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Abstract 
This paper is concerned with a nonlinear viscoelastic equation with strong 

damping: ( ) ( )
0

, d 0,
t

t tt tt tu u u u g t s u x s s uρ − ∆ − ∆ + − ∆ − ∆ =∫ . The objective 

of the present paper is to provide some results on the long-time behavior to 
this equation with acoustic boundary conditions. By using the assumptions on 
the relaxation function due to Tatar [1], we show an arbitrary rate of decay 
with not necessary of an exponential or polynomial one and without the as-

sumption ( )
0

1d
2

g s s
∞

<∫  condition. The result extends and improves some 

results given in Cavalcanti [2]. 
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1. Introduction 

In this paper, we investigate the following viscoelastic system with acoustic 
boundary conditons 

( ) ( ) ( ) ( )
0

, d 0,   , 0, ,
t

t tt tt tu u u u g t s u x s s u x tρ − ∆ − ∆ + − ∆ − ∆ = ∈ +∞∫    (1.1) 

( ) ( ) [ ), 0          , 0, ,tu x t x t
ν

∂
= ∈Γ× +∞

∂
                  (1.2) 

( ) ( ) [ )1, 0,           , 0, ,u x t x t= ∈Γ × +∞                  (1.3) 

( ) ( ) ( ) ( ) ( ) [ )00
, , , d   , 0, ,

ttt
t

u u ux t x t g t s x s s y x t
ν ν ν

∂ ∂ ∂
+ − − = ∈Γ × +∞

∂ ∂ ∂∫   (1.4) 

( ) ( ) ( ) ( ) ( ) [ )0, , 0     , 0, ,t tu x t p x y q x y x t x t+ + = ∈Γ × +∞          (1.5) 
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( ) ( ) ( ) ( )0 1, 0 , , 0 ,    ,tu x u x u x u x x= = ∈Ω              (1.6) 

where ( )1, 2n nΩ ⊆ =  is a bounded domain with smooth boundary 

0 1Γ = Γ Γ


, ν  is the unit outward normal to Γ , the function g  represents 
the kernel of a memory, p  and q  are specific functions, and ρ  is a real 
number such that 

21    if   3;    1   if   1, 2.
2

n n
n

ρ ρ< ≤ ≥ > =
−

               (1.7) 

Our problem is of the form 

( ) 0,t tt ttf u u u u− ∆ − ∆ =                       (1.8) 

which has several modeling features. In the case, ( )tf u  is a constant; Equation 
(8) has been used to model extensional vibrations of thin rods (see Love [3], 
Chapter 20). In the case, ( )tf u  is not a constant; Equation (8) can model ma-
terials whose density depends on the velocity tu , for instance, a thin rod which 
possesses a rigid surface and with an interior which can deform slightly. We re-
fer the reader to Fabrizio and Morro [4] for several other related models. 

Recently, Liu [5] considered the following viscoelastic problem with acoustic 
boundary conditions 

( ) ( ) ( ) ( )
0

, d 0,    , 0, ,
t

ttu u g t s u x s s x t− ∆ + − ∆ = ∈ +∞∫           (1.9) 

( ) ( ) [ )1, 0,           , 0, ,u x t x t= ∈Γ × +∞               (1.10) 

( ) ( ) ( ) ( ) [ )00
, , d    , 0, ,

t
t

u ux t g t s x s s y x t
ν ν
∂ ∂

− − = ∈Γ × +∞
∂ ∂∫      (1.11) 

( ) ( ) ( ) ( ) ( ) [ )0, , 0     , 0, ,t tu x t p x y q x y x t x t+ + = ∈Γ × +∞       (1.12) 

