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Abstract

There are two folds in this article. One fold is to characterize the Besov spaces
of para-accretive type Blf’ S , which reduces to the classical Besov spaces when
the para-accretive function is constant, by using a discrete Calderdén-type re-
producing formula and Plancherel-Polya-type inequality associated to a pa-
ra-accretive function b in R". The other is to show that a generalized sin-
gular integral operator T with M,TM, e WBP extends to be bounded
n
Nte nta+e
and 0<Q<oo,where & isthe regularity exponent of the kernel of T .

from Blog to BSS if To=Tb=0 for max{ }< p <o
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1. Introduction

Since Calderén and Zygmund developed the theory of singular integral opera-
tors in the fifties in last century, there have been lots of eagerness to generalize
the theory in various ways. One kind of interest is to consider the boundedness
of such operators on Hardy spaces, Triebel-Lizorkin spaces or Besov spaces (cf.
[1]-[13]). The other interests include considering non-convolution operators
such as the Calderén commutators (e.g. the Tl and Tb theorems [14] [15])
or investigating operator-valued kernels (cf. [16] [17] [18]).

The remarkable T1 theorem given by David and Journé [14] provides a
general criterion for the L*-boundedness of these generalized singular integral
operators. Frazier, Torres, and Weiss [4] considered the T1 theorem on
Triebel-Lizorkin spaces F.p“ @, which include the classical L° spaces for
HP 0<p<1l, under the hypothesis

l<p<o and Hardy spaces for
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Tx” =T'x” =0 for a certain condition on y. Afterward of of authors of the
current paper extended the boundedness of singular integral operators acting on
Ff’q to more relaxed restriction on TX’ and T'X”, see [12] [13] for details.
The Tb theorem for spaces of homogeneous type introduced by Coifman
and Weiss was proved in [15]. If function 1 in the T1 theorem is replaced by an
accretive function, a bounded complex-valued function b satisfying
0< & <Reb(x) almost everywhere, McIntosh and Meyer [10] showed the L2
boundedness of the Cauchy integral on all Lipschitz curves. David, Journé, and
Semmes [15] gave more general conditions on L" functions, therefore one said
para-accretive functions, and proved a new Tb theorem by substituting
function 1 for para-accretive functions. It was also shown that if Tb theorem
holds for a bounded function b, then b is necessarily para-accretive in [15].
In 2009, Lin and Wang [8] used a discrete Calderon-type reproducing formula
and Plancherel-Poélya-type inequality to characterize homogeneous Triebel-
Lizorkin spaces of para-accretive type Iib‘f‘,;q . A necessary and sufficient

condition of singular integral operators which is bounded from F29 1o FX

Lp b,p >
n
<p<1 and
n+¢ n+¢

< <2 with the regularity exponent & of the kernel,

is also derived in [8]. In this article, we study the Bl0 g - Bt?g boundedness of

n n
singular integral operators for wider ranges of max ,———— < p<ow
n+e N+a+e¢

and 0<Q<o.

One begins by recalling some basic results about Calderén-Zygmund operator
theory. As usual, D, (R”) denotes the set of C” functions with compact
supportand S (R”) denotes the Schwartz class.

Definition 1.1. We say that T is a singular integral operator, denoted by
T eSIO(g), if T is a continuous linear operator from S(R”) into its dual
associated to a kernel K(x,y), a continuous function defined on
R"xR" \{X = y} , satisfying the following conditions: there exist constants
C>0 and O0<e&<1 suchthat

|K(x, y)|£C forall x=y (1)
=y
|K(x,y)—K(x',y)|£C||X_—XM forall x,x', y € R" with |x—x'|S—|X;y| )
X-y
|K(x,y)—K(x,y’)|sC||Xy_yn+g forally,y’,x e R" with |y—y'|£@ 3)

Moreover, the operator T can be represented by
(Tf,g):J'Rn K6 Y) f(y)g(x)dydx (4)
forall f,geD, (R”) with supp( f)supp(g)=2.

