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Abstract 
The aim of this paper is to use the General Autoregressive Conditional Hete-
roscedastic (GARCH) type models for the estimation of volatility of the daily 
returns of the Kenyan stock market: that is Nairobi Securities Exchange 
(NSE). The conditional variance is estimated using the data from March 2013 
to February 2016. We use both symmetric and asymmetric models to capture 
the most common features of the stock markets like leverage effect and vola-
tility clustering. The results show that the volatility process is highly persis-
tent, thus, giving evidence of the existence of risk premium for the NSE index 
return series. This in turn supports the positive correlation hypothesis: that is 
between volatility and expected stock returns. Another fact revealed by the 
results is that the asymmetric GARCH models provide better fit for NSE than 
the symmetric models. This proves the presence of leverage effect in the NSE 
return series. 
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1. Introduction 

Modeling and forecasting volatility in financial time series have become an area 
that has attracted a lot of researches in both empirical and theoretical aspects. In 
this situation, the models established to capture the variations in conditional 
mean of financial time series become no longer useful and hence, the perfor-
mance of such mean models is reduced to give accuracy in estimation process. 
Engle [1] first identified this dilemma and presented an equation of variance 
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which helped to capture the volatility in the series. He observed the autoregres-
sive effect in conditional variance and suggested an autoregressive conditional 
heteroscedasticity (ARCH) process using lag disturbances. Since the publication 
of ARCH model on the subject, there has been a lot of research work done in 
this area. Some limitations of ARCH model are identified and listed by Brooks 
[2], and Tsay [3]. The empirical evidence based on Engle’s work showed that an 
ARCH process of high order was needed to capture the dynamic behavior of 
conditional variance. Thus, Bollerslev [4] proposed an extension of the ARCH 
type model which was called Generalized Autoregressive Conditional Heteros-
cedasticity (GARCH) model. The GARCH model has fulfilled this requirement 
since it is based on the infinite ARCH specifications. Many useful properties of 
GARCH models are given by Posedel [5], Enders [6], and Patterson [7]. 

ARCH and GARCH models are used to capture both volatility and leptokur-
tosis. The so called “leverage effect” is also often observed in the financial time 
series (see Black [8]). This usually occurs when stock price changes are negative-
ly correlated with changes in volatility. Since ARCH and GARCH models are 
symmetric in nature, they fail to capture the leverage effect. In order to address 
this problem, many nonlinear extensions of the GARCH models have been pro-
posed. These include asymmetric class of GARCH models such as exponential 
GARCH (EGARCH) model by Nelson [9], the so-called GJR model by Glosten 
et al. [10] and the power GARCH (PGARCH) model by Ding et al. [11]. In the 
light of these observations in the financial time series, a wide range of varying 
variance models have been used to estimate and predict volatility.  

Financial time series have the property of thick tails which are thicker than 
those of the normal distribution. The other problem encountered by the GARCH 
model is that they do not fully embrace this property of thick/heavy tails which 
are so much evident in the behavior of financial time series. To address this 
problem, again Bollerslev [12], Baillie and Bollerslev [13] used the Student’s 
t-distribution and non normal distribution. Liu and Brorsen [14] used an asym-
metric stable density to capture skewness. Fernandez and Steel [15] used the 
skewed Student’s t-distribution to model both skewness and kurtosis. 

Today, the emphasis is mostly given towards the application of heteroscedas-
tic models to the financial data. A large number of empirical studies have been 
accomplished to address the concept of volatility of stock markets using the fam-
ily of ARCH/GARCH processes. The progress in such studies is provided for the 
purpose of estimation and prediction of the conditional variance of stock returns 
over the specified period. The volatility analysis of stock markets is important 
for the investors in measuring and managing market risks more accurately 
which, in turn is useful in pricing capital assets, financial securities, and selecting 
portfolios. For instance, the reader might get benefit from the research done by 
Ahmed and Suliman [16], Naimy [17], Shamiri and Isa [18], and Kalu [19]. They 
used some models from GARCH family both symmetric and asymmetric to 
capture the stock market volatility. Ahmed and Suliman [16] worked with the 
reference of Sudan stock market, while Kalu [19] provides the volatility analysis 
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of Nigerian stock exchange. Modeling volatility of Paris stock market using 
GARCH (1,1) and compared with exponential weighted moving average (EWMA) 
was done by Naimy [17]. Similarly, Shamiri and Isa [18] provide the comparison 
of usual GARCH model with the non linear asymmetric NAGARCH models 
based on Malaysian stock market. Another study by Wagala et al. [20] considers 
the Nairobi securities exchange (NSE) weekly returns using ARCH-type models. 
See also Sharma and Vipul [21]. 