( ) ( ) ( ) ( )0 1, 0 ,  , 0 ,      ,tu x u x u x u x x= = ∈Ω             (1.13) 

the authors obtain an arbitrary decay rate of the energy. In the pioneering paper 
[6], Beale and Rosencrans considered the acoustic boundary condition (1.12) 
and the coupled impenetrability boundary condition (1.11) with a general form, 
which had the presence of tty  in (1.2), in a study of the model for acoustic wave 
motion of a fluid interacting with a so-called locally reacting surface. Recently, 
many authors treated wave equations with acoustic boundary conditions, see [7] 
[8] [9] [10] and references therein. For instance, Rivera and Qin [10] proved the 
polynomial decay for the wave motion with general acoustic boundary condi-
tions by using the Lyapunov functional technique. Frota and Larkin [8] estab-
lished global solvability and the exponential decay for problems (1.9)-(1.13) with 

0g ≡ . They overcame the difficulties which were arisen due to the absence of 

tty  in (1.12) by using the degenerated second order equation. Recently, Park 
and Park [9] investigated problems (1.9)-(1.13) and proved general rates of de-
cay which depended on the behavior of g , under the additional assumption of  

that ( )
0

d .g s s
+∞

∫  

Many authors have focused on the viscoelastic problem. In the pioneer work of 
Dafermos [11] [12], existence and asymptotic stability for a one-dimensional vis-
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coelastic problem were proved but no rate of decay has been specified. Since then 
problems related to viscoelasticity have attracted a great deal of attention [13] [14] 
[15]. It seems all started with kernels of the form ( ) ,  0tg t e β β−= > , then with 
kernels satisfying ( ) ( ) ( )1 2g t g t g tξ ξ′− ≤ ≤ − , for all 0t ≥ , for some constants 

1ξ  and 2ξ  and some other conditions on the second derivative, Cavalcanti et al. 
[2] studied the following equation with Dirichlet boundary conditions 

0t tt tt tu u u u g u uρ γ− ∆ − ∆ + ∗∆ − ∆ =            (1.14) 

where ( ) ( )
0

d
t

g u g t s u s s∗∆ = − ∆∫ . They established a global existence result 
for 0γ ≥  and an exponential decay of energy for 0γ > , and studied the inte-
raction within the t ttu uρ  and the memory term g u∗∆ . Messaoudi and Tatar 
[16] established, for small initial data, the global existence and uniform stability 
of solutions to the equation 

2p
t tt ttu u u u g u b u uρ −− ∆ − ∆ + ∗∆ =             (1.15) 

with Dirichlet boundary condition, where 0, , 0, 2b pγ ρ≥ > >  are constants. 
In the case 0b =  in (15), Messaoudi and Tatar [17] proved the exponential 
decay of global solutions to (15) without smallness of initial data, considering 
only the dissipation effect given by the memory. 

In [18] [19], the condition has been replaced by ( ) ( ) ( )g t t g tξ′ ≤ − , where 
( )tξ  is a positive function. Similarly, Han and Wang [20] proved the energy 

decay for the viscoelastic equation with nonlinear damping 

0,m
t tt tt t tu u u u g u u uρ − ∆ − ∆ + ∗∆ + =                (1.16) 

with Dirichlet boundary condition, where 0, 0mρ > >  are constants. Then 
Park and Park [21] established the general decay for the viscoelastic problem 
with nonlinear weak damping 

( ) 0,t tt tt tu u u u g u h uρ − ∆ − ∆ + ∗∆ + =                 (1.17) 

with the Dirichlet boundary condition, where 0ρ >  is a constant. We also 
mention that Fabrizio and Polidoro [22] obtained the exponential decay result 
under the conditions that ( ) 0g t′ ≤  and ( ) ( )1 0,te g t Lα ∈ +∞  for some 0α > . 
Recently, Tatar [23] improved these results by removing the last condition and 
established a polynomial asymptotic stability. In fact, he considered the kernels 
having small flat zones and these zones are not too big (see also [24] for the case 
of coupled system). More recently, under the assumptions that ( ) 0g t′ ≤  and 
( ) ( ) ( )1 0,g t t Lγ ∈ +∞  for some nonnegative function ( )tγ , Tatar [1] genera- 

lized these works to an arbitrary decay for wave equation with a viscoelastic 
damping term. Moreover, we would like to mention some results in [25]-[30]. 

