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Abstract 
Identifying vehicular crash high risk locations along highways is important for 
understanding the causes of vehicle crashes and to determine effective coun-
termeasures based on the analysis. This paper presents a GIS approach to 
examine the spatial patterns of vehicle crashes and determines if they are spa-
tially clustered, dispersed, or random. Moran’s I and Getis-Ord Gi* statistic 
are employed to examine spatial patterns, clusters mapping of vehicle crash 
data, and to generate high risk locations along highways. Kernel Density Es-
timation (KDE) is used to generate crash concentration maps that show the 
road density of crashes. The proposed approach is evaluated using the 2013 
vehicle crash data in the state of Indiana. Results show that the approach is ef-
ficient and reliable in identifying vehicle crash hot spots and unsafe road loca-
tions. 
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1. Introduction 

Identifying vehicular crash high risk locations along highways is a useful tool 
that can help transportation agencies allocate limited resources more efficiently, 
and find effective countermeasures. A crash hot spot is a location showing con-
centration of incidents, and hot spot analysis is a method for analyzing the spa-
tial tendency between points or events within this location [1]. If a feature’s spa-
tial tendency is high, and the values of its neighboring features is also high, it is a 
part of a hot spot, and if the tendency of a feature and its neighborhoods is low, 
it is a part of a cold spot. Spatial patterns of traffic crash data can be analyzed by 
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spatial autocorrelation, which is a measure of the correlation of an observation 
with other observations through space. The spatial autocorrelation phenomenon 
can be summarized by the Tobler’s first law of Geography that everything is 
usually related to all else but those which are near to each other are more related 
when compared to those that are further away [2]. Most statistical analyses are 
based on the assumption that the values of observations in each sample are in-
dependent of one another. Spatial autocorrelation violates this assumption, be-
cause samples taken from nearby locations are related to each other, and hence, 
they are statistically not independent of one another [1] [3]. To assess spatial 
autocorrelation, a distance measure must be specified in order to define what is 
meant by two observations being close together. These distances are usually pre-
sented in the form of a weight matrix, which defines the relationships between 
locations at which the observations occur [4]. If data were collected at n loca-
tions, then the weight matrix will be n x n with zeroes on the diagonal. The 
weight matrix is often row-standardized, (i.e. all weights in a row sum to one), 
and can be constructed given a variety of assumptions, such as [1]: 
• A constant distance that represents the weight for any two different loca-

tions. 
• A fixed weight for all observations within a specified distance.  
• k nearest neighbors that represents a fixed weight, and all others non-neigh- 

bors are zero. 
• Weight could be proportional to the inverse distance, or inverse distance 

squared. 
There are a number of indices or statistics that attempt to measure spatial au-

tocorrelation for continuous data, such as Moran’s I, Geary’s C, and Getis-Ord 
Gi statistic [5]. These indices can be used as Global or Local measures depending 
on the scope of the analysis. Global implies that all elements in the weight matrix 
are included in the calculation of spatial autocorrelation providing a single 
measurement of spatial autocorrelation for an entire data set. Local indices cal-
culate spatial autocorrelation for all areal units of analysis. In other words, the 
global autocorrelation is the extent to which points that are close together in 
space have similar values, and the local autocorrelation is the extent to which 
points that are close to a given point or area have similar values. Anselin [6] out-
lined a general class of local indicators of spatial autocorrelation termed the Lo-
cal Indicator of Spatial Autocorrelation (LISA) statistic, which implies that the 
LISA statistic decomposes global results into their local parts. For example, a 
significant global index at a given spatial point or section may hide large spatial 
patches of no autocorrelation, and LISA can detect this and show us the location 
of these insignificant patches in space. Conversely, an insignificant global result 
may hide patches of strong autocorrelation, and LISA can detect this again. 
Generally, both hot spots and cold spots can be identified as locations for which 
the LISA statistic is significant [6]. High and significant values of Moran’s I and 
Gi statistic in a spot indicate a high spatial clustering (hot spot), whereas low and 
significant values indicate a low spatial clustering (cold spot). The type of clus-
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tering and its statistical significance is evaluated based on a confidence level and 
on the output z-scores and the correspondent p-values. These will determine 
whether a data point or a location belongs to a hot spot (denoted by High-High, 
HH), cold spot (denoted by Low-Low, LL) or an outlier (a high data value sur-
rounded by low data values or vice versa, denoted by High-Low, HL or 
Low-High, LH). Other methods for studying spatial patterns of crash data as 
point events have recently been developed. One of the most widely used is the 
Kernel Density Estimation (KDE). The goal of KDE is to develop a continuous 
surface of density estimates of discrete events such as road crashes by summing 
the number of events within a search bandwidth. Many recent studies have used 
the 2-D planar KDE for hot spot analysis. However, this method has been criti-
cized in relation to the fact that road crashes usually happen on the road links 
and need to be considered in a road network space represented by 1-D dimen-
sion. Therefore, some studies have extended the planar KDE to network spaces, 
which estimates the crash density over a distance unit in a 1-D measurement in-
stead of an area unit [7] [8] [9]. However, a major weakness of the KDE methods 
is that it cannot be tested for statistical significance [8] [10]. 