The main objective of this paper is to model stock returns volatility for the 
Kenya’s Nairobi Securities Exchange (NSE), by applying different univariate spe- 
cifications of GARCH type models. The rest of this paper is organized as follows. 
Following this introduction, Section 2 provides a brief review of the methodolo-
gy of modeling volatility using some well known symmetric and asymmetric 
GARCH models. A general overview of Nairobi Securities Exchange is provided 
in Section 3. The description of data and summary statistics are also presented in 
the same section. The results of the estimated GARCH models are discussed in 
Section 3.3. Lastly, Section 4 concludes the paper. 

2. Methodology of Modeling Volatility 

Since the development of GARCH models, a number of extensions and variants 
have been proposed. These variants are well classified in one of the two broad 
classes of symmetric and asymmetric GARCH models. Before we discuss these 
extensions, let us assume some notations that are useful to describe the general 
GARCH framework. Let tε  denote a real valued discrete time stochastic pro- 
cess and tψ  is the information set of all information through time t. We define 
the model that contains the features of both conditional mean and conditional 
variance as given below. 

( ) ( )2
1 ; ~ 0, .t t t t t tr E r Nψ ε ε σ−= +                   (1) 

Equation (1) can be rewritten as 

.t t tr µ ε= +                             (2) 

Here, ( )1t t tE rµ ψ −=  is the expression used to model the conditional mean 
of tr  given that the information through time t − 1. The error is assumed to be 
non constant quantity with respect to time and thus given by 

t t taε σ=                              (3) 

where ( )1t t tV rσ ψ −=  and ( )~ 0,1ta N . Keeping Equation (2) as for mod-
eling the conditional mean of return, we briefly present a number of specifica-
tions of GARCH models to represent the situations for expressing the condi-
tional variance. These are given by the following sub-sections. 

2.1. Symmetric GARCH Models 

In the symmetric GARCH models, the conditional variance only depends on the 
magnitude of the underlying asset and not on the sign. This ignores the effect 
raised by the positive or negative asset on conditional variance. The widely used 
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symmetric GARCH models include generalized autoregressive conditional he-
teroscedasticity (GARCH) model and GARCH in mean model. These are dis-
cussed below. 

2.1.1. GARCH Models 
A generalized autoregressive conditional heteroscedasticity (GARCH) model is 
the first and basic symmetric model developed by Bollerslev [4]. It is defined as 
the linear function of past squared residuals and the lagged conditional variances 
as given below 

2 2 2
0

1 1

q p

t i t i i t i
i i

σ α α ε β σ− −
= =

= + +∑ ∑                      (4) 

where 0α  is the constant term, 1 2, , , qα α α  are the parameters or coefficients 
of ARCH specifications, and 1 2, , , pβ β β  are the parameters or coefficients of 
GARCH specifications. The q and p are the respective orders of ARCH and 
GARCH processes.  

The simplest specification of this model is GARCH (1,1) model, that is, 
2 2 2

0 1 1 1 1.t t tσ α α ε β σ− −= + +                        (5) 

2.1.2. GARCH-in-Mean (GARCH-M) Models 
Another well known symmetric model is GARCH in Mean (GARCH-M) model 
developed by Engle, et al. [22]. In most of the financial markets, we expect risk 
to be compensated by a higher return and hence the return of a security may de- 
pend on its volatility. To model such phenomenon one might consider GARCH- 
M model. This variant of GARCH family allows the conditional mean of return 
series to depend on its conditional variance. A simple GARCH-M (1,1) model is 
defined by the two equations, the one for conditional mean is given by 

t t tr µ ε= +  where 2 .t tµ µ λσ= +                   (6) 

The equation for conditional variance is same as provided by the GARCH (p, 
q) model in Equation (4) and its specific case GARCH (1,1) by Equation (5). 