We say that a singular integral operator is a Calderon-Zygmund operator if it
can be extended to a bounded operator on L2 (R" ) Coifman and Meyer [19]
showed that every Calder6n-Zygmund operator is boundedon L° for 1< p <.
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Alocally integrable function defined on R" belongs to BMO if it satisfies
_ 1
||f||BMO .=sgp@fQ|f(x)— fQ|dx<oo (5)

where the supremum is taken over all cubes Q — R" whose sides are parallel to

the axes and f, = ﬁ IQ f (x)dx . Note that these cubes need not be dyadic. For
f eDC(R”), t>0 and zeR",let f7(x)=t"f((x-2z)/t).

Definition 1.2. Let T: S(Rn) > S'(R”) be a continuous linear operator.

T is called to have the weak boundedness property, denoted by T e WBP, if
for every bounded subset B of D, (Rn ) , there is a constant C >0 such that

(77 07)

forall f and g in B, zeR",and t>0.

David and Journé [14] gave a general criterion for the L? boundedness of

<Ct™ (6)

singular integral operators as follows:

Proposition 1.3 ($T1$ theorem for L?) Suppose that T € SIO(g) for some
>0 and T denotes its transpose. Then T extends to be bounded on |°
ifand only if T1e BMO, T'1e BMO, and T eWBP .

Before stating the Tb theorem of David, Journé and Semmes [15], one
recalls some definitions. Let CJ denote the space of continuous functions f

with compact support such that

1], =sp IO, )

X£Y |X— y|ﬂ

Definition 1.4. A bounded complex-valued function b defined on R" is
said to be para-accretive if there exist constants C,y >0 such that, for all cubes
Q = R", thereisasubcube Q' Q with »|Q|<|Q’| satisfying

ﬁ“@b(x)dx‘zc >0 (8)

Definition 1.5. Suppose b, and b, are bounded complex-valued functions
whose inverses are also bounded. A generalized singular integral operator is a
continuous linear operator T from bC/ into (bZCg )’ , >0, for which the
associated kernel K(x, y) satisfies inequalities (1)-(3) such that, for all f,
geC{ with supp(f)nsupp(g)=2,

(Toyf,b,0) = [ o[ 0 g ()b, (X)K (x,y)b (y) f (y)dxdy  (9)

Such an operator T is written as T e GSIO(&), where & is the regularity
exponent of K(x,y) in Definition 1.1.

Denote M, the multiplication operator by b; that is, M, f =bf . David,
Journé and Semmes [15] proved the following Tb theorem.

Proposition 1.6. (Tb theorem for L*) Suppose that b, and b, are para-
accretive functions and T e GSIO(¢). Then T extends to be bounded on *
ifand only if (1) Tb € BMO, (2) T'b, € BMO, and(3) M, TM, WBP.
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Later on Lin and Wang gave the following result. For any xeR, let [x]
denote the integer part of X and X = X—[X] .For 0<p, q<Lo,
J= n/min(l, p.q).

Proposition 1.7. ([8]) Assume that b is a para-accretive function. Let
T eGSIO(¢) and M,TM, eWBP for some &>J" . For ae(-¢¢),

n n n n )
max ,——— < pP<ow and max ,—— <0, if
N+e N+e+a N+e N+e+a
To=Tb=0, then T extends to a bounded linear operator from Ff‘;q to
“a,
Fop -

The main purpose and methods used in this paper is related to a Tb
theorem in Besov spaces of para-accretive type Bbog , which was introduced by
Han [20] for p, >1, by Deng and Yang [21] for p, <1, denoted as
b_lBg’q . Once one has an approximation to the identity, a Plancherel-Polya-type
inequality follows immediately. For the terminology used in the rest of this

section, see Section 2 for details.
Theorem 1.8 (Plancherel-Polya-type inequality) Let « e(-¢,¢),

n n
max{ ,—}< p<o and 0<q<o0. Suppose that S:{Sk}keZ is
N+te N+e+a

an approximation to the identity defined in Definition 2.1 and V = {Vk }keZ is

another approximation to the identity with the same properties as the {Sk}

Set D, =S, -S,, and E =V, -V, ,.