2. Literature Review 

Vehicle crashes have been investigated from different spatial and temporal pers-
pectives by different researchers using varied procedures. The Black and Thomas 
[11] paper was the first major work that clearly distinguishes traffic crash hots-
pots. Their work indicated that a positive network autocorrelation of road 
crashes can cause the spatial clustering of traffic hotspots. However, the analysis 
focused on network autocorrelations at a global level within an entire dataset by 
using Moran’s I and the associated z-score tests. Flahaut [12] introduced the use 
of the local indices of spatial autocorrelation (LISA) to examine the crash pat-
terns of road networks in a Belgian province. This work explained the advantag-
es of hotspots and further developed logistic regression models to explain traffic 
crash hotspots with road characteristics and local environmental conditions. 
Yamada and Thill [7] explained and compared hotspot methods by Kernel Den-
sity Estimation (KDE) at the planar and network-constrained. Their work indi-
cated that the planar KDE analysis can produce over-detecting cluster patterns. 
More recently, Yamada and Thill [13] introduced a method called local indica-
tors of network-constrained clusters (LINCS) to identify hotspots by using the 
network-based approach. Theoretically, traffic crashes can occur at every possi-
ble location over the entire road network. However, it is impractical to examine 
the clustering pattern at every possible point using the network-based approach. 
Hence, they suggested using reference points along the network with an equal 
interval distances. Schweitzer [14] used a process called kernel smoothing for 
hot spot analysis. This process creates local estimates of the measure of the spa-
tial intensity using the count of frequency of points within a given distance of 
each point, relative to symmetric distribution. Xie and Yan [8] used a planar and 
a network-based KDE approach to examine traffic crashes in the state of Ken-
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tucky. In implementing the network KDE, they suggested using a linear segment 
of roads as the basic unit for aggregating crashes, calculating density, and for vi-
sualization. They found that segments of shorter length are more capable of 
showing the local variations of the segments, and concluded that the network- 
constrained KDE is more appropriate than the planar KDE for traffic crash 
analysis. Erdogan et al. [15] used a repeatability analysis to identify hotspots with 
the highest 5% and 1% area of the Poisson distribution over ten years, using a 
bandwidth of 500 m. They concluded that repeatability analysis determined 
more hot spot locations than the Kernel Density analysis. Yamada and Thill [16] 
applied the network-based framework to analyze highway crashes that occurred 
on a small highway network in Buffalo, New York. The method was imple-
mented in conjunction with Monte Carlo simulation to obtain criteria against 
which statistical inferences from the observed patterns can be made. They found 
that incorporating GIS and spatial statistical approaches can effectively detect 
crash hotspots.  

