

Advantage of NMR and FTIR Spectroscopy to Determine Structure Role of CeO₂ in Complicated Borosilicate Glasses: New Approach

Gomaa El-Damrawi, Abdelmeguid K. Hassan, Salma Ehmead, Amal El Shahawy

Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt Email: gomaaeldamrawi@gmail.com

How to cite this paper: El-Damrawi, G., Hassan, A.K., Ehmead, S. and El Shahawy, A. (2017) Advantage of NMR and FTIR Spectroscopy to Determine Structure Role of CeO_2 in Complicated Borosilicate Glasses: New Approach. *New Journal of Glass and Ceramics*, **7**, 22-33. https://doi.org/10.4236/njgc.2017.72003

Received: February 3, 2017 **Accepted:** April 27, 2017 **Published:** April 30, 2017

Copyright © 2017 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

Microstructure of complicated glasses in the system 30Na₂O-2Al₂O₃-25 SiO₂xCeO₂ (43-x) B₂O₃, x changes from 0.5 to 20 mol% have been extensively studied. Structural determination of glasses containing high cerium oxide content ($\geq 8 \mod \% \text{ CeO}_2$) was carried out by ¹¹B NMR and FTIR spectroscopy. On the other hand, ²⁹Si MAS NMR experiment is hardly to be applied to glasses of $CeO_2 > 8$ mol%. This is due to the paramagnetic action which is raised by cerium cations causing dilution or delaying in the resonance phenomenon. It is evidenced from NMR data that sodium oxide is high enough to modify the glass forming units which constitute the skeleton of the glass. Ceria is as well as silica and B₂O₃ all are acting as glass forming species. Decreasing of both fraction of boron tetrahedral units (N₄) and chemical shift of silicon nuclei (δ) confirm the role of CeO₂ as a glass former. On the other hand, fast decrease in N_4 and chemical shift of Si nuclei with further increasing CeO₂ contents (≥ 8 mol%) gives a clear evidence that the ability of cerium oxide to participate as a network former increases with increasing its content. New approach is applied to determine the fraction of CeO₄ as a glass forming units. In this approach, we use the common advantage of ¹¹B NMR and FTIR spectroscopy to obtain Ce4 fraction. The latter species cannot be determined from NMR spectroscopy, since very high relaxation time and magnetization of ceria cause intensive spectral broadening which prevent resonance spectra to be appeared.

Keywords

NMR Spectroscpy, Cerium Oxide, New Approach, Glasses

1. Introduction

It was reported previously [1] [2] [3] that some types of borosilicate glasses

(BSG) have an interested academic and scientific priority as well as technical applications. Growing achievement in field microelectronics technology requires new types of glasses which may be used as sealants, particularly, for molten carbonate fuel cells (MCFC) [3] [4]. Specific types of borosilicate glasses have long been the subject of structural studies [2] [5] [6] [7]. This is because of their interest in both technical and academicals considerations.

The structure of borosilicate glasses is based on the base former units which are the main constituents of the glass network. These units are designed as, Q^n in silicate [SiO₄] and N₄ or B₄ in borate containing [BO₃] and [BO₄] structural species. The [BO₃] species would be formed in both symmetric and asymmetric configurations. While [BO₄] units are formed in the symmetric tetrahedral coordination. As a result of mixing between borate and silicate matrices, the oxygen atoms can be bonded to boron and silicon or in some cases to silicon atoms or boron only, and have a Na⁺ and/or Ce²⁺ as charge compensators. The distribution of the borate and silicate structural units depends on the ratios of Na₂O/ B₂O₃ and SiO₂/B₂O₃ [2] [5] [6] which are designed as R and K structural factor. For all K values, N₄ increases up to a maximum in between 0.5 and 0.75 for R = 1, and the value of this maximum increases with increasing K values. At specific value of K, the proportion of N₄ slowly decreases with increasing R values.

In order to test the possible quantitative use of NMR and FTIR spectroscopy, glasses of two individual composition regimes have been prepared and measured. One contains an extremely low concentration of CeO_2 and the other enriched with it. The first region contains a limited concentration from CeO_2 as a paramagnetic material. In such a case, ²⁹Si NMR study can easily be applied to obtain Qⁿ values of different borosilicate glasses. On the other hand, the second type of borosilicate glasses contains further high level from CeO_2 (≥ 8 mol) which limit the advantage of ²⁹Si NMR measurements to be used. This is because the high spins magnetic moment of magnetic cations such as cerium and iron produces sufficient broadening of Si NMR lines [2] [8]. As a result, different contributions cannot be resolved and broader non featured and unobservable spectra can be considered.

