as an ideal, ( )g x , of 

the ring 
[ ]

1
q
n

x
R

x
=

−


, where ( ) | 1ng x x −  and ( ), 1n q = . The set 

( ){ }0 1| 0iT i n g α= ≤ ≤ − =  is called the defining set of C, where ord nα = . 

Let 1S  and 2S  be unions of cyclotomic classes modulo n, such that 

1 2S S∩ =∅  and { }1 2 \ 0nS S∪ =   and ( ) ( )1 mod 2modi iaS n S += . Then the 
triple aµ , 1S  and 2S  is called a splitting modulo n. Odd-like codes 1D  and 

2D  are cyclic codes over q  with defining sets 1S  and 2S , respectively. 1D  
and 2D  can be denoted by ( ) ( )1 mod 2a i iD Dµ += . Even-like duadic codes 1C  
and 2C  are cyclic codes over q  with defining sets { } 10 S∪  and 2{0} S∪ , 
respectively. Obviously, ( ) ( )1 mod 2a i iC Cµ += . In [10], A duadic code of length n 
over q  exists if and only if q is a quadratic residue modulo n. 

Let | 1n q −  and n be an odd integer. 1D  is a cyclic code with defining set 
11,2, ,

2
nT − =  

 
 . Then 1D  is an 1 1, ,

2 2
n nn + + 

  
 MDS code. Its dual 

1 1C D⊥=  is also cyclic with defining set { }0T ∪ . There are a pair of odd-like 

duadic codes 1 1D C⊥=  and 2 2D C⊥=  and a pair of even-like duadic codes 

( )2 1 1C Cµ−= . 

Lemma 1 [6] Let | 1n q −  and n be an odd integer. There exists a pair of  

MDS codes 1D  and 2D  with parameters 1 1, ,
2 2

n nn + + 
  

, and  

( ) ( )1 1 mod 2i iD Dµ− += . 
Lemma 2 [11] Let 1D  and 2D  be a pair of odd-like duadic codes of length 

n over q , ( ) ( )1 1 mod 2i iD Dµ− += . Assume that  
21 0nγ+ =                           (*) 

has a solution in q . Let { }|i iD c c D= ∈

  for 1 2i≤ ≤  and  

( )0 1 1, , , ,nc c c c c− ∞=   with 1
0

n
iic cγ −

∞ =
= − ∑ . Then 1D  and 2D  are Euclidean 

self-dual codes. 
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In [11], the solution of (*) is discussed when n is an odd prime. In [5], the so-
lution of (*) is discussed when n is an odd prime power. Next, we discuss the 
solution of (*) for any odd integer n with | 1n q − . 

Definition 1 (Legendre Symbol) [12] Let p be an prime and a be an integer.  

( )
( )

0, if 0 mod ,
1, if 0 is a quadratic residue modulo ,

1, if is not a quadratic residue modulo .

a p
a a p
p

a p

≡
  = ≠ 
  −

        (3) 

Proposition 1 [12]  

1 ,sppa
p p p

     
=     

     


 
where 1 sa p p=  . 

Definition 2 (Jacobi Symbol) [12] Let m  and ( )0n ≠  be two integers.  

1

,
h

m m m
n p p

    =    
     



 
where 1 hn p p=  . 

We cannot obtain ( )0m ≠  is a quadratic residue modulo n from 1m
n

  = 
 

. 

But we have the next proposition. 
Proposition 2 Let ( )0m ≠  and n be two integers and ( ), 1m n = . If m is a 

quadratic residue modulo n, then  

1.m
n

  = 
   

If  

1,m
n

  = − 
   

then m is not a quadratic residue modulo n. 
Proof Obviously. 
Lemma 3 (Law of Quadratic Reciprocity) [12] Let p and r be odd primes, 

( ), 1p r = .  