2.2. Asymmetric GARCH Models 

This section deals with the asymmetric models that are extensively motivated by 
the need to distinguish between good news and bad news and their impact on 
volatility in financial markets. Engle, and Ng, [23] introduced the news impact 
curve and summarized the effect of a shock interpreted as negative shocks (bad 
news) or a positive shock (good news) on the time varying conditional variance. 
For many stock returns, there is a negative correlation between the current re-
turn and the future volatility. The tendency of volatility to decline when return 
rises and to rise when return falls is called the leverage effect. Symmetric models 
fail to explain the leverage effect due to incapability of conditional variance to 
respond asymmetrically. Consequently, many asymmetric variants of GARCH 
models have been established to deal with this phenomenon. Some of them are 
discussed below. 
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2.2.1. Exponential GARCH (EGARCH) Models 
Nelson [9] proposed the exponential GARCH (EGARCH) models particularly 
designed to allow asymmetric effect between positive and negative asset returns. 
The EGARCH (p,q) specification is given by 

( ) ( )2 2
0

1 1 1
log log

q p q
t i t i

t i i t i i
i i it i t i

ε εσ α α β σ γ
σ σ

− −
−

= = =− −

 
= + + + 

 
∑ ∑ ∑         (7) 

where iγ  is the asymmetric or leverage effect parameter. The value of condi-
tional variance will be positive even if the parameters are negative because it 
models the log of conditional variance. If the relationship between the current 
return and future volatility is negative then γ  will be negative and hence the 
leverage effect is confined. 

2.2.2. Threshold GARCH (TGARCH) Models 
Another important volatility model commonly used to handle the leverage effect 
is the threshold GARCH (TGARCH) model. This model is developed by Glosten, 
Jagannathan, and Runkle in 1993 so that it is also called GJR model (see Zakoian 
[24]). The TGARCH (p, q) framework of conditional variance is given by 

2 2 2 2
0

1 1 1

q p q

t i t i i t i i t i t i
i i i

Iσ α α ε β σ γ ε− − − −
= = =

= + + +∑ ∑ ∑               (8) 

where 1t iI − = , if 0t iε − < , otherwise 0t iI − = , and iγ  is the parameter of leve-
rage effect. If 0iγ = , the model collapses to the classical GARCH (p, q) process. 
Otherwise, when the shock is positive, the effect on volatility is iα  (i.e. 

0t iI − = ), and when the shock is negative, the effect on volatility is i iα γ+  (i.e. 
1t iI − = ). Hence, we can say that for 0iα > , the effect of bad news have larger 

impact on conditional variance than does good news. 

2.2.3. Power GARCH (PGARCH) Models 
Ding, et al. [11] proposed a variant to asymmetric GARCH models and provided 
with power GARCH (PGARCH) models. Unlike the GARCH family, we are able 
to model both the conditional standard deviation as well as conditional variance. 
The PGARCH (p, q) specification is as under; 

( )0
1 1

q p

t i t i i t i i t i
i i

δδ δσ α α ε γ ε β σ− − −
= =

= + − +∑ ∑                (9) 

where δ  is the parameter for power term such that 0δ > . For 2δ = , the 
model simply becomes a standard GARCH model that allows for leverage effect. 
For 1δ = , we deal with the model used to estimate the conditional standard 
deviation rather conditional variance. 

3. Modeling Volatility of Nairobi Securities Exchange 
3.1. An Overview of Nairobi Securities Exchange 

Nairobi Securities Exchange is the only stock exchange of Kenya. It is abbre-
viated as NSE. It was started as Nairobi Stock Exchange in 1954 as a voluntary 
association of stockbrokers in the European community registered under the 
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Societies Act. This was when Kenya was still a British colony. It changed its 
name to Nairobi Securities Exchange in July 2011. It is based in Nairobi the cap-
ital city of Kenya. The principle index of NSE is the NSE 25 Share Index. It uses 
the local currency (Kenyan shilling) for its operations and on 24th October 2014, 
it had a market capitalization of about Ksh 2.248 trillion. NSE is the leading se-
curities exchange in East Africa. 