¹¹B and FTIR spectroscopy are not affected by adding even more concentration from paramagnetic species from CeO₂. Therefore, these tools would be simply applied to obtain complementary data. It can be used as a quantitative tool applied to determine structural fractions, such as N₄ in borate network. In this study, ¹¹B NMR & FTIR spectroscopy can be applied for all glass compositions while ²⁹MAS NMR technique is limited to low CeO₂ concentration (8 mol%).

2. Experimental

2.1. Sample Preparation

The glasses were prepared from reagent grade SiO_2 , H_3BO_3 , Na_2CO_3 , Al_2O_3 and CeO_2 The melting process was carried out using alumina crucibles at a temperature ranging from 1250°C to 1520°C depending on composition. After swirling

the melt several times to ensure good homogeneity and air bubble free, the melt was quenching over a stainless steel plate and pressed to obtain the desired shape.

2.2. Nuclear Magnetic Resonance

All NMR measurement have been carried out on glass sample in form of powder. The measurements were carried out via JEOL GSX-500 high-resolution solid-state MAS NMR spectrometer (Mansoura University-EGYPT) in a magnetic field of 11.75 T. A specific frequency of 99.3 MHz is applied to record ²⁹Si MAS NMR spectra. A spinning frequency of 6 kHz is applied to a cylindrical zirconia sample holder to rotated at a speed depends on the type of the measured nuclei. The Signal of pulse length of 2.62 µs and a recycle delay of 30 s is applied to record ²⁹Si NMR signal. Around 1000 - 2000 scans were accumulated to get good spectrum. ¹¹B MAS NMR spectra were recorded at a frequency of 160.4 MHz and spinning rate of 15 KHz. The glass samples were measured with a single pulse length of 0.5 - 1.0 ms and a pulse delay of 2.5 s, and an accumulation of 100 - 200 scans. ²⁷Al Mas NMR spectra were recorded at a frequency of 130.3 MHz and spinning rate of 6 KHz.

2.3. FTIR Measurements

Fourier transform infrared absorption signals of the studied glasses were measured at room temperature in the wavelength range 4000 - 400 cm⁻¹ using a computerized recording FTIR spectrometer (Mattson 5000, USA). Fine powdered samples were mixed with KBr in the ratio 1:100 for quantitative analysis and the weighed mixtures were subjected to a load of 5 t/cm^2 in an evocable *i.e.* to produce clear homogenous discs. Then, the IR absorption spectra were immediately measured after preparing the discs to avoid moisture attack.

3. Results and Discussion

The studied borosilicate glasses are investigated by ²³Na, ²⁹Si, ²⁷Al and ¹¹B NMR to offer deeper insight into the structure of a given glass. The fraction of bridging (BO) and nonbridging oxygen atoms (NBO) as a consequence can simply be determined. The NMR results also make a distinction for three-fold coordinated boron B3 between symmetric (B3 with 3BO or 3NBO) and asymmetric (B3 with one or two NBOs) boron, respectively B3s and B3a.

The structural features of modified borosilicate' glasses have been shown to depend on the field strength (i.e. charge/radius) of the cation introduced. It is evidenced from NMR investigations that increasing CeO₂/Na₂O molar ratio will result in promotion the capacity of bonds between different forming species in the glass matrix. This is appeared from a continues decrease in both NBO and N₄ fraction species. These features are correlated to the higher field strength of the Ce²⁺ cation as compared to Na⁺ one. NBOs are preferentially associated with the higher field strength cation Ce²⁺. which results in reducing its content in the investigated glasses.