3. Moran’s I 

Moran’s I [17] is one of the oldest indices of spatial autocorrelation and can be 
used to test for global and local spatial autocorrelation among continuous data. 
For any continuous variable, xi a mean x , can be calculated and the deviation 
of any observation from that mean can be calculated based on the cross products 
of the deviations from the mean. The statistic then compares the value of the va-
riable at any one location with the values at all other locations [18] [19] [20]. For 
n observations on a variable x at locations i, j, Moran’s I is calculated by Equa-
tion (1) as follows: 
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where, 
x : is the mean of the variable x; 

wij: are the elements of the weight matrix; 
S0: is the sum of the elements of the weight matrix: 0

n n
iji jiS w= ∑ ∑  

Values for this index typically, range from −1.0 to +1.0, where a value of -1.0 
indicates negative spatial autocorrelation, and a value of +1.0 indicates positive 
spatial autocorrelation. When nearby points or segments have similar values, 
their cross product is high. Conversely, when nearby points or segments have 
dissimilar values, their cross-product is low. The expectation of Moran’s I is: 

( ) 1
1

E I
n
− =  − 

                         (2) 

with a Moran’s I value larger than E(I), indicates positive spatial autocorrelation, 
and a Moran’s I less than E(I), indicates negative spatial autocorrelation. In Mo-
ran’s formulation, the weight variable, wij, is a contiguity matrix. If zone j is ad-
jacent to zone i, the product receives a weight of 1.0. Otherwise, the product 
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receives a weight of 0.0. The z-scores of Moran’s I can be computed by Equation 
(3): 

( )
( )i

I E I
Z

V I
−

=                          (3) 

where E(I) is the expected value of I, and V(I) is the variance of I, as shown in 
Equation (4): 

( ) ( ) ( )2 2–V I E I E I=                       (4) 

The distribution of the z-scores is assumed to be approximately normal with a 
mean of 0.0 and a variance of 1.0 (Cliff and Ord 1981). A statistically significant 
positive z-score indicates that the distribution of the observations is spatially 
autocorrelated producing High-High (HH) clusters, whereas a negative z-score 
indicates that the observations tend to be more dissimilar producing Low-Low 
(LL) clusters. A z-score close to zero indicates that observations are randomly 
and independently distributed in space. By assuming a z-score is from a stan-
dard normal distribution, their associated p-value can be obtained, and can be 
used to determine the significance of the index at each location [4]. To deter-
mine if the z- score is statistically significant, it should be compared to the range 
of values for a particular confidence level. For example, at a significance level of 
95%, a z-score would have to be less than –1.96 or greater than + 1.96 to be sta-
tistically significant. The null hypothesis H0 is that there is no spatial autocorre-
lation among the observations. The null hypothesis can be rejected, if the 
p-value shows that the z-score is significant.  

4. Getis-Ord Gi Statistic 

The Getis-Ord Gi statistic is another index of spatial autocorrelation [21] that 
can distinguish between positive spatial autocorrelation with high values from 
positive spatial autocorrelation with low values. The General (Global) Gi statistic 
computes a single statistic for the entire study area, while the local Gi statistic is 
an indicator for local autocorrelation for each data point. There are two types of 
Gi statistics, although almost the two types produce identical results [22] [23]. 
The first one, Gi, does not include the autocorrelation of a zone with itself, whe-
reas the iG∗  includes the interaction of a zone with itself (i.e. the Gi statistic 
does not include the value of Xi itself, but only the neighborhood values, but iG∗  
includes Xi as well as the neighborhood values), and formally both can be com-
puted by the formulae [5]: 

( )
( )n

ij jj i
n

jj i

i

w d x

x
G d ≠

≠

=
∑
∑

                  (5) 

( )
( )1

1

n
ijj

n
j

i
j

j

w d
d

x
G

x
∗ =

=

=
∑
∑

                 (6) 

where, d is the neighborhood (threshold) distance, and wij is the weight matrix 
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that has only 1.0 or 0.0 values, 1.0 if j is within d distance of i, and 0.0 if its 
beyond that distance. These formulae indicate that the cross-product of the val-
ue of X at location i and at another location j is weighted by a distance weight, wij 
which is defined by either a 1.0 if the two locations are equal to or closer than a 
threshold distance, d, or a 0.0 otherwise. The G statistic can vary between 0.0 
and 1.0. The statistical significance of the local autocorrelation between each 
point and its neighbors is assessed by the z-score test and the p-value. The ex-
pected G value for a threshold distance, d, is defined as: 