The rest of our paper is organized as follows. In Section 2, we give some pre- 
parations for our consideration and our main result. The statements and the 
proofs of our main results will be given in Section 3. 

For convenience, we denote the norm and scalar product in ( )2L Ω  by ⋅  
and ( ),⋅ ⋅ , respectively. C  denotes a general positive constant, which may be 
different in different estimates. 
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2. Preliminaries and Main Result 

For the memory kernel g  we assume that: 
( )1 :H g + +→   is a non-increasing differentiable function satisfying that 

( ) ( )
0

0 0,  1 d 0.g l g s s
+∞

> = − >∫                    (2.1) 

( )2H  suppose that there exists a nondecreasing function ( ) 0tγ >  such  

that ( )
( ) ( )t

t
t

γ
η

γ
′

=  is a decreasing function and ( ) ( )
0

dg s s sγ
+∞

< +∞∫ . 

For the functions p  and q , we assume that ( )0,p q C∈ Γ  and ( ) 0p x >  
and ( ) 0q x >  for all 0x∈Γ . This assumption implies that there exist positive 
constants ( ), 0,1i ip q i =  such that 

( ) ( )0 1 0 1 0,   ,   .p p x p q q x q x≤ ≤ ≤ ≤ ∈Γ               (2.2) 

We use the notation 

( ){ }
( ) ( ) ( ) ( ) ( ) ( )

0 0

1
1: 0 on ,

, d ,   and , d .

V u H u

u v u x v x x u v u x v x
ΓΩ Γ

= ∈ Ω = Γ

= = Γ∫ ∫
 

Let λ  and λ  be the smallest positive constants such that 

0

2 2 2 2,      .u u u uλ λ
Γ

≤ ∇ ≤ ∇                    (2.3) 

Firstly, we have the following existence and uniqueness results, it can be es-
tablished by adopting the arguments of [2] [31]. 

Theorem 2.1 Let ( ) ( )( )2
0 1,u u V H V∈ Ω ×



. Assume that 1 2,H H  and (2.2) 
hold. There exists a unique pair of functions ( ), tu y , which is a solution to the 
problem (1.1) in the class 

( )( ) ( )20, , ,    0, , ,tu L T V H u L T V∞ ∞∈ ∩ Ω ∈                 (2.4) 

( )( ) ( )( )2 2 2
00, , ,    , ; .t

ttu L T L y y L L∞ +∈ Ω ∈ Γ               (2.5) 

We introduce the modified energy functional 

( ) ( )( ) ( ) ( )

( ) ( ) ( )
0

2 2

2 0

2 2

1 1 11 d
2 2 2

1 1 , d ,
2 2

t
t

t

E t u g s s u g u t

u t q x y x t

ρ

ρρ
+

+

Γ

= + − ∇ + ∇
+

+ ∇ + Γ

∫

∫



     (2.6) 

where 

( ) ( ) ( ) ( ) ( ) 2

0
d .

t
g u t g t s u t u s s∇ = − ∇ −∇∫  

Clearly 

( ) ( ) ( ) ( )
0

2 2 2d 1 1 .
d 2 2t tE t u t g t u g u py
t Γ

′= − ∇ − ∇ + ∇ − ∫          (2.7) 

To state our main result, we introduce the following notations as in [32]. For 
every measurable set +⊂  , we define the probability measure ĝ  by 

( ) ( )1ˆ d .
1

g g s s
l

=
− ∫                        (2.8) 
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The flatness set and the flatness rate of g  are defined by 

( ) ( ){ }: 0 and 0g s g s g s+ ′= ∈ > =                    (2.9) 

and 

( ) ( )1ˆ d
1 g

g gg g s s
l

= =
− ∫                     (2.10) 

respectively. We denote 

( ) ( ) ( ) ( )1 d .
t

G t t g s s sγ γ γ
+∞−= ∫                     (2.11) 