Securities traded in NSE are ordinary shares and investment units. There are 
other products also available and being traded at the NSE which include deriva-
tive securities and debt securities which include government bonds. NEXT is the 
Nairobi Securities Exchange Derivatives market where members can trade future 
contracts across variety of asset classes such as equities, currencies and fixed in-
come securities. It is regulated by the Central Bank of Kenya (CBK). 

The self-listing of NSE stock through an IPO on 27th June 2014, made the NSE 
to join the Johannesburg Stock Exchange being the only exchange in Africa that 
is self-listed. In March 2015, the NSE officially joined the United Nations Sus-
tainable Stock Exchanges (SSE) initiative whereby they made a voluntary pledge 
to inform their stakeholders of the importance of integrating sustainability in 
their capital markets. 

3.2. Data Description and Basic Statistics 

The time series data used for modeling volatility in this paper is the daily closing 
prices of Nairobi Securities Exchange (NSE) index over the period from 18th 
March 2013 to 18th February 2016, resulting in total observations of 730 exclud-
ing public holidays. The daily returns (rt) are calculated as the continuously 
compounded returns which are the first differences of log prices of NSE-Index of 
successive days:  

1

log t
t

t

pr
p −

 
=  

 
                         (10) 

where tp  and 1tp −  are respectively the closing market index of NSE at the 
current day and previous day. Various descriptive statistics are calculated and 
reported in Table 1. This is in order to specify the descriptive properties of the 
daily NSE return series ( tr ) during the period of the study. The mean return is  
 
Table 1. Various descriptive statistics of NSE daily return series. 

Descriptive statistics Values 

Mean 

Median 

Maximum 

Minimum 

Standard deviation 

Skewness 

Kurtosis 

Jarque-Bera (Prob.) 

0.000129 

1.08e−05 

0.03735 

−0.03749 

0.00322 

−0.11621 

52.2665 

73727.59 (0.0000) 

https://en.wikipedia.org/wiki/Johannesburg_Stock_Exchange
https://en.wikipedia.org/wiki/Sustainable_Stock_Exchanges_Initiative
https://en.wikipedia.org/wiki/Sustainable_Stock_Exchanges_Initiative
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0.000297 with the standard deviation of 0.007429. There is also an excess in kur-
tosis as can be seen clearly. A high value of kurtosis 52.377 indicates a leptokur-
tic distribution that is an apparent departure from normality. Another important 
test of normality is the Jarque-Bera (JB) statistic, which confirms the null hypo-
thesis of normality for the daily NSE returns should be rejected at 1% level of 
significance. We can thus summarize that the NSE return series do not conform 
to normality but actually tend to have positive skewness (i.e. the distribution has 
a thick tail). The plot of NSE daily returns is displayed in Figure 1. We observe a 
large swing in the period of April 2015 with maximum and minimum returns 
are respectively 0.0373 and −0.0374. 

3.3. Analysis of NSE Return 

In order to analyze the return series, the first step is to check the stationary sce-
nario of return series. For this purpose, we employed the familiar Augmented 
Dickey Fuller (ADF) test and Phillips Perron (PP) test for original series ( tp ) 
and the return series ( tr ). The test results are presented in Table 2. The series 
( tp ) is not stationary, however the results for return ( tr ) led towards the rejec-
tion of null hypothesis of unit root, and hence stationarity is present in return 
series. 

It is important to examine the residuals to find the evidence of possible hete-
roscedasticity before applying the methodology of modeling conditional va-
riance. In order to test the presence of heteroscedasticity in the residuals of NSE 
index returns series, the Lagrange Multiplier (LM) test is applied to test the hy-
pothesis that 1 2 qα α α= = = , where q is the order of ARCH effect. The test 
procedure entails first obtaining the residuals t̂ε  from the ordinary least square 
regression of the conditional mean equation which might be an autoregressive 
(AR) process, moving average (MA) process, or a combination of the two pro- 
cesses termed as ARMA process. We assume a constant mean model for model-
ing the conditional mean and the LM test is applied to compute the test statistic 
value 2TR , where T  is the number of observations and 2R  is the coefficient 
of multiple correlation obtained from regressing the squared residuals on q own 
lagged values. The test statistic is evaluated against chi-square ꭕ2(q) distribution  
 

 
Figure 1. Time plot of NSE daily return series. 
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(see Patterson (2000) for details on ARCH-LM test). The results of LM test for 
various ARCH order q are presented in Table 3, which provide strong evidence 
of rejecting the null hypothesis of constant variance for all lags included. Reject-
ing H0 indicates the presence of ARCH effect in the residuals series and therefore 
we can conclude that the variance of the return of NSE index is no-constant for 
all periods specified. 