( ) ( )1
W

n n
E G d =   −

                     (7) 

where, W is the sum of weights for all pairs of locations ( n n
iji jW w= ∑ ∑ ), and  

n is the number of observations. Assuming normal distribution, the variance of 
G(d) is defined as [24]:  

( ) ( ) ( )2 2–Var G d E G E G=                    (8) 

The standard error of G(d) is the square root of the variance of G. Therefore, a 
z-test can be computed by: 
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Where, a positive z-value indicates spatial clustering of high values, while a neg-
ative z-value indicates spatial clustering of low values. Sometimes, the G statistic 
may not follow a normal standard error, and the distribution of the statistic may 
not be normally distributed, such as the case of a skewed variable with some 
points having very high values while the majority of other points having low 
values. In this case, a permutation type simulation should be used [6] [25], with 
a randomization distribution to test the null hypothesis of no local autocorrela-
tion (H0). This will maintain the distribution of the variable z but will estimate 
the value of G under random assignment of this variable, and the user can take 
the usual 95% or 99% confidence intervals based on the level used. 

5. Planar Kernel Density Estimation  

Kernel Density Estimation is a non-parametric method to estimate the probabil-
ity density function of a variable that produces a smooth density surface of point 
events over a 2-D geographic space (i.e. planar space). Kernel density estima-
tions are closely related to histograms, but can be constructed with properties 
such as smoothness or continuity by using a suitable kernel. The disadvantages 
of histograms provide the motivation for kernel estimation. When we construct 
a histogram, we need to consider the width of the bins in which the whole data 
interval is divided by, and the end points of the bins. As a result, the problems 
with histograms are that they are not smooth, and therefore we can alleviate 
these problems by using kernel density estimation that centers a kernel function 
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at each data point [26]. KDE tends to produce a smooth density surface of point 
events over space by computing event intensity as density estimation. The gen-
eral form of a KDE in a 2-D space is given by [8]: 

( ) 21

1
π

n isds k
rr

λ = ∑                    (11) 

Where λ(s) is the density at location s, r is the search radius (bandwidth) of the 
KDE, k is the weight of a point i at distance dis to location s. The kernel function 
k is usually considered as a function of the ratio between dis and r. As a result, 
the longer the distance between a point and location s, the less that point is 
weighted for calculating the overall density. All points within the bandwidth r of 
location s are summed for calculating the density at s. A number of distributions 
can be used to measure the spatial weights k, such as Gaussian, Quartic, Conic, 
Minimum variance function, negative exponential, and epanichnekov [27] [28]. 
Some of the mostly used forms of kernel functions are [29]: 
The Gaussian function: 

2
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The Quartic function: 
2

21is isd dk K
r r

 
= − 
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Where K is a scaling factor to ensure the total volume under Quartic curve is 1.0, 
and usually used as ¾. 
The minimum variance function: 

2
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8
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To find the KDE value, two key parameters must be chosen: the kernel func-
tion k; and the search radius (bandwidth) r. Many studies have found that the 
type of the distribution of the kernel function k has a very little effect on the re-
sults compared to the choice of search bandwidth r [1] [26] [29] [30] [31]. The 
value of search bandwidth r is very important because it usually determines the 
smoothness of the estimated density and can affect the outcome. If it is too 
small, it will not produce a continuous smooth surface, and too large bandwidth 
will suppress spatial variation of events. Therefore, the bandwidth of the kernel 
density estimation often proves to be more influential to outcomes than the ker-
nel shape distribution. Hence, an optimal value of r must be chosen that mini-
mizes the sum of the squared errors of the kernel estimation [32]. There is no 
unique definition of the optimal search radius, and different optimality criteria 
have been used. For example, ESRI ArcGIS 10.2 uses the following formula as a 
default optimal search radius [33]: 