3.1. Cerium Free Borosilicate Glass

²³Na, ²⁷Al, ¹¹B and ²⁹Si MAS NMR

NMR spectroscopy of sodium in glasses can be considered as a powerful measuring tool to follow the level of precipitation, crystallization and verification of structural species in glass matrix. For example, **Figure 1(a)** presents ²³Na NMR spectra corresponding to Na₂O distribution as a modifier in glass matrix, since Na₂O is participated between the different species which forming the glass network. The feature of appeared spectrum is clearly differed from that of spectrum (b), leading to formation of additional structural groups in glass network. Presence of weak peak at 2 ppm is considered to be due to accumulation and precipitation of even little concentration from modifier cations in glass phase to form some types of clusters. This consideration is previously reported, since Na₂SiO₃ crystalline phase is structurally identified in ternary alkali silicate glasses by different techniques [2] [9] [10] [11]. The broadening of spectra is considered as good evidence for incorporation of sodium in the network as a glass modifier [2] [6].

²⁷Al NMR spectrum presented in **Figure 2** showed that Al_2O_3 inters the glass in tetrahedral configuration with oxygen atoms as a first neighbor. The chemical shift of the ²⁷Al spectrum is 59.6 ppm which is referred to AlO_4 species as glass forming units. The well formed AlO_4 units aren't looking as isolated but it was linked with SiO₄ groups and therefore, Al-O-Si mixed bridges are the product [2] [5].

Figure 1. ²³Na NMR spectra of borosilicate glass. (a) for glass containing clustered Na atoms, (b) represent Na as a modifier only.

Figure 3 is ²⁹Si NMR spectrum of borosilicate glass free from CeO₂. The chemical shift (σ) of base glass is listed at -86.6 ppm and is related to Q² species [2] [5] [6]. This leads that Na₂O as modifier oxide is consumed to break two bridging bond as an average per each tetrahedral SiO₄ unit. Some of tetrahedral aluminum may shield silicon nuclei through forming Si-O-Al bonds. Then the chemical shift of (-86.6, ppm) would be related to Q² species or Q₃⁴ which means the 3 from oxygen atoms around the silicon are NB type, one connected to Al atom via BO.

Figure 4 presents ¹¹B NMR spectrum of cerium free borosilicate glass. The

Figure 2. ²⁷Al NMR spectrum of cerium free borosilicate glasses.

Figure 3. ²⁹Si MAS NMR spectrum of cerium free glass.

Figure 4. ¹¹B NMR spectrum of borosilicate glass.

chemical shift (σ) of the main signal is appeared at 0 ppm and the broad signal is appeared between 5 - 22 ppm which is assigned to both symmetric and asymmetric BO₃ species [11]. The determined value of fraction of transformed borons (N₄) is equal to 0.64 which means that 64% from total boron is found in tetrahedral configuration with oxygen atoms.

3.2. Cerium Containing Borosilicate Glasses

¹¹B and ²⁹Si NMR Results

Figure 5 showed ²⁹Si NMR spectra for two glasses containing different concentration from CeO₂ (3 and 6 mol%). The chemical shift of glass containing 6 mol% CeO₂ is lower (-92.4 ppm) than that of glass containing 3 mol%. (-87 ppm). The difference between the two values of chemical shift is extremely high (6 ppm) which confirm the effective role of cerium in changing the network structure even upon a small addition. In terms of chemical shift consideration, we conclude that CeO₂ plays a role of strong glass former, since more shielded silicate units are formed upon CeO₂ addition. In such situation Q³ species are the more formed unit. As a consequence, tetrahedral silicate units containing only one non bridging oxygen atom are the main product in sample containing 6 mol% CeO₂.

The experimental ¹¹B MAS NMR spectra for glasses involving different concentration from CeO₂ are shown in **Figure 6**. The lowest spectrum is related to sodium borosilicate glass (free from CeO₂). NMR spectra for glasses of higher CeO₂ concentrations are also presented in the same figure. It can be seen from this figure that there is a remarkable changes in the spectral features upon increasing CeO₂ contents. Increasing CeO₂ at expense of B₂O₃ is noticed to have no remarked effect on the chemical shifts (σ) of tetrahedral boron (BO₄), since (σ) is

Figure 5. (a) and (b) NMR spectrium of glass containing 3 and 6 mol% CeO₂, respectively.

still fixed around 0 ppm for all investigated samples. But the fraction of boron tetrahedral units (N_4) is only affected, since it changed from 0.63 to 0.32 upon addition of 20 mol% CeO₂, See **Figure 7**. This means that substitution of B_2O_3 with CeO₂ should result in decreasing the concentration of BO₄ units in the borate network through lowering transformation of BO₃ triangle units to BO₄ groups. It can be seen from **Figure 7** that the relative area characterizing BO₃ units increases with increasing CeO₂ contents and reverse behavior is shown indicating decreasing BO₄ concentration. This means that portion of Na₂O which is responsible for boron transformation is also decreased. This may because the major part of the cerium inters as a glass former. As a result, most of modifier would be firstly consumed to form CeO₄ groups and the rest can be distributed between the borate and silicate network. Therefore, the fraction of tetrahedral boron N₄ is hardly decreased with increasing CeO₂ content network. CeO₂ is therefore

Figure 6. ¹¹B NMR spectra of selected composition of modified borosilicate glasses containing CeO₂.