keZ *

Yq
ZZQKZK"’SUpZEQk |Ekbf (Z)|;(Qk Hq} is finite
p

FREL
} (10)
p

q)¥e
} is finite
p

a) For all f e(bM(W))r, if {zk

iz

b) For all f e(M('B’”)’x if {zkHszzkaSUpzer|Ekf(Z)|Zok
q

then
Yq
{Z } (11)
k p

Now it is ready to define a class of the homogeneous Besov spaces associated

then

ZZk“sup|Ekbf (z)| o,
Q 2eQ

FREL
} ~ {ZHZW inf [D,bf (2)] 74,
b K Qk 2eQy

> 2k sup|Ek f (z)|;(Qk
Q« 2eQk

REA
} ~ {ZHsza inf D f(2)] 26,
p k|| Qc 2t

to para-accretive functions.

Definition 1.9. Let S={S,} _ be an approximation to the identity defined

keZ
in Definition 2.1 and set D, =S, —S,; for keZ as before. For ae(-¢,¢),

n n
max ,——<p<o,and 0<(q<oo, the homogeneous Besov spaces
N+e N+a+e¢

of para-accretive type B{f S is the collection of f e (b M) )’ such that

y
D, bf (x)||f:)} o (12)

_ ka
Iflgge -{Z2
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From Theorem 1.8, one can check that Definition 1.9 is independent of
choices of approximations to the identity. As an application, one has the follow-
ing.

Theorem 1.10. (Reduced 7b theorem for Besov spaces of para-accretive
type) Assume that b is a para-accretive function. Let T e GSIO(¢) and

M,TM, eWBP forsome &>J".For ae(-¢¢),

max{ ,—}< p<owo and 0<q<oo,if To=T'b=0 then T
Nnte N+a+e

extended to a bounded linear operator from Bf’ o BS’ o

The proof of this main result is based on the discrete Calderéon-type reproduc-
ing formula [5], a characterization of Besov spaces Bg’ ’;‘, and a Plancherel-
Polya-type inequality.

This paper is organized as follows. In Section 2, one gives some preliminaries.

Then one states and proves a Plancherel-Polya-type inequality in Section 3. Then
one uses a Plancherel-Pélya-type inequality to show norm equivalence between
Besov space Bf ‘f and its corresponding sequence space b;"q in Section 4.
Finally one proves reduced Tb theorem for Besov spaces of para-accretive type
in Section 5. Through the paper, one uses Q to denote a dyadic cube in R",
j/Ak denotes the minimum of j and k and uses C to denote a positive
constant independent of the main variables, which may vary from line to line.
Also A= B means that there exist two positive constants ¢, and C, so that
CCA<B<C,A.

2. Preliminaries

Recall the definition of approximation to the identity associated to a para-
accretive function and a related Calderén reproducing formula generated by
such an approximation to the identity, and start with “test functions” given by
Han [20]. Fix two exponents 0< £ <1 and y>0. Suppose that b is a para-
accretive function. A function f defined on R" is said to be a fest function
oftype (B,y,b) centeredat x, e R" withwidth d >0 if

d}/

f(x)sC——— (13)
| ( )| (d+|x—x0|)

|x=x/| J 4 d]x—
f(x)—f(x)<C for |x—Xx|<——— (14)
| ( ) ( )| (d+|x_xo| d+|X— 0| n+;/ | | 2

[0 f(X)b(x)dx =0 (15)

Denote by M) (X),d) the collection of all test functions of type
(B.7.b) centered at x, € R" with width d >0. For f eM(ﬂ’y’b)(Xo,d) , the
normof f in M7? (X ,d) is defined by

[ £l a) = inf {C :(13) and (14) hold } (16)

We denote M(ﬂ’y‘b)(o,]_) simply by M7,
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It is clear that AM""7®) is a Banach space under the norm || f "M(ﬁ,;/,b) . Write
bMUP7P) = { f|f =bg for some g e M(ﬁ‘“’)} (17)

If febM”™® and f =bg for geM(ﬂ’y’b), then the norm of f is

defined by ”f"bM(ﬂ,y,b) ::"g"M(ﬂ,y,b). As usual, one uses (M(""'b)), and
(bM(”'V'b)), to denote the dual spaces of M7 and bM”7®) | respectively.