Once the volatility is confirmed in data, we proceed our analysis further to es-
timate the parameters of both conditional mean and conditional variance equa-
tions. For this purpose, we employed the symmetric and asymmetric GARCH 
models including GARCH (1,1), GARCH-M (1,1), EGARCH (1,1), TGARCH 
(1,1), and PGARCH (1,1). The estimation procedure uses the Broyden-Fletch- 
er-Goldfarb—Shanno (BFGS) optimization method useful for solving uncon-
strained non-linear problems. The estimation results are presented in Table 4. 
The constant mean parameter in mean equation is not significant in any of these 
underlying models. However, we observe the significant constant ( 0α ), signifi-
cant ARCH effect ( 1α ), and significant GARCH effect ( 1β ) in conditional va-
riance equation of GARCH (1,1), GARCH-M (1,1), EGARCH (1,1), and TG- 
ARCH (1,1). There is an insignificant contribution of GARCH effect in condi-
tional mean of GARCH-M (1,1) model and also the estimates of conditional va-
riance equations in GARCH (1,1), and GARCH-M (1,1) are observed similar. 
Therefore, due to insignificant GARCH in mean model one has to prefer the 
simple parsimonious GARCH (1,1) model. The estimated power parameter (δ ) 
in Power GARCH model is found to be 3.697 which is significant at 5% level. 
However, PGARCH model provides only significant GARCH effect and does not 
offer the considerable contribution of lag squared disturbances that is the ARCH 
effect. The leverage effect ( γ ) is estimated for three asymmetric GARCH models  
 
Table 2. Results of unit root test for original NSE index series, and NSE return series. 

Time series Test statistic P-value 
Critical values 

Dur-
bin-Watson 

1% 5% Test 

 
Augmented dickey fuller test  

NSE prices −2.354 0.155 −3.3439 −2.865 2.130 

NSE return −28.042* 0.000 −3.439 −2.865 1.991 

 
Phillips perron test  

NSE prices −2.357 0.154 −3.3439 −2.865 2.130 

NSE return −28.043* 0.000 −3.439 −2.865 1.991 

*Significant at both levels of 1% and 5%. 

 
Table 3. Results of ARCH-LM test for different values of q. 

ARCH order q Test statistic TR2 Probability 

1 

2 

3 

166.942 

216.89 

236.186 

0.0000 

0.0000 

0.0000 
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Table 4. Estimation results of GARCH (1,1), GARCH-M (1,1), EGARCH (1,1), TGARCH 
(1,1), and PGARCH (1,1) models. 

GARCH (1,1) 
0.00014tr =  

2 6 2 2
1 13.58 10 ** 0.1082** 0.4964**t t tσ ε σ−
− −= × + +  

GARCH-M (1,1) 
20.000426 32.047t tr σ= −  

2 6 2 2
1 13.91 10 ** 0.1113** 0.455**t t tσ ε σ−
− −= × + +  

EGARCH (1,1) 
0.00023tr =  

( ) ( )2 21 1
1

1 1

log 10.656** 0.2484** 0.1007 log 0.0506t t
t t

t t

ε ε
σ σ

σ σ
− −

−

− −

= − + + +  

TGARCH (1,1) 
0.00013tr =  

2 6 2 2 2
1 1 1 13.278 10 ** 0.1388** 0.5472** 0.1076*t t t t tIσ ε σ ε−
− − − −= × + + −  

PGARCH (1,1) 
0.00013tr =  

( )10
1 1 12.118 10 0.0528 0.165 0.3756* ;    where, 3.697*t t t t

δδ δσ ε ε σ δ−
− − −= × + + + =  

*Significant at 5% level. **Significant at 1% level. 

 
taking the values 0.0506, −0.1076, and 0.165 respectively for EGARCH, TGARCH, 
and PGARCH models. We found significance only for TGARCH (1,1) process 
that confirms the leverage effect.  