Now, we are in a position to state our main result. 
Theorem 2.2 ([23]) Let ( ) ( )( )2

0 1,u u V H V∈ Ω ×


, Assume that (2.1)-(2.2) 

hold and 1
2g < . If ( ) ( ) ( )1 2

0
2

l l
Gγ

− −
< , then there exist positive constants  

C  and ν  such that 

( ) ( ) ,    0.E t C t tνγ −≤ ≥                    (2.12) 

3. Arbitrary Rate of Decay 

Now we define 

( )
0 0

21 1d d d d .
1 2t t tt u u u x u u x py uyρ

ρ Ω Ω Γ Γ
Φ = + ∇ ⋅∇ + Γ + Γ

+ ∫ ∫ ∫ ∫   (3.1) 

Using (1.1) and (3.1), we have 

( ) ( ) ( )

( )
0 0

2 22

2 0

2

1 d d
1

 d 2 d d .

t
t t

t t

t u u u u g t s u s s x

u u uy q x y

ρ

ρρ
+

+ Ω

Ω Γ Γ

′Φ = − ∇ + ∇ + ∇ − ∇
+

+ ∆ Γ + Γ − Γ

∫ ∫

∫ ∫ ∫
  (3.2) 

We use here the following identity due to [1], to give a better estimate for the  

term ( ) ( )
0

d d
t

u g t s u s s x
Ω
∇ − ∇∫ ∫ : 

( ) ( )

( )( ) ( ) ( ) ( ) ( )
0

22

0 0

d d

1 1 1d d .
2 2 2

t

t t

u g t s u s s x

g s s u g t s u s s g u t

Ω
∇ − ∇

= ∇ + − ∇ − ∇

∫ ∫

∫ ∫ 

  (3.3) 

From (2.1), (3.2) and (3.3), integration by parts and Young’s inequality, we 
derive for any 0 0δ > , 

( ) ( ) ( )

( ) ( ) ( )( )

( )
0 0

22 2
0 02

2

0

2 2

0

1 11
1 2

1 1 d
2 2
1 d .

t t

t

t

lt u u t u

g t s u s s g u t

y q x y

ρ

ρ
δ δ λ

ρ

δ

+

+

Γ Γ

+ ′Φ ≤ + + ∇ − − ∇ +  

+ − ∇ −

+ − Γ

∫

∫



      (3.4) 

As in [5], we have: 
Lemma 3.1 For ( )1

0u H∈ Ω , we have 
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( ) ( ) ( )( )( ) ( ) ( ) ( )
2

0
d d 1 .

t
g t s u t u s s x l g u tλ

Ω
− − ≤ − ∇∫ ∫        (3.5) 

Now we define the functional 

( ) ( ) ( ) ( )( )
0

1 d d .
1

t
t t tt u u u g t s u t u s s xρ

ρΩ

 
Ψ = ∆ − − − + 

∫ ∫      (3.6) 

It follows from (1.1) and (3.6) that 

( ) ( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( )( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )( )
0

2

0 0

0 0

2 20
20

0

0

0

1 2

d d d

 1 d d d

d
 d d

1

 d d

1 d d
1

 d d

t t
t t

t t

t
t

t

t
t

t
t t

t
t

t u g t s u t u s s x g s s u

g s s u t g t s u t u s s x

g s s
g t s u t u s s x u

u g t s u t u s s x

u u g t s u t u s s x

y g t s u t u s s

I I

ρ

ρ

ρ

ρ

ρ

Ω

Ω

+

+Ω

Ω

Ω

Γ

′ ′Ψ = ∆ − − − ∇

+ − ∇ ⋅ − ∇ −∇

+ − ∇ −∇ −
+

+ ∇ − ∇ −∇

′− − −
+

− − − Γ

= − +

∫ ∫ ∫

∫ ∫ ∫

∫
∫ ∫

∫ ∫

∫ ∫

∫ ∫

( )( ) 3 4 5 6 7 80
1 d .

t
g s s I I I I I I− + − + − −∫

  (3.7) 

For any 0δ > , we have 

( ) ( ) ( )( ) ( )2
1

0
.