Use (h,f) to denote the natural pairing of elements he(./\/l(/j"'b))’ and

fe MP7) 1tis easy to check that for any x, e R" and d >0,

MP70) (Xo,d): MPTE) yith equivalent norms. Thus, given he (M(ﬂ’y'b)),
(h,f) is well defined for all fe./\/l(ﬂ'y’b)(xo,d) with any x, eR" and
d>0.

In order to state the Calderén reproducing formula, one also needs an
approximation to the identity (cf. [7] [15] [20]).

Definition 2.1. Let b be a para-accretive function. A sequence of linear
operators {Sk}kEZ is called an approximation to the identity associated to b
if the kernels S, (x,y) of S, are functions from R"xR" into C such that
there exist constant C and some 0<e¢ <1 satisfying, for all keZ and all
X X,y,and y' eR",

2"
D (S (xy)sC—rrm-—rrr,
| k(X y)| (2—k +|X—y|)n+é

2) |Sk(><,y)—sk(x/,y)|£c[ Ix—x| ]( ks

2% +|x=y|) (2 +|x—y|)w '

for |X—X'| S%(Z_k +|X— y|),

3) [S (X, y)-S, (x.Y)|< C(

),
||:Sk (X, y)_ S (X’ y’):| _|:Sk (X” y)_ Sk (X', y')]

4 _y' ¢ v ¢ —ke
ol (e
27 +x-y| ) (2% +|x-y] (2 k+|X_y)

for |x—x’|s%(2"‘+|x—y|) and |y—y’|s%(2‘k+|x—y|),

ly-v J ok
27 +|x~y| (2’k +|x— y|)n+g

for |y—y'|£%(2’k +|x—y

5) .[]R" Sc(xy)b(y)dy=1 forall keZ and xeR",

6) J.]R" Sy (%, y)b(x)dx=1 forall keZ and yeR".

The following discrete Calderén reproducing formulae were given in [5].
Proposition 2.2. Suppose that {S,} is an approximation to the identity

defined in Definition 2.1. Set D, =S, =S, ;. Then there exists a family of
operators {D,} with kernel D, (x,y) satistying, for 0<¢&' <&,

%%
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27k£'

Dxy)|sC (18)
(2’k+|x—y|>
B.(xy)-B (e <] 2 J 2
2" +|x-y| (2’k+|x—y|) (19)
for |y—y’|§(2’k+|x—y| /2
[ D(xy)b(y)dy=0 forall keZ and xeR" (20)
RnDk(x,y)b(x)dx:O forall keZ and yeZ" (21)
such that,
()= ZE 0y, )[,b(x) D (y.x)b(y)dy forall (M) (@)
€Z Q
and

f(x)=zk:§Dkbf(yQ)quk(y,x)b(y)dy forall te(bM”)  (23)

where Q are all dyadic cubes with the side length 27" for some fixed
positive large integer N and Yo is any fixed pointin Q.

Note that f e(b/\/l(/””b))’ if and only if bf e(/\/l(”’“’) )' or equivalently,

fe (M(ﬂ‘y'b) ), ifand only if b'f e (M(/’x%b) )"

3. Plancherel-Polya-Type Inequalities

The classical Plancherel-Pélya inequality has a long history and plays a central
role in the theory of function spaces. Roughly speaking, if a tempered
distribution f in R", whose Fourier transform has compact support, then, by
the Paley-Wiener theorem, it is an analytic function, or more precisely, entire
analytic function of exponential type. The Plancherel-Pélya inequality concludes
that if {x } is an appropriate set of points in R", e.g,, lattice points, where the
length of the mesh is sufficiently small, then

w Yp
(S I, o

for all 0< p<o with a modification if p=o. The Fourier transform is the
basic tool to prove such an inequality. See [22] for more details.