The value of asymmetric parameter for TGARCH (1,1) process is negative, 
which means the volatility increases more with the bad news (negative shocks) 
than the good news (positive shocks) of the same magnitude for NSE index. This 
result is consistent with the finding of Wagala et al. [20], which used the ARCH- 
type process to model volatility of NSE weekly returns and provided with the 
evidence of volatility clustering and leverage effect. In our analysis, both 
GARCH (1,1) and TGARCH (1,1) models performed well to analyze the volatil-
ity clustering of stock returns, however, TGARCH (1,1) outperformed GARCH 
(1,1) model, mainly due to its ability to capture the asymmetry exhibited by the 
stock data. 

The performance of these estimated models are determined on the basis of 
some accuracy measures. In our study, we compute the Akaike information cri-
teria (AIC), Schwarz criteria (SC), and Root mean square error (RMSE). The re-
sults are displayed in Table 5. A look on the table reveals that there are not 
many differences seen among the values of accuracy measures obtained for all of 
five estimated models. Based on these measures, we may suggest that TGARCH 
(1,1) is more suitable process to capture the main features of NSE return like the 
volatility and the leverage effect. We plot the observed and estimated NSE prices 
for the period from 19th March 2013 to 18th February 2016 in Figures 2(a)-(e). 
These graphs show a close match to the data exhibiting that these estimated 
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econometric models provide a good fit to the observed NSE time series. Howev-
er, a close look into these graphs would reveal that Figure 2(d) showed a better 
fit of TGARCH (1,1) model to the observed NSE index because a smoother fitted 
curve can be seen. 

 
Table 5. Some accuracy measures for different specifications of GARCH Models. 

GARCH models AIC SC RMSE 

GARCH (1,1) 

GARCH = M (1,1) 

EGARCH (1,1) 

TGARCH (1,1) 

PGARCH (1,1) 

−8.8247 

−8.8228 

−8.8173 

−8.8268 

−8.8318 

−8.7995 

−8.7913 

−8.7858 

−8.7953 

−8.7940 

0.0032 

0.0031 

0.0032 

0.0032 

0.0032 
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(d) 

 
(e) 

Figure 2. (a) Plot of observed and estimated NSE prices from GARCH (1,1) 
Model. (b) Plot of observed and estimated NSE prices from GARCH-M (1,1) 
Model. (c) Plot of observed and estimated NSE prices from EGARCH (1,1) 
Model. (d) Plot of observed and estimated NSE prices from TGARCH (1,1) 
Model. (e) Plot of observed and estimated NSE prices from PGARCH (1,1) 
Model. 

4. Conclusion 

In this paper, we presented an empirical study to model the Nairobi securities 
exchange (NSE) using the family of GARCH models. Among many symmetric 
and asymmetric type heteroscedastic processes, we estimated GARCH (1,1), 
GARCH-M (1,1), EGARCH (1,1), TGRACH (1,1), and PGARCH (1,1) models. 
On one hand, the presence of volatility clustering is strongly confined from all 
these estimated models as we obtained the significant estimates corresponding to 
ARCH effect and GARCH effect parameters. The leverage effect in NSE return is 
also confirmed on the other hand. The asymmetric TGARCH (1,1) model has 
the significant estimates of the leverage effect. By this analysis, we might say that 
the TGARCH (1,1) model is more appropriate in term of capturing the volatility 
clustering and leverage effect of the NSE stock market. 