4t
g

I u t g s u tδ λ
δ

′≤ ∇ − ∇                 (3.8) 

For all measurable sets   and   such that \+=   , 3I , 4I  and 6I  
can be estimated as in [1]: 

( ) ( ) ( )

( ) ( ) ( ) ( )

22
3 1

1

22
1

1 d d
4

3 1ˆ       1 d ,    0,
2 2

t

t

lI u g t s u t u s s x

l g u g t s u s s

δ
δ

δ

Ω

−
≤ ∇ + − ∇ −∇

+ − ∇ + − ∇ >

∫ ∫

∫






     (3.9) 

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

2
4

2

2
2 2

11 1 d d

ˆ       1 1 d d ,    0,

t

t

I l g t s u t u s s x

l g g t s u t u s s x

δ

δ δ

Ω

Ω

 
≤ + − − ∇ −∇ 
 

+ + − − ∇ −∇ >

∫ ∫

∫ ∫






(3.10) 

( ) ( ) ( )

( ) ( ) ( )

22
6 1

1

22
1

1 d d
4

3 1ˆ       d ,      0,
2 2

t

t

t

t

I u g t s u t u s s x

g u g t s u s s

δ
δ

δ

Ω
≤ ∇ + − ∇ −∇

+ ∇ + − ∇ >

∫ ∫

∫






     (3.11) 

where ĝ  is defined in (2.8). For any 0δ > , 

( ) ( ) ( )( ) ( )2
7

0
.

4t
g

I u t g s u tδ λ
δ

′≤ ∇ − ∇                 (3.12) 

For 8I , for 3 4, 0δ δ > , we use a different estimate as 
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( ) ( ) ( )( )( )
( ) ( ) ( )( )( )
( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( )

0

0

0

0

0

8

22

2

3

22
3

4
2

4

d d

d d

11 d d
2 2

1 ˆ
4

1ˆ 
4

1 d .

t

t

t

t

t

t

t

t

t

I y g t s u t u s s

y g t s u t u s s

l
y g t s u t u s s x

g y

g u y

l g t s u s s

λ

δ

δ λ
δ

δ λ

Γ

Γ

Γ Ω

Γ

Γ

= − − Γ

+ − − Γ

−
≤ + − ∇ −∇

+

+ ∇ +

+ − − ∇

∫ ∫

∫ ∫

∫ ∫

∫



















       (3.13) 

Taking into account these estimates in (3.6), let t∗  be a number such that  

( )
0

d
t
g s s g∗

∗=∫ , we obtain that 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

( )( ) ( ) ( ) ( ) ( )

( ) ( )

2 2
1 2

1 3

22 2

1 2

2
2

4

2 1
3 ˆ ˆ1 1
2

1 1
1 d d

4 2
3 0

4
ˆ1 1 d d

1
 1

2

t

t

t

t t
g gt u u

g l g g

gu l g t s u t u s s x

g g u t

l g g t s u t u s s x

g l g t s

ρ

ρ
δ

ρ

δ δ λ δ

δ λ
δ δ

λ
δ

δ

δ λ

+∗ ∗
+

∗

∗
Ω

Ω

∗

 ′Ψ ≤ − + ∇ −  + 
  + − + − + +  

  
 − +

× ∇ − + + − ∇ −∇ 
 

′− ∇

+ + − − ∇ −∇

− + + − − ∇ 
 

∫ ∫

∫ ∫

∫















 



( )

( )
0

2

2

3 4

ˆ1 1 .
2 4 4 t

u s

g
y

δ δ Γ

 
+ + + 
 



(3.14) 

Let 

( ) ( ) ( ) 2

0
d d ,

t
I t G t s u s s xγΩ

= − ∇∫ ∫                    (3.15) 

and ( )G tγ  is given in (2.11), we define the following functional 

( ) ( ) ( ) ( ) ( ) ,F t ME t t t I tε= + Φ + Ψ +                  (3.16) 

then we know from [1] that 

( ) ( ) ( ) ( ) ( )