For any cube Q and A4>0, one denotes by AQ the cube concentric with
Q whose each edge is A times as long. A generalized Plancherel-Polya-type
inequality for Triebel-Lizorkin spaces was given in [8]. In this section, one
proves the following Plancherel-Pdlya-type inequalities in Besov sense.

Proof of Theorem 1.8. By Proposition 2.2, f can be written as

f(x)= Zk“; D, bf (ka )J‘Qka (y,x)b(y)dy (25)

where 'y, isany fixed pointin Q, . To estimate
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E,bf (x) = ;Qz Dy bf (Yo, )ijEijk (y,-)(x)b(y)dy (26)

using the inequality (see [7])
Zf(jAk)g'

(2’(’“) +|x—y|)

(27)

E, (x,2)b(2)D, (y.z)dz‘ <c2li-ke

RrR" I

[E;bD, (v,7)(x)] =

n+e'

where &' and &" are close enough to ¢ and satisfy |a|<&”<é&' <&, one

obtains
|E bf (X)| < CZZ‘D bf ( ) J' Zf‘j,k‘y 2‘(]/\k)g’ |
j - K Q k ka Q (zf(il\k)_f_'x_y')mg’ y
~(ink)e’ (28)
) CZZZ?H?k\S"Z?kﬂ j : n+e' Dk bf (ka )
K Q (2*(1Ak)+|x_ka )
Thus,
2*(]‘Ak)£'

D,bf (o, )‘ Zo, (X) (29)

sup| b (2)] 4, (X) SCT T2 2
2eQ; ! K Qg (Zf(jAk)+|X_y|)

For simplicity, let
a/p ¥

p
—a/n+l/
Mf,v = ZI:ZUQJ " pSup|Ejbf (Z)|] ] (30)
il Qj 2€Qj
First one considers the case for p <1. In this case,
q
—kap o japo-|i-k|ps” o5-kpn kn 2 (rpe ke P
M, SCIDIYY Y 2 kerpiery 274 Q)2 x—— e 2 D.bf (¥g )| |Q4]
J
- a/p Yq
~(k= i) p-] K| p&" o—kn( p-1) 2 ke ka p
=C Z zzzz 2 o) lQ- (X)dXX p(n+s’) 2%° Dkbf (ka) |Qk|
o o (Zimku‘yo —Yo )
L j k
— a/p Yq
i Klpe" p 2—(j/\k)pe’
<C Z 222-( ~D)ap-[i-k|ps" 5-kn(p-1) okarp D, bf (ka )‘ |Qk|XjRn _ o dx
s o)
— a/p Yq
colglgar e zefoun ol |
J Lk Q«
because we may choose &' so that
2—(j/\k)pe’
Jur , (31)
R _(in p(n+e')
(207 +x-va
is finite. If < p, then
597
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) a/p)¥e
Dkbf(ka)‘ |Qk|} }

M (v < C {ZZ 2[—(k—j)ap—\j—k\ pe"—kn(p-1)]a/p {z okap
j ok Qk

32
) a/p ¥ (32)
SC{;{EQWP Dkbf(ka )‘ |Qk|:| }
k
Note that the last inequality is followed from
[supZ+supZJ (ke papi-Kpen(p-y] (33)
and
supZZ[ (k=j)erp-|j—k|pe"—kn(p- 11q/p <o (34)
If q> p, by Holder’s inequality, one has
(1-p/a)a/p N 5 a/p ¥
Z{Z (e Depdifperiale ”} DA {szap Db (vq, ) IQKI}
j Qk
35
. a/p ¥ (35)
_C{Zk:{;zkap Dkbf(ka )‘ |Qk|:| }
Kk
Next let us consider the case 1< p <o, by Holder’s inequality
r 0 a/p ¥
jao-li-Ke" —kn o 27(j/\k)€'
LIS IDY D) i A Db (%o, )| | Q]
Q| ok ( (ink) ‘yo ka )
i
i p/p’
o o-(ink)e"
SC Z Z 2227“7 ‘é 2—k” n+e'
G P
a/p ¥
japn—|i-kKle"n- 27(jAk)€, p
XZZZJ poli-Ke"o—kn — — (ka) |Qj|
B (2 4]y, - s
r q/p )Y
—kap o japoy-|i-Kle" 5—kn 27(jAk)£’ ko P
<CIY | IY Y 2 kerpiarplizkier b, —2P|D,bf (yo, )| [Q)]
L ]
- a/p Yq
(k=) p-] i~Kle" in 2‘(]Ak)s’ v P
<CiY|YYY2 x2 (2Dt (v, )|) Il
Qi ko ( (ink) ‘YQ, Yo, ‘)
~ ) a/p Yq
—(k=j)ap-|j-kle" o
SC{Z Zklz[( iap-|i-K ]Z(zk Dkbf(ka )‘) |Qk|:| }
i L Q