Acknowledgements 

The authors wish to thank the Department of Statistics, University of Karachi for 
providing the computing and research facilities. The authors thank to the ano-

3500

4000

4500

5000

5500

6000

19
-M

ar
-1

3

19
-M

ay
-1

3

19
-Ju

l-1
3

19
-S

ep
-1

3

19
-N

ov
-1

3

19
-Ja

n-
14

19
-M

ar
-1

4

19
-M

ay
-1

4

19
-Ju

l-1
4

19
-S

ep
-1

4

19
-N

ov
-1

4

19
-Ja

n-
15

19
-M

ar
-1

5

19
-M

ay
-1

5

19
-Ju

l-1
5

19
-S

ep
-1

5

19
-N

ov
-1

5

19
-Ja

n -
16

O
bs

er
ve

d 
an

d 
Es

tim
at

ed
 N

SE
 In

de
x

Time

Observed NSE

Estimated NSE

3500

4000

4500

5000

5500

6000

19
-M

ar
-1

3

19
-M

ay
-1

3

19
-Ju

l-1
3

19
-S

ep
-1

3

19
-N

ov
-1

3

19
-Ja

n-
14

19
-M

ar
-1

4

19
-M

ay
-1

4

19
-Ju

l-1
4

19
-S

ep
-1

4

19
-N

ov
-1

4

19
-Ja

n-
15

19
-M

ar
-1

5

19
-M

ay
-1

5

19
-Ju

l-1
5

19
-S

ep
-1

5

19
-N

ov
-1

5

19
-Ja

n-
16

O
bs

er
ve

d 
an

d 
Es

tim
at

ed
 N

SE
 in

de
x

Time

Observed NSE

Estimated NSE



A. Maqsood et al. 
 

380 

nymous referees of the journal “Open Journal of Statistics” for their helpful sug-
gestions and comments. 

References 
[1] Engle, R. (1982) Autoregressive Conditional Heteroscedasticity with Estimates of 

the Variance of United Kingdom Inflation. Econometrica, 50, 987-1007.  
https://doi.org/10.2307/1912773 

[2] Brooks, C. (2008) Introductory Econometrics for Finance. 2nd Edition, Cambridge 
University Press, Cambridge. https://doi.org/10.1017/CBO9780511841644 

[3] Tsay, R.S. (2010) Analysis of Financial Time Series. 3rd Edition, John Wiley & Sons, 
Inc., Hoboken. https://doi.org/10.1002/9780470644560 

[4] Bollerslev, T. (1986) Generalized Autoregressive Conditional Heteroscedasticity. 
Journal of Econometrics, 31, 307-327.  
https://doi.org/10.1016/0304-4076(86)90063-1 

[5] Posedel, P. (2005) Properties and Estimation of GARCH (1,1) Model. Metodolskiz-
vezki, 2, 243-257. 

[6] Enders, W. (2004) Applied Econometric Time Series, 2nd Edition. In: Wiley Series 
in Probability and Statistics, John Wiley & Sons, Inc., Hoboken. 

[7] Patterson, K. (2000) An Introduction to Applied Econometrics: A Time Series Ap-
proach. Macmillan Press Ltd., London. 

[8] Black, F. (1976) Studies of Stock Market Volatility Changes. Proceedings of the 
American Statistical Association, Business and Economic Statistics Section, 177- 
181. 

[9] Nelson, D. (1991) Conditional Heteroskedasticity in Asset Returns: A New Ap-
proach. Econometrica, 59, 347-370. https://doi.org/10.2307/2938260 

[10] Glosten, L., Jagannathan, R. and Runkle, D. (1993) On the Relation between the 
Expected Value and the Volatility of the Nominal Excess Returns on Stocks. Journal 
of Finance, 48, 1779-1791. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x 

[11] Ding, Z., Engle, R. and Granger, C. (1993) Long Memory Properties of Stock Mar-
ket Returns and a New Model. Journal of Empirical Finance, 1, 83-106.  
https://doi.org/10.1016/0927-5398(93)90006-D 

[12] Bollerslev, T. (1987) A Conditionally Heteroscedastic Time Series Model for Specu- 
lative Prices and Rates of Return. The Review of Economics and Statistics, 69, 542- 
547. https://doi.org/10.2307/1925546 

[13] Baillie, R. and Bollerslev, T. (1989) Common Stochastic Trends in a System of Ex-
change Rates. Journal of Monetary Economics, 44, 167-181. 