( )
0.21,
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where, 
SD: the standard distance 
Dm: the median distance 
n: the number of points if no population field is used, or if a population field 

is supplied, n is the sum of the population field values, and min: means that 
whichever of the two options that results in a smaller value will be used. Silver-
man [26] suggested a rule of thumb for calculating the optimal search radius as 
follows: 

5
4

3
r SD

n
=                          (16) 

where, the SD is the standard deviation of the samples provided that the kernel 
function is Gaussian type and that samples follow normal distribution. The cell 
size depends on the user choice and the dataset. Okabe et al. [9] suggested using 
a cell size of (r/10) as a rule of thumb. 

6. Network Kernel Density Estimation 

In the real world, there are many kinds of network-constrained events, such as 
traffic crashes, street crimes, leakages in gas pipe lines along roadways, and river 
contamination. In planar KDE, the space is characterized as a 2-D homogeneous 
Euclidian space and density is usually estimated at a large number of locations 
that are regularly spaced over a grid. However, in analyzing the hot spots of 
network-constraint events, the assumption of homogeneity of 2-D space does 
not hold and the relevant KDE methods may produce biased results [9]. There-
fore, the planar KDE has been extended to the network KDE, which differs from 
the planar KDE in several aspects: (i) the network space is used as the point 
event context; (ii) both search bandwidth r and kernel function k are based on 
network distance (calculated as the shortest path distance in a network) instead 
of straight-line Euclidean distance; and (iii) density is measured per linear unit 
instead of area unit. The network KDE is a 1-D measurement while the planar 
KDE is a 2-D measurement [9]. The network KDE is an extension of the planar 
2-D KDE and it uses the following equation for the density estimation of net-
work-constrained point events in a network space [8]: 

( ) 1n is
i

ds k
r r

λ  =  
 

∑                   (17) 

Instead of calculating the kernel density over an area unit, the equation esti-
mates the density over a linear unit, and any of the different forms of kernel 
functions k may be used. 

7. Data 

The analysis is conducted on a dataset that presents a road network in the state 
of Indiana as shown in Figure 1. The data includes a crash point layer and a 
road layer with crash records of the year 2013 that includes all types of crashes 
(i.e. fatal, injury, and property damage). The dataset includes 2983 crash point  
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Figure 1. Roads and Crashes of Indiana network used in the analysis. 
 
events on the network. 

8. Results and Discussion 

The Global Moran’s I evaluates whether the overall network crashes are clus-
tered, dispersed, or random, and assesses the overall spatial pattern of the crash 
data. The GIS spatial statistics tool is used to compute the Global Moran’s I, and 
five values are generated from running this tool: The Moran’s I Index, the Ex-
pected Index, the Variance, the z-score, and the p-value as shown in Table 1.  

The results of the analysis are interpreted within the context of the null hypo-
thesis. For the Global Moran’s I statistic, the null hypothesis states that the 
attributes (i.e. crashes) being analyzed are randomly distributed among the fea-
tures in the study area (i.e. no global spatial autocorrelation exists for the entire 
network). However, since the p-value being generated is less than 0.01 (using a 
confidence level of 99%), then this indicates that the Global Moran’s I spatial 
autocorrelation is significant, and hence, we can reject the null hypothesis, and 
state that it is quite possible that the spatial distribution of the overall network 
crashes is the result of clustering pattern, and there is less than 1% probability 
that this pattern could be the result of random process. 

Similarly, the Global (General) Getis-Ord iG∗  statistic evaluates whether the 
overall network crashes are clustered, dispersed, or random, and assesses the 
overall pattern and trend of the crash data, and five values are generated from 
running the ArcMap spatial statistic tool: The General Gi statistic, the Expected 
Index, the Variance, the z-score, and the p-value as shown in Table 2. 