Figure 7. Fraction of boron tetrahedral as a function of CeO₂ concentration.

played the role of glass former, since it consumes some of Na_2O as a modifier to build CeO_4 groups. Formation of the latter groups is expected to grow at expense of both BO_4 and NBO units which may result in reducing the concentration of fraction of tetrahedral boron N_4 with increasing CeO_2 concentration. In comparison, glass of higher CeO_2 content has lower fraction of BO₄ than that of cerium free glass. Generally, N₄ showed abrupt decreasing trend upon increasing CeO₂ concentrations, Figure 7.

All NMR spectra are analyzed to obtain a quantitated values representing BO_4 and BO_3 groups. The relative area representing each type (BO_4 and BO_3) has been determined and .presented graphically by **Figure 8** Reverse behavior is shown between BO_4 and BO_3 concentration with increasing CeO_2 contents. This behavior is closely matches with that presented by **Figure 7**. Both figures showed a reduction in N4 concentration. In the same time the area representing BO_3 groups is increased with increasing CeO_2 concentration. These changes support that the concentration of Na_2O which required to modify borate network is deeply reduced upon increasing CeO_2 concentration. As a result, concentration of well transformed BO_3 to BO_4 is also decreased which in turns result in decreasing N_4 .

3.3. FTIR Spectroscopy

Figure 9 showed FTIR absorption spectra of boroesilicate glasses containing different concentrations from CeO₂. It is hardly to extract specific information refered to each element shared in performing the spectra. This is because of great overlap between mixed vibration modes of Si-O, B-O, Ce-O which may be hardly to be separated. Therfore, for example, we take the advantage of ¹¹B NMR spectrocopy in correlation to FTIR [11] [12] [13] [14] to get complete information about strucural role of Ce nuclei which cannot measured by NMR. In this respect, we analyzed FTIR spectra and dtermine the fraction of all foure coordinated species, which is termed B_4 , since

$$\mathbf{B}_4 = \left(\mathbf{BO}_4 + \mathbf{CeO}_4\right) / \left(\mathbf{BO}_4 + \mathbf{CeO}_4 + \mathbf{BO}_3\right) \tag{1}$$

Figure 8. Change of relative areas of both BO_3 and BO_4 units with CeO_2 concentration.

Figure 9. FTIR spectra of borosilicate glasses containing different CeO_2 concentrations.

From the above equation, the fraction of both boron and ceium terahedral units can be detrmined, since $(BO_4 + CeO_4)$ is represented by the spectral area which is resolved between 800 - 1200 cm⁻¹. By using the advantage of ¹¹B NMR spectroscopy, the fraction o f boron in terahedral coordination

$$N_4 = (BO_4/BO_4 + BO_3)$$
⁽²⁾

can be simply drmined. Subtracting the numercal data detrmined from Equation (2) from that of Equation (1), the concentation or fraction of CeO_2 as a former CeO_4 units can be simply obtained.

(

$$CeO_4 = B_4 - N_4 \tag{3}$$

Figure 10 represented B_4 and N_4 fraction detrmined from equations1 and 2 respectively. The difference between the B_4 and N_4 is sined by Ce₄ (CeO₄) represented by the graph of **Figure 11**. It can be shown from this figure that concentration of CeO₄ as a glass former is increased with increasing CeO₂ content.

4. Conclusion

Structural role of cerium is determined in borosilicate glasses by different modern techniques. Cerium inters the network of the investigated glasses as a strong network former. Increasing CeO_2 concentrations result in decreasing both N_4 and NBO in the whole glass network. New approach has been applied to determine

Figure 10. Change of both N₄ and B₄ fraction with CeO₂ concentration.