[14] Liu, S. and Brorsen, B. (1995) Maximum Likelihood Estimation of a GARCH-Stable 
Model. Journal of Applied Econometrics, 10, 273-285.  
https://doi.org/10.1002/jae.3950100305 

[15] Fernandez, C. and Steel, M. (1998) On Bayesian Modeling of Fat Tails and Skew-
ness. Journal of the American Statistical Association, 93, 359-371.  
https://doi.org/10.1080/01621459.1998.10474117 

[16] Ahmed, A.E.M. and Suliman, S.Z. (2011) Modeling Stock Market Volatility Using 
GARCH Models Evidence from Sudan. International Journal of Business and Social 
Science, 2, 114-130. 

[17] Naimy, V.Y. (2013) Parameterization of GARCH (1,1) for Stock Market. American 
Journal of Mathematics and Statistics, 3, 357-361. 

[18] Shamiri, A. and Isa, Z. (2009) Modeling and Forecasting Volatility of the Malaysian 

https://doi.org/10.2307/1912773
https://doi.org/10.1017/CBO9780511841644
https://doi.org/10.1002/9780470644560
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.2307/2938260
https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
https://doi.org/10.1016/0927-5398(93)90006-D
https://doi.org/10.2307/1925546
https://doi.org/10.1002/jae.3950100305
https://doi.org/10.1080/01621459.1998.10474117


A. Maqsood et al. 
 

381 

Stock Markets. Journal of Mathematics and Statistics, 5, 234-240.  

[19] Kalu, O.E. (2010) Modeling Stock Returns Volatility in Nigeria Using GARCH 
Models. Munich Personal RePEc Archive, MPRA Paper No. 22723. 

[20] Wagala, A., Nassiuma, D., Islam, A.S. and Mwangi, J.W. (2012) Volatility Modeling 
of the Nairobi Securities Exchange Weekly Returns Using the Arch-Type Models. 
International Journal of Applied Science and Technology, 2, 165-174. 

[21] Sharma, P. and Vipul (2016) Forecasting Stock Market Volatility Using Realized 
GARCH Model: International Evidence. The Quarterly Review of Economics and 
Finance, 59, 222-230. https://doi.org/10.1016/j.qref.2015.07.005 

[22] Engle, R., Lilien, D. and Robins, R. (1987) Estimating Time Varying Risk Premia in 
the Term Structure: The ARCH-M Model. Econometrica, 55, 391-407.  
https://doi.org/10.2307/1913242 

[23] Engle, R. and Ng, V.K. (1993) Measuring and Testing the Impact of News on Vola-
tility. The Journal of Finance, 48, 1749-1778.  
https://doi.org/10.1111/j.1540-6261.1993.tb05127.x 

[24] Zakoian, J. (1994) Threshold Heteroscedastic Models. Journal of Economic Dyna- 
mics and Control, 18, 931-944. https://doi.org/10.1016/0165-1889(94)90039-6 

 
 
 

URL 

https://en.wikipedia.org/wiki/Nairobi_Securities_Exchange  
https://www.nse.co.ke 
http://www.investing.com/indices/kenya-nse-20-historical-data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact ojs@scirp.org  

https://doi.org/10.1016/j.qref.2015.07.005
https://doi.org/10.2307/1913242
https://doi.org/10.1111/j.1540-6261.1993.tb05127.x
https://doi.org/10.1016/0165-1889(94)90039-6
https://en.wikipedia.org/wiki/Nairobi_Securities_Exchange
https://www.nse.co.ke/
http://www.investing.com/indices/kenya-nse-20-historical-data
http://papersubmission.scirp.org/
mailto:ojs@scirp.org

	Modeling Stock Market Volatility Using GARCH Models: A Case Study of Nairobi Securities Exchange (NSE)
	Abstract
	Keywords
	1. Introduction
	2. Methodology of Modeling Volatility
	2.1. Symmetric GARCH Models
	2.1.1. GARCH Models
	2.1.2. GARCH-in-Mean (GARCH-M) Models

	2.2. Asymmetric GARCH Models
	2.2.1. Exponential GARCH (EGARCH) Models
	2.2.2. Threshold GARCH (TGARCH) Models
	2.2.3. Power GARCH (PGARCH) Models


	3. Modeling Volatility of Nairobi Securities Exchange
	3.1. An Overview of Nairobi Securities Exchange
	3.2. Data Description and Basic Statistics
	3.3. Analysis of NSE Return

	4. Conclusion
	Acknowledgements
	References
	URL