Since the p-value being generated is less than 0.01 (using a confidence level of 
99%), then this indicates that the General Gi statistic spatial autocorrelation is 
significant, and hence, we can reject the null hypothesis, and state that it is quite 
possible that the spatial distribution of the overall network crashes is the result 
of clustering patterns, and there is less than 1% probability that this pattern  
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Table 1. Global Moran’s I Summery for Indiana road network. 

Global Moran’s I Expected Index Variance z-score p-value Decision 

0.135847 −0.000335 0.000006 53.817107 0.000000 significant 

 
Table 2. General Gi statistic Summery for Indiana road network 

General Gi Expected Index Variance z-score p-value Decision 

0.128449 0.106109 0.000001 19.233837 0.000000 significant 

 
could be the result of random process. This result is analogous to the Global 
Moran’s I in determining the overall clustering pattern of the crashes.  

Next, the statistically significant hot spots, cold spots, and spatial outliers are 
identified using the Anselin Local Moran’s I, and the local iG∗  statistic. The 
z-scores and p-values can be used to evaluate the statistical significance of the 
computed index values. This method can distinguish between a statistically sig-
nificant cluster of high values (HH), cluster of low values (LL), and outliers in 
which a high value is surrounded by low values (HL), and outliers in which a low 
value is surrounded by high values (LH). Table 3 shows the HH, LL, HL, LH 
identified by both Moran’s I and iG∗  statistic. Figure 2 shows the HH, LL, HL, 
LH identified by Moran’s I. Figure 3 shows the HH, LL, HL, LH of Moran’s I 
with rendering that clearly illustrates the range of the z-scores of the identified 
clusters between the range LL < - 2.0, and the HH > 2.0. It can be seen that the 

iG∗  statistic has identified a larger number of significant hot spots (157 HHs) 
and significant cold spots (307 LLs) than the Moran’s I (102 HHs, 287 LLs). 
However, Moran’s I has identified a larger number of significant outliers (79 
HLs, 82 LHs) than the iG∗  (48 HLs, 0.0 LHs).  

In addition, the extent and locations of hot spots, cold spots and outliers differ 
from one method to the other. For example, cluster # 1 is identified by the iG∗  
statistic as purely HH hot spot, while it has been identified as a mixed HH and 
LH hot spot by Moran’s I. Clusters # 3, 4, and 5 are identified by the iG∗  as 
purely cold spots, while they have been identified as mixed HH, LH, and 
non-significant hot spots by Moran’s I. Clusters # 2 and 6 are identified as 
non-significant spots by both methods.  

Figure 4 shows the HH, LL, HL, LH identified by the iG∗  statistic. Figure 5 
shows the HH, LL, HL, LH of iG∗  with rendering that clearly illustrates the 
range of the z-scores of the identified clusters between the range of LL < - 2.0, 
and the HH > 2.0. 

The planar Kernel Density Estimation is determined by the ArcMap spatial 
analyst tools. Kernel Density calculates the density of a point around each output 
raster cell, and a smoothly curved surface is fitted over each point. Density sur-
faces show where point features are concentrated. The surface value is highest at 
the location of the point being analyzed and decreases with increasing distance 
from the point, reaching zero at the search radius distance from the point. Fig-
ure 6 shows the hot spots identified by the planar KDE, and their average densi- 
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Figure 2. Hot spots and outliers by Anselin Moran’s I. 
 

 
Figure 3. Hot Spots by Moran’s I with z-scores rendering. 
 

 
Figure 4. Hot Spots and Outliers by Gi* statistic. 
 
ties per km2. It can be seen that the planar KDE has identified seven clusters with 
different crash densities. For example, cluster # 1 contains 8 density levels rang- 
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Figure 5. Hot Spots by Gi* statistic with z-scores rendering. 
 

 
Figure 6. Hot Spots by Planar Kernel Density Estimation. 
 
Table 3. Hot spots, Cold Spots, and outliers of Indiana network by Moran’s I and Gi*. 