( ) ( )

22

0

2

0

0 d

 d .

t

t

I t G u t G t s u s s

g t s u s s

γ γη′ ≤ ∇ − − ∇

− − ∇

∫

∫
           (3.17) 

At the same time, we have the following lemmas. 
Lemma 3.2 For M  large enough, there exist two positive constants 1ρ  and 

2ρ  such that 
( ) ( )( ) ( ) ( ) ( )( )1 2 .E t I t F t E t I tρ ρ+ ≤ ≤ +                (3.18) 

Proof. See, e.g. Liu [5]. 
Proof of Theorem 2.2 By using (2.7), (3.4), (3.13)-(3.16), a series of com- 
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putations yields, for t t∗≥ , 

( ) ( ) ( )( ) ( )

( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

2

2

2
1 0

2
2

2
1 3 0

2

1 2

3 0
2 4 1 1

 1
2 2

ˆ 1 1 d d

3 1ˆ ˆ 1 1 0
2 2

1 1
 1

4 2

t

t

t

gMF t g g u t u t

gM u t

l g g t s u t u s s x

lg l g g eG u

gl

ρ

ρ

γ

ελ
δ ρ ρ

δ ε δ

δ

δ δ λ δ ε δ λ

δ λ
δ δ

+∗
+

∗

Ω

∗

∗

  ′ ′≤ − ∇ − −   + +   
 − + − − + ∇  

+ + − − ∇ −∇

 +    + − + − + + + − − ∇    
    

 − +
+ − + +

∫ ∫



 






 

( ) ( ) ( )
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(3.19) 

For n∈ , as in [32] we introduce the sets 

( ) ( ){ }: 0 .n s ng s g s+ ′= ∈ + ≤                   (3.20) 

It is easy to see that 

{ }\ ,n g g
n

+= ∪



                        (3.21) 

where g  is given in (2.9) and g  is the null set where g′  is not defined. 
Additionally, we denote \n n

+=   , then 

( ) ( )ˆ ˆlim ,n gn
g g

→∞
=                         (3.22) 

since 1n n+ ⊂   for all n  and n g gn = ∪


   . Then, we take n=   
and n=   in (3.18), it follows that 
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for some 0 1δ< < . Since ( ) 1ˆ
2g gg= <  , we can choose 2,ε δ  small enough  

and ,n t∗  large enough such that 

( ) ( ) ( )2 ˆ1 1 0
2 nl gε δ− + − ≥                    (3.24) 

and 

( ) ( ) ( )3 1ˆ1 1 0
2 2n

ll g g σε∗
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− − − <                 (3.25) 

with ( ) ( )
( )
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l g
g l

σ ∗
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− −
=

+
. Note that for t∗  large enough. Furthermore, we  

require that 
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Combining (3.24) and (3.25), we obtain 
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Choose our constants properly so that: 
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together with (3.22) yield 

( ) ( ) ( ) ( )1 ,    .F t C E t t I t t tη ∗′ ≤ − − ≥                    (3.31) 

As ( )tη  is decreasing, we have ( ) ( )0tη η≤  for all t t∗≥ . Then (3.30) be-
comes 

( ) ( ) ( ) ( ) ( ) ( )1 ,    .
0

CF t t E t t I t t tη η
η ∗′ ≤ − − ≥  

Since ( )F t  is equipped with ( ) ( )E t I t+ , we get 

( ) ( ) ( )2 ,F t C t F tη′ ≤ −                    (3.32) 

integrating (3.31) over [ ],t t∗  yields 
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Then using the left hand side inequality in (3.17), we get 
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By virtue of the continuity and boundedness of ( )E t  in the interval [ ]0, t∗ , 
we conclude that 

( ) ( ) ,    0E t C t tνγ −≤ ≥                       (3.33) 

for some positive constants C  and ν .  
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