( )
1 1

2 21 .
r pp r

r p

− −
⋅   = −  

  
                     (4) 

Corollary 1 Let p and r be odd primes. 
(1) When ( )1 mod 4p ≡  or ( )1 mod 4r ≡ ,  

.p r
r p

   =   
     

(2) When ( )3 mod 4p r≡ ≡ ,  

.p r
r p

   = −  
     

Theorem 1 Let tq r=  and r be an odd prime. Let | 1n q −  and n be an odd 
integer. And  
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11
1 1 ,s s he e ee

s s hn p p p p+
+=    

where  

( ) ( )1 13 mod 4 , 1 mod 4 .s s hp p p p+≡ ≡ ≡ ≡ ≡ ≡   

(1) When ( )1 mod 4q ≡ , there is a solution to (*) in q . 
(2) Let ( )3 mod 4q ≡ . If 1

s
ii e

=∑  is an odd integer, there is a solution to (*) in 

q . 
Proof (1) ( )1 mod 4q ≡ . 
(1.1) ( )3 mod 4r ≡ . So we have that t is even. Then every quadratic equation 

with coefficients in r , such as Eq. (*), has a solution in 2 qr
⊆  . 

(1.2) 1(mod 4)r ≡  and 2 | t . The proof is similar as (1.1). 
(1.3) 1(mod 4)r ≡  and 2 t .  

1 1
1

1

1 .
h hee ee

h

h

ppq r r r n
n n p p r r r

          = = = = =                     
 

 

So n is a quadratic residue modulo r. And −1 is a quadratic residue modulo r. 
So there is a solution to (*) in q . 

(2) ( )3 mod 4q ≡ . Then ( )3 mod 4r ≡  and t is odd.  

( )

( )

11

11
1

11
1

1

1 1

11

11

1

( 1) 1

1 ( 1)

s s h

s s h
s

s
s s s h

i i
i

e e ee

s s h

e e ee
ee s s h

e e ee
e s s h

q r r r r r
n n p p p p

p p pp
r r r r

p p pp
r r r r

+

+

+

=
=

+

+

+∑

         = = =          
           

      = − −       
       

      = − = −       
       

 

 

  .
ie n

r

∑  
 
   

If 1
s

ii e
=∑  is odd, n is not a quadratic residue modulo r. And −1 is not a qua-

dratic residue modulo r. So n−  is a quadratic residue modulo r. There is a so-
lution to (*) in q . 

Remark In fact, | 1n q − , and n is an odd integer and ( )3 mod 4q ≡ . We can 
easily prove that there is a solution to (*) in q  if and only if 1

s
ii e

=∑  is an odd 
integer. 

Let  | 1n q − ,  ( )1 modq n≡ .  q  i s  a  quadrat ic  res idue  modulo  n . 
( )2 mody q n≡ . Let tq r=  and ( )3 mod 4q ≡ , where r is a prime. Then 

3(mod 4)r ≡  and t is odd. Equation (*) has solutions in q  if and only if Equa-
tion (*) has solutions in r . And r is a quadratic residue modulo n.  

( )
21

2 mod
t

yr r n
−

− 
≡  

 
. Let p be an odd prime divisor of n. r is a quadratic resi-

due modulo p. Then 1r
p

 
= 

 
. By Law of Quadratic Reciprocity, |p n ,  

( )
( )

1, 1 mod 4
.

1, 3 mod 4
pp
pr

 ≡  =   − ≡    
The Legendre symbol  
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( )

11

1

11

1 1

1

1

1, odd
1 ,

1, even

s s h

s
i

i

e e ee
s s h

s

i
e i

s

i
i

p p ppn
r r r r r r

e is

e is

+

=

+

+ =

=

∑

− −          =                    

= − = 
−


∑

∑

 

 
where 11

1 1
s s he e ee

s s hn p p p p+
+=   , ( )1 3 mod 4sp p≡ ≡ ≡  and  

( )1 1 mod 4s hp p+ ≡ ≡ ≡ . 
Theorem 2 Let tq r=  be a prime power, | 1n q −  and n be an odd integer. 

Then there exists a pair 1D , 2D  of MDS odd-like duadic codes of length n and  
( ) ( )1 1 mod 2i iD Dµ− += , where even-like duadic codes are MDS self-orthogonal, and 

1
11, ,

2
nT − =  

 


. Furthermore, 

(1) If 2tq = , then iD  are 1 31, ,
2 2

n nn + + +  
 MDS Euclidean self-dual 

codes. 

(2) If ( )1 mod 4q ≡ , then iD  are 1 31, ,
2 2

n nn + + +  
 MDS Euclidean 

self-dual codes. 