Method Hot Spot HH Cold Spot LL Outlier HL Outlier LH 

Anselin Moran’s I 102 287 79 82 

Gi* statistic 157 307 48 0.0 

 
ing from the highest density value of 147 crashes/km2 to the lowest density value 
of 16 crashes/km2. Cluster # 2 and # 3 contain 3 density levels ranging from the 
highest density of 65 crashes/km2 to the lowest density of 16 crashes/km2. Clus-
ter # 4 and # 5 contain 2 density levels that decreases from the highest value of 
48 crashes/km2 to the lowest value of 16 crashes/km2. Cluster # 6 and # 7 contain 
only one density level of at least 16 crashes/km2. The remaining white raster area 
contains the minimum density (between 0 – 15 crashes/km2). 

The network-constrained Kernel Density Estimation is determined using the 
SANET V4.1 software [34]. Traditionally, network events are analyzed with spa-
tial methods assuming Euclidean distance on a 2-D plane, however, this assump-
tion does not hold in practice when analyzing network events, because Euclidean 
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distances and their corresponding network shortest-path distances are signifi-
cantly different. Alternatively, network spatial analysis assumes the shortest-path 
distance on networks that enables more practical investigation of network events 
than planar spatial analysis. Hence, planar KDE is likely to lead to false conclu-
sions when applied to network events [35]. A clear example is provided in Fig-
ure 7, which shows that for a road segment AB, the planar KDE considers 14 
crashes within the circular area surrounding the segment, while the network 
KDE considers only 11 crashes on that segment. 

Figure 8 shows the hot spots identified by the network KDE, and their aver-
age densities per linear km. Figure 9 shows the hot spots by the network KDE 
with rendering of their z-scores. It can be noticed from Figure 8 that the net-
work KDE has identified different clustering patterns. For example, cluster # 1 is 
identified by the network KDE as purely high density hot spot similar to the iG∗  
pattern. The average density at this junction is (between 4.8 to 5.7 crashes/km). 
Clusters # 3, 4, and 5 are identified by the network KDE as purely high density 
hot spots (their density between 4.8 to 5.7 crashes/km), while they have been 
identified as mixed HH, LH, and non-significant hot spots by Moran’s I, and 
purely LL cold spots by iG∗ . Clusters # 2 and 6 are identified by the network 
KDE as mixed high density hot spots and low density spots (density for the low 
spots is between 1.8 to 2.7 crashes/km, and density for the high spots is between 
4.8 to 5.8 crashes/km), while they are identified as non-significant spots by both 
Moran’s I and iG∗  statistic. The crash density for the cold spots is between 2.8 
to 4.7 crashes/km as shown in Figure 8. 

Since each method has identified different clustering patterns, therefore we 
recommend using a combination of these methods in hot spot analysis. Compa-
rable results can show more diverse and flexible interpretations among the clus-
tering patterns. Using only one method can result in misleading conclusions. For 
example, as we saw above, cluster # 1 is identified as a pure HH hot spot in iG∗  
 

 
Figure 7. An example of different outcomes between the planar KDE and the network 
KDE. 
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Figure 8. Hot Spots by Network Kernel Density Estimation. 
 

 
Figure 9. Hot Spots by network KDE with z-score rendering. 
 
and high density spot in network KDE (density from 4.8 to 5.7 crashes/km), 
while it is identified as a mixed HH and LH in Moran’s I. Likewise, cluster # 2 is 
identified as a pure non-significant spot in both Moran’s I and iG∗ , while it is a 
mixed HH density spot (with density from 4.8 to 5.7 crashes/km) and low den-
sity spot (from 1.8 to 2.7 crashes/km) in network KDE. Hence, using a combina-
tion of these methods would probably produce more reliable results than using 
one method alone. Table 4 shows a comparison between some characteristics of 
Moran’s I, iG∗  statistic, and network KDE in identifying hot spots.  