598 ‘0’ Scientific Research Publishing
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For (< p, one uses triangular inequality and (34) again to yield

o . a/p)¥e
M < C {2;2[(kj)aplkc Ja/p |:Q22kap |Qk @ }
j k

Dy bf (ka )

a/p ) ¥e (9
sc{;{gzk“p D,bf (yo, )‘pIle} }
)
For q> p, by Holder’s inequality and (33) again, one obtains
) ) (1-p/a)a/p _ » a/p)Ya
My Sc{Z{Zz[‘“‘”“p-J-“"J“/p} xy 2Lt like] {sz“p D,bf (yq, )\pIQkI} }
o k " (37)

Dk bf ( ka )

) a/p )Y
ol }

Since y, can be replaced by any point in Q,, it follows that (35) still holds
for 1< <. With a modification for q =0, (35) holds and therefore

PREL
> <C z”zzka inf [D,bf (2)| x6,
P A K || O 2eQc

for ae(—s,g), maX{ n n

sc{;{ézk“

q

q
} (38)
P

Conversely, if one interchanges the roles of S and V in the proof above,

> 2k sup|Ekbf (Z)|7fok
Q¢ 2eQq

,———<p<xo and 0<Qq<o.
N+e N+e+a

one immediately has

iz

q
} (39)
p
Hence

PREL
k P

and therefore the proof of part (a) is finished. The proof of part (b) is the same

q

> 2k sup|Dkbf (Z)|Zok
Qc 2eQq

"REL
<C ZHZ?_“ inf [E,bf (2)| g,
A k|| zeQ

> ok sup|Ekbf (z)| o,
Q« 2eQ

FREL
} ~ {z“zw inf [Dbf (2)] 14,
0 K Qk zeQy

as the one of part (a).

4. Besov Spaces of Para-Accretive Type

Recall a definition and the duals of Besov sequence spaces b;’q introduced by
Frazier and Jawerth [23] [24]. For ¢ €eR and 0< p,q <o, the space b;’q

consists of all sequences S= {SQ} satisfying

a/p\Ya
Yo X (s <o if 0<p<w
keZ [(Q)227k
”5"5qu = T (41)
Z Sgp |Q|—a/n—l/2|SQ| <o |f p:OO
keZ [(Q):sz

%%
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Proposition 4.1. ([25] [26]) Let ¢ eR, 1< p<ow, 0<q< . Then
(bg?) ~bye (42)

with the pairing (s,t)= zQth; where §= {SQ} c bgq and t= {tQ} c bgq As
usual, when 0<q<1, ' interpretsas +o0.

Next one recalls the definition of almost diagonality and the boundedness of

almost diagonal matrices acting on Besov sequence spaces.
Definition 4.2. For ¢ €R and 0<p,q<o,let J=n/p+max{0,n—n/p}.