(3) If ( )3 mod 4q ≡  and 1
s

ii e
=∑  is an odd integer, then iD  are  

1 31, ,
2 2

n nn + + +  
 MDS Euclidean self-dual codes, where  

11
1 1

s s he e ee
s s tn p p p p+

+=    and ( )1 3 mod 4sp p≡ ≡ ≡ ,  

( )1 1 mod 4s hp p+ ≡ ≡ ≡ . 

Proof Obviously, iD  are 1 1, ,
2 2

n nn + + 
  

 MDS odd-like duadic codes. If 

there is a solution to (*), we want to prove iD  are 1 31, ,
2 2

n nn + + +  
 MDS 

Euclidean self-dual codes, and we only need to prove that  

( ) ( )1 1and , then 1.
2 2i

n nc D wt c wt c+ +
∈ = = +

 
This is equivalent to prove that 0c∞ ≠ . It can be proved similarly by which 

proved in [5]. 

When 2tq = , there is a solution to (*) in 
2t , iD  are 1 31, ,

2 2
n nn + + +  

 

MDS Euclidean self-dual codes by Lemma 2. 
We can obtain (2) and (3) from Theorem 1 and Lemma 2. Theorem 2 is 

proved. 
We list some new MDS Euclidean self-dual codes in the next Table 1. 

3. MDS Hermitian Self-Dual Codes 

Let 2n q≤ . We choose n distinct elements { }1, , nα α  from 2q
  and n non-

zero elements { }1, , nv v  from 2q
 . The generalized Reed-Solomon code  
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Table 1. Some new MDS Euclidean self-dual codes. 

n q 

4 22, 7 

6 24, 34 

8 23, 36 

10 26, 56 

12 35 

14 212, 36 

16 31, 312, 313 

18 316 

20 59 

22 56 

24 311 

26 74 

28 79 

30 59 

156 54 

 

( ) ( ) ( )( ) ( ) [ ] ( ){ }21 1, : , , : ,deg 1k n n q
GRS v v f v f f x x f x kα α α= ∈ ≤ − 

 
is a q2-ary [ ], , 1n k n k− +  MDS code, where ( )1, , nα α α=   and  

( )1, , nv v v=  . 
Theorem 3 Let n q≤  and 2 | n . Let { }1, , nα α  be n distinct elements 

from ( )2q q
⊆   and ( ) 1

1 ,i i jj n j iu α α
−

≤ ≤ ≠
= −∏ , 1 i n≤ ≤ . Then there exist 

2i q
v ∈  such that 2

i iu v= , for 1, ,i n=  , and the generalized Reed-Solomon 

code ( )
2

,nGRS vα  is an , , 1
2 2
n nn +  

 MDS Hermitian self-dual code over 2q
 , 

where ( )1, , nα α α=   and ( )1, , nv v v=  . 

Proof Obviously,  ( ) ( )20i q q
u ≠ ∈ ⊆   for 1 i n≤ ≤ .  So there exist 

( ) 20i q
v ≠ ∈  such that 2

i iu v=  for 1 i n≤ ≤ . The generalized Reed-Solomon  

code ( )
2

,nGRS vα  is an , , 1
2 2
n nn +  

 MDS code over 2q
 . For proving the 

generalized Reed-Solomon code ( )
2

,nGRS vα  is Hermitian self-dual over 2q
 , 

we only prove  

( ) ( )1 1 1 1, , , , 0, 0 , 1.
2

l l q kq q kq
n n n n

nv v v v l kα α α α⋅ = ≤ ≤ − 

 
From the choose of iα , iv  and [8, Corollary 2.3],  

( ) ( )
( ) ( )
1 1 1 1

1 1 1 1

, , , ,

, , , , 0, 0 , 1.
2

l l q kq q kq
n n n n

l l k k
n n n n

v v v v

nv v v v l k

α α α α

α α α α

⋅

= ⋅ = ≤ ≤ −
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So the generalized Reed-Solomon code ( )
2

,nGRS vα  is an , , 1
2 2
n nn +  

 

MDS Hermitian self-dual code over 2q
 . 