Figure 11. Change of fraction of ceria (Ce₄) = (B₄ – N4) with increasing ceria contents.

CeO₄ fraction which can not be determined by NMR spectroscopy.

References

- Schaeffer, H.A. and Langfeld, R. (2014) Werkstoff Glas-Alter Werkstoff mit großer [1] Zukunft Reihe Technik im Fokus. Springer Verlag, Heidelberg.
- [2] El-Damraei, G., Hassan, A.K., Ramadan, R. and El-Jadal, S. (2016) Nuclear Magnetic Resonance and FTIR Structural Studies on Borosilicate Glasses Containing Iron Oxide. New Journal of Glass and Ceramics, 6, 47-56. https://doi.org/10.4236/njgc.2016.64006
- [3] Pascual, M.J., Duran, A. and Pascual, L. (2002) Sintering Process of Glasses in the System Na₂O-B₂O₃-SiO₂. Journal of Non-Crystalline Solids, 306, 58.
- Schaeffer, H.A. Langfeld, R. and Benz-Zauner, M., Eds. (2012) Werkstoff Glas. [4] Deutsches Museum Verlag, München.
- El-Damrawi, G., Müller-Warmuth, W., Doweida, H. and Gohar, I.A. (1993) ¹¹B, ²⁹Si [5] and ²⁷Al Nuclear Magnetic Resonance Studies of Na₂O-Al₂O₃-B₂O₃-SiO₂ Glasses. Physics and Chemistry of Glasses, 34, 52.
- El-Damrawi, G., Müller-Warmuth, W. and Doweidar, H. (1992) Structure and Heat [6]

Treatment Effects of Sodium Borosilicate Glasses as Studied by ²⁹Si and ¹¹B NMR. *Journal of Non-Crystalline Solids*, **146**, 137-144.

- [7] MacKenzie, K.J.D. and Smith, M.E. (2002) Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials. Pergaman Materials Series 4, Pergamon, 218.
- [8] Muñoz, F., Montagne, L. and Delevoye, L. (2006) Phosphate Speciation in Sodium Borosilicate Glasses Studied by Nuclear Magnetic. *Journal of Non-Crystalline Solids*, 352, 2958-2968.
- [9] El Damrawi, G., Hassan, A.K., El-Gadal, S. (2017) Morphological and Structural Investigations on Iron Borosilicate Glasses. *New Journal of Glass and Ceramics*, in press.
- [10] El Damrawi, G., Doweidar, H. and Kamal, H. (2013) Structure and Crystallization Behavior of Silicate-Based Bioactive Glasses. *Australian Journal of Basic and Applied Science*, 7, 573-582.
- [11] El-Damrawi, G., Gharghar, F., Ramadan, R. and Aboelez, M (2016) ¹¹B NMR Spectroscopy of Lead Borate Glasses: Additive Effect of Cerium Oxide. *New Journal of Glass and Ceramics*, 6, 57-63.
- [12] El Damrawi, G., Hassan, A.K., Kamal, H., Aboelez, M. and Labeeb, S. (2016) Structural Investigations on Na₂O-CaO-V₂O₅-SiO₂ Bioglass Ceramics. *British Journal of Applied Science & Technology*, 16, 1-9. <u>https://doi.org/10.9734/BJAST/2016/26683</u>
- [13] Magdas, D.A., Cozar, O., Chis, V., Ardelean, I. and Vedeanuc, N. (2008) The Structural Dual Role of Fe₂O₃ in Some Lead-Phosphate Glasses. *Vibrational Spectroscopy*, 48, 251-254.
- [14] Affatigato, M., Feller, S.A., Howes, A.P. and Scales, C.R. (2008) Quantitative Measurement of Q3 Species in Silicate and Borosilicate Glasses Using Raman Spectroscopy. *Journal of Non-Crystalline Solids*, **354**, 1936-1942.

🗱 Scientific Research Publishing

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc. A wide selection of journals (inclusive of 9 subjects, more than 200 journals) Providing 24-hour high-quality service User-friendly online submission system Fair and swift peer-review system Efficient typesetting and proofreading procedure Display of the result of downloads and visits, as well as the number of cited articles Maximum dissemination of your research work

Submit your manuscript at: <u>http://papersubmission.scirp.org/</u> Or contact <u>njgc@scirp.org</u>