one says that a matrix A:{aop} is (a,p) almost diagonal, denoted by
QP

Aead], if there exist £>0 and C>0 such that, for all dyadic cubes Q
and P,

QT x, -, | amyf[apq?”“
<C 1 — | —= 43
{am} “max (1(Q).(P) “”{am Q) )
Proposition 4.3. ([27] [28]) Let R, 0<p,q<o. If A€ adg, then A

is bounded on b;’q .
Theorem 4.4. Suppose that S = {Sk}kEZ

defined in Definition 2.1 and set D, =S, —S, , for keZ. For ae(-¢,¢),

a

QP

Is an approximation to the identity

n n
max , <p<ow,and 0<q<oo,
Nn+e N+a+e

2
I#legis = {Qcf 0ot (3o, ). )
In particular, the definition of Bg’ S (S) is independent of the choice of
approximations to the identity.
Proof. Let S= {Sk}keZ and V = {Vk}kEZ
defined in Definition 2.1. Set D, =S, =S, ;, and E, =V, -V, ;. One wants to

show that

[¥hgge =[ll0f bt (vo ). <[fi0f* € ()}

be approximations to the identity

(45)

” ~ ” f "B‘gg(v)
By the Plancherel-Pélya-type inequality, one has

o= (T2 o 0| {21,
- {Zk: ke [gk:jqk |D,bf (x)|° dx]q/p }Vq

. a/p)¥d
Zq (x)dx)} }

a/p)¥d
:C{ZKZDR"%(ZM |Dkbf (x)|)p Zo (x)dx} } =CH{|Qk |]/2 D, bf (ka )}

It

Y
D,bf (x)|° dx)q/p} q

D, bf (ka )

“feee(a.

Q |lpa.a
b llgg

K2
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Apply Proposition 4.3 and the Plancherel-P6lya-type inequality again to yield
H{'Qk ["* DbF (¥, )}Qk {|Q|]/2 Ebf (¥, )}

<C
q

b Q« %

Yq

Hence

" f "B&'S(s) < C" f "Bg’q(v) (46)

Conversely, if one interexchanges the roles S and V in the proof before,

then one has

" f "Bﬁ,ﬁ(w < C" f ”Bqu(s) (47)

and the proof is completed. []
Form the last theorem, the definition of homogeneous Besov spaces of
para-accretive type is independent of the choice of approximations to the

identity. For simplicity, one writes Bg S in stead of Bé’ pq ( S) in the sequel.

n n
Theorem 4.5. Suppose o e(-¢,¢), max{ : }< p<o and
N+e N+a+e
0<q<w.
ya.q -1 >a,q k-1
@1f f B, then b B and |f[y. ~[b e

b If fe Blf’s, then bf € Bl”‘pq and ||f||Bg‘q z”bf
P

B
Furthermore, if 1< p,q <o, then the dual space of Bt’f o s Bl_';q and the
dual space of B/ is B,

Proof. If f e B, by Proposition 2.2,
f(x):Zk:ZDkf(yQ)IQb(x)Dk(y,x)b(y)dy (48)
Q
or equivalently,
b (x) f(x)=>>" Dkb(bflf )(yQ )J'QDk (y,x)b(y)dy (49)
K Q

By Theorem 4.4, one gets

ot (v i, =l Lo )30 ), =l tl; 50

|t "Bfg z

L
Bb,p

%%
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The proof of case (b) is the same. To show the duality. By Propositions 2.2, if
fe Blf’[? and ge B{‘;q , then

f(x)= Db (v, I, 2o (v:x)b(y) ey (51)

0(0=X D0y, |I,b(0D; (y)b(v)ay (52
Thus

(19)- 530y, oja(y, )

k Qc J P
x<ijDk (v, X)b(y)dy,jPj b(x)D; (y, X)b(y)dy>
By the estimates for D, , it is routine to check that the matrix

{<JQk Di(y.x)b(y)dy. [, b(x)D; (v, X)b(y)dy>} (54)

is almost diagonal defined in Proposition 4.3. Thus it is bounded on b;“ v, by

ol )

(53)

Proposition 4.1. Thus

(f,0)|< CH{Dkbf (v, )}

<C|f

ja e
P by

(55)

g 9 e

where the first inequality is followed from Propositions 4.1 and 4.3, and the
second inequality is followed from Theorem 4.4. Therefore the duality follows

immediately. [

5. An Application

In this section one give a proof of reduced Tb theorem for Besov case.
Proof of Theorem 1.10. For f & B{"Y, by Theorem 4.4, one has