9. Conclusion 

Hot pot analysis focuses on highlighting areas which have higher than average 
incidence of events, and it is a valuable technique for visualizing the concentra-
tion of events on networks. This paper presented two methods: Moran’s I and 
Getis-Ord iG∗  statistic based on network spatial autocorrelation and another 
third method, kernel density estimation (KDE) to examine the spatial patterns of  
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Table 4. Comparison between Moran’s I, Gi* statistic, and network KDE. 

Moran’s I Gi* statistic Network KDE 

measures spatial correlation, 
identifies hot spots with 

high-high values, and cold spots 
with low-low values 

measures spatial correlation, 
identifies hot spots with 

high-high values, and cold spots 
with low-low values 

measures probability density 
function, identifies only hot spots 

in term of density per linear 
distance unit 

Identifies outliers  
(dispersed incidents) with 

high-low values and  
low-high values 

does not identify outliers does not identify outliers 

Looking at the value in the  
context of its neighbors’ values 

within the inverse distance  
between locations 

Looking at the value in the con-
text of its neighbors’ values that 
fall within a specified distance of 

each other 

conduct density calculation based 
on the user-specified search 

radius and raster cell size 

does not include the interaction 
of a zone with itself but only with 
its neighborhoods in measuring 

spatial correlation 

includes the interaction of a zone 
with itself in addition to its 

neighborhoods in measuring 
spatial correlation 

does not include the interaction 
of a zone with itself but only with 
its neighborhoods in measuring 

kernel density 

reports an index-value, and a  
z-score 

reports a combined index-value 
and a z-score 

reports a linear density value, 
and a z-score 

reports a p-value reports a p-value does not report a p-value 

presents the statistical  
significance of clustering 

presents the statistical  
significance of clustering 

does not present the statistical 
significance of clustering 

ranges from -1.0 to + 1.0 ranges from 0.0 to + 1.0 any positive value 

 
vehicle crashes and determines if they are spatially clustered, dispersed, or ran-
dom using the 2013 vehicle crash data in the state of Indiana. The Global values 
of both Moran’s I and iG∗  showed that it is quite possible that the spatial dis-
tribution of the overall network crashes is the result of clustering patterns, and 
there is less than 1% probability that this pattern could be the result of random 
process. The local Moran’s I and iG∗  identified different clustering patterns on 
the road network. The iG∗  statistic has identified a larger number of significant 
hot spots (157 HHs) and significant cold spots (307 LLs) than the Moran’s I (102 
HHs, 287 LLs). However, Moran’s I has identified a larger number of significant 
outliers (79 HLs, 82 LHs) than the iG∗  (48 HLs, 0.0 LHs). The kernel density 
estimation is evaluated as planar KDE and network KDE. In planar KDE, the 
space is characterized as a 2-D homogeneous Euclidian space that does not hold 
when analyzing network events. Therefore, the planar KDE has been extended to 
the network KDE, which is a 1-D measurement while the planar KDE is a 2-D 
measurement. In applying the planar KDE to the network, it identified seven 
clusters with different crash densities. Cluster # 1 contained 8 density levels, 
cluster # 2 and # 3 contained 3 density levels, cluster # 4 and # 5 contained 2 
density levels, and cluster # 6 and # 7 contained only one density level. The net-
work KDE identified different patterns of clusters than what Moran’s I and iG∗  
statistic have identified. For example, cluster # 1 is identified as a pure HH hot 
spot in both iG∗  and network KDE (density from 4.8 to 5.7 crashes/km), while 
it is identified as a mixed HH and LH in Moran’s I. Likewise, cluster # 2 is iden-



A. Abdulhafedh 
 

213 

tified as a pure non-significant spot in both Moran’s I and iG∗ , while it is a 
mixed HH density spot (with density from 4.8 to 5.7 crashes/km) and low 
density spot (from 1.8 to 2.7 crashes/km) in network KDE. Since each method 
has identified different clustering patterns, therefore this paper recommends 
using a combination of these methods in hot spot analysis. Comparable results 
from these methods can produce more reliable interpretations among the 
clustering patterns. Using only one method can probably produce misleading 
results. 
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