Next we construct MDS Hermitian self-dual codes from constacyclic codes. 
Let C be an [ ],n k  λ-constacyclic code over 2q

  and ( ), 1n q = . C is consi-

dered as an ideal, ( )g x , of 
[ ]2q

n

F x

x λ−
, where ( ) ( )| ng x x λ− . Simply, 

( )C g x= . 

Lemma 4 [2] Let 2
*
q

λ ∈ , ( )2ord
q

r λ= , and C be a λ-constacyclic code over 

2q
 . If C is Hermitian self-dual, then | 1r q + . 

Lemma 5 [2] Let 2an n′=  ( )0a >  and 2br r′=  be integers such that 
2 n′  and 2 r′ . Let q be an odd prime power such that ( ), 1n q =  and 

| 1r q + , and let 2q
λ ∈  has order r. Then Hermitian self-dual λ-constacyclic 

codes over 2q
  of length n exist if and only if 0b >  and ( )1 mod 2a bq +≡ −/ . 

Let ( )2ord
q

r λ=  and | 1r q + .  

{ }, 1 | 0,1, , 1 .r nO rj j n= + = −  
Then ( ),

i
r ni Oα ∈  are all solutions of 0nx λ− =  in some extension field of 

2q
 , where ord rnα = . C is called a λ-constacyclic code with defining set 

,r nT O⊆ , if  

( ) ( )and 0, .iC g x g i Tα= = ∀ ∈
 

Theorem 4 Let ( )2 0an n a′= >  and ( )2 0br r b′= > . 2| 1rn q − . 2
*
q

λ ∈  
with ord rλ = . ( )1 mod 2a bq +≡ −/ . If ( )| 2 1rn q + , there exists an MDS Hermi-
tian self-dual code C over 2q

  with length n, C is a λ-constacyclic code with 
defining set  

.1
2

0|1=






 −≤≤+

njrjT
 

Proof If 2| 1rn q − , ( ) { }2q
C i i= , for ,r ni O∈ , where ( )2q

C i  denote the 

q2-cyclotomic coset of modi rn . And 
2
nT = , C is an , , 1

2 2
n nn +  

 MDS 

λ-constacyclic code by the BCH bound of constacyclic code. 

When ( )| 2 1rn q + , 1
2

rnlq = − . Because ( )1 mod 2a bq +≡ −/ , l is odd.  

( )( ) ( )1 1 1 mod .
2 2

rnl nq rj q qrj rj r j rn − + = − − ≡ − + ≡ + + 
   

So  

( ) .q T T− ∩ = ∅  
C is MDS Hermitian self-dual by the relationship of roots of a constacyclic 

code and its Hermitian dual code’s roots. 
Remark The MDS Hermitian self-dual constacyclic code obtained from 

Theorem 4 is different with the MDS Hermitian self-dual constacyclic code in 
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[12], because ( )1, 1 2q q+ − =  for an odd prime power q. 
If 2r = , C is negacyclic. Theorem 4 can be stated as follow. 
Corollary 2 Let ( )2 1an n a′= ≥  and n′  is odd. Let  

( ) ( )11 mod 2 and 2 1 mod 2 ,a a aq n q +′′≡ − ≡ −
 

where |n n′ ′′  and n′′  is odd. Then there exists an MDS Hermitian self-dual 
code C of length n which is negacyclic with defining set  

1 2 | 0,1, , 1 .
2
nT j j = + = − 

 


 
Especially, when 1a = , Corollary 2 is similar as [5, Theorem 11]. 
From Theorem 3 and Theorem 4, we obtain the next theorem. 
Theorem 5 Let 1n q≤ +  and n be even. There exists an MDS Hermitian 

self-dual code with length n over 2q
 . 

4. Conclusion 

In this paper, we obtain many new MDS Euclidean self-dual codes by solving the 
Equation (*) in q . We generalize the work of [8] to MDS Hermitian self-dual 
codes, and we construct new MDS Hermitian self-dual codes from constacyclic 
codes. We obtain that there exists an MDS Hermitian self-dual code with length 
n over 2q

 , where 1n q≤ +  and n is even. And we also discuss these MDS 
Hermitian self-dual codes, which are extended cyclic duadic codes. Some new 
MDS Hermitian self-dual codes are obtained. 
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