Y
Il <c|o” D (xg, .. (56)
By the Calderén-reproducing formula,
011 (3)- 01| 520,13 ), 202, 501
g (57)
= ZQZ D, (e, )IQjDkabDj (v.-)(x)b(y)dy
i Q
Using the estimate given in [20] Lemma 3.13
o —(kaj)e'
[DBTOD, (v, )(x) s 22— (58)
(2’("“) +x— y|)
implies
k=ile” 2 (kn e
DT (v, )| <CY Y2 _ ot (ve)| 9
H (Zi(kM)Jr‘ka ~Yo, )

<3

K2
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where ¢’ and ¢" arecloseenoughto & with O<¢g"<é'<¢.

First one considers the case for p <1. In this case,

]

sc{;[z[pk [y

Yo
|Tf

= [xfstorfownt

Q« i Qj
p /P Ya
2—(kAj)€'
x ) n+g' D] f (ij )‘
o)
Q« Qj
=C{Y| > griarghargkeiet|g [oin
k| T %9
TARA
2—(kAj)p£' . p
g w2 o (va, )| [0
(2 +‘ka ~Yo, ‘)
_cls|yyT ot s, (e
K| Tog Q™
a/p )Y
2—(kAj)p£' . p
x jap Djf(yoj)‘ |QJ|

(2—(kAj) +‘ka _ ij DP(”“')

D, (¥e, )‘p 1

a/pYa

k

<C {Z{Z; 2—(j—k)a p—|k—j| pc"+jn2jap
R

2—(kAj)pg’

(2-(kAj) +‘X— ij ‘)P(Ma’) dx

X.[R"

. a/p)¥a

K Q;j

because one mays choose &’ so that

.[R"

2—(k/\j)p£'

(2‘(kAj) +‘X— yQJ ‘)p(nw’) d

(60)

is finite. When (< p, one uses triangular inequality, and when > p, one uses

Holder’s inequality to yield

|Tf

(61)

_ ) a/pYa
Bwsc{;{zgmp Djf(ij)‘ |Qj|} } =C|f

20
Qj Bip

K2
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so T isbounded from beq to Bg’;‘ for p<1.

Now consider the case 1< p <o, by Holder’s inequality

Tt e < {2[2(222“‘ 2t
kil Q\J Qj
b a/p )Y
o-(kni)e’
x ~(kn ) n+s' (yQ] )‘ |Qk|
( ) ‘ka yQ, )
p/p’
“k=jle" 2 (kni)er
sCi¥|¥| Tyt —
e ( ! ‘yok Yo, )
a/p) Ve
ool ile” o (kni)e’ p
xZZZk polk-il o — (ij )‘ (o}
e (27 +[ye, =%,
I Z ZZZZ—Jakaapzf\k*i\S"
k| Qo J Q
alp )Y
2—(kAj)£’ ) p
x (k n+e' 21" Dj f (ij )‘ |Qk|
( & ‘ka yQ, )
<C Z 2222—(j—k)ap—\k—j\g"+jn
k| Q 1 Qj
a/p) Ve
» o (knj)e’ _ P
X2 - _ (2111 D, f (g, )‘) Q|
(27 +]ye, -3,

Yq

0 a/p
o1 ) @

Similarly to this case, when (< p, one uses triangular inequality, and when

<C Z{Zk: o-(iK)apfk=jle+jn ;(zja

i j

q>p, one uses Holder’s inequality. Thus T extends to a bounded linear
operator from beq to Bg’;4 O

It is clear that Bba y = F.b'f’,')p, and hence Hﬁb) is bounded from Blopp to BOp
if he Fb?;cp by Theorem 1.3 in [8], where Hﬁ,) is a paraproduct operator
defined by

) (£)(x) = ZZ|QK|’”2 Dbh(y, )(f.670 )] D, (2.X)b(z)dz (62)

for some fixed ® e D, (R”) satisfying jq) x)dx=1 and supp(®)c [O,l]n.
It is natural to ask what is the necessary and sufficient condition for the

boundedness of paraproduct operators acting from Bl0 S to BSS ?
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