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Abstract 
We present a brief review of the cohomological solutions of self-coupling in-
teractions of the fields in the free Yang-Mills theory. All consistent interac-
tions among the fields have been obtained using the antifield formalism 
through several order BRST deformations of the master equation. It is found 
that the coupling deformations halt exclusively at the second order, whereas 
higher order deformations are obstructed due to non-local interactions. The 
results demonstrate the BRST cohomological derivation of the interacting 
Yang-Mills theory.  
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1. Introduction 

Dirac’s pioneering approach [1] [2] [3] has been used for constrained systems in 
quantum field theory [4] [5] [6]. This approach allowed us to construct the ac-
tion in either Lagrangian or Hamiltonian forms [7] [8], while both of them are 
equivalent [9]. In this way, the Hamiltonian quantization is derived using ca-
nonical variables (coordinate and momentum) involving constrained dynamics 
[10]-[15]. Physical variables of a constrained system possess gauge invariance 
and locally independent symmetry. The gauge symmetry introduces some arbi-
trary time independent functions to the Hamilton’s equations of motion. We 
notice that all canonical variables are not independent. Therefore, some condi-
tions for canonical variables are required to be imposed, i.e., the first- and 
second-class constraints. Furthermore, the framework should be generalized to 
include both commutative (bosonic) and anticommutative (fermionic) variables 
in constrained systems. 
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To generalize constrained systems for canonical conditions and (anti-)com- 
mutative variables, Becchi, Rouet, Stora [16] [17] [18], and Tyutin [19] devel-
oped the BRST formalism to extend the gauge symmetry in terms of the BRST 
differential and co-/homological classes. The aim was to replace the original 
gauge symmetry with the BRST symmetry. Noting that the gauge symmetry can 
be constructed from a nilpotent derivation, so the gauge action is invariant un-
der a nilpotent symmetry, called the BRST symmetry. By replacing the original 
gauge symmetry with the BRST symmetry, antifield, ghosts, and antighosts are 
introduced for each gauge variable [20] [21]. It yields a generalized framework 
for solutions of the equations of motion [22] [23]. Moreover, BRST cohomology 
extended by the antifield formalism [23]-[30] allowed us to construct all consis-
tent interactions among the fields using coupling deformations of the master 
equation [31] [32]. The BRST-antifield formalism appears as efficient mathe-
matical tool to analyze the consistent interactions, and has been applied to many 
gauge models, e.g., Yang-Mills model [33], topological Yang-Mills model [34], 
5-D topological BF model [35], and 5-D dual linearized gravity coupled to topo-
logical BF model [36]. 

In this paper, we briefly review the construction of all consistent interactions 
of the free Yang-Mills theory determined from all coupling deformations of the 
master equation. We see that the resulting action presents deformed structures 
of the gauge transformation and yields a commutator for it. In Section 2, the 
BRST differential and the antifield formalism are introduced. Section 3 intro-
duces the consistent interactions among the fields. We consider the BRST 
coupling deformations of the master equations in the antifield formalism in Sec-
tion 4. In Section 5, we demonstrate its application to the massless Yang-Mills 
theory by calculating all several order deformation of the master equation. Sec-
tion 6 presents a conclusion. 

2. BRST Differential 

The gauge invariant in a phase space implies that the smooth phase space 
( )C P∞  is substituted by the smooth manifold of the constraint surface ( )C∞ Σ  

while the elements of ( )C∞ Σ  vanish due to the longitudinal exterior derivative 
on manifold Σ . The manifold Σ , which is embedded in a phase space and a set 
of vectors tangent to Σ , and is closed on it, presents the definition of the gauge 
orbits. It manifests the presentation of a nilpotent derivation s , the so-called 
BRST differential, that includes an algebra involving ( )C P∞ , where the coho-
mology of s  indicates that the gauge transformations of the constraint surface 

( )C∞ Σ  are constant along the gauge orbits (denoted by  ). 
The reduced space, by taking Σ  over gauge orbits, denote by algebra 
( )C∞ Σ  , includes all variables of the gauge invariant. However, it is not possi-

ble to construct ( )C∞ Σ   from physical observables, as one cannot solve equ-
ations defining Σ  and trace the gauge orbits  . Hence, the BRST symmetry 
should be used to reformulate the physical observables in a convenient ap-
proach. To construct the BRST differential s , two auxiliary derivations δ  and 
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γ  are introduced. The differential of the first derivation δ  is called the Kos-
zul-Tate differential that yields a resolution of the smooth manifold of the con-
straint surface ( )C∞ Σ . The second differential is called the longitudinal diffe-
rential γ  along the gauge orbits in such its zeroth cohomology group provides 
the functions on the surface Σ  being constant along the gauge orbits  . 
Hence, the BRST differential s  is decomposed into [22] [23] [27]  

,s δ γ= +                           (1) 

whose cohomology is equal to the cohomology of the longitudinal differential 
γ , while the Koszul-Tate differential δ  restricts it to the constrains surface 

( )C∞ Σ . Note that the BRST symmetry acts as a general odd derivation on the 
original fields and some auxiliary fields (antifields and ghosts), which are 
equipped for any X  and Y  with Grassmann parity Xε  and Yε :  

( ) ( ) ( ) ( ) ( )1 , Leibniz ruleYs XY X sY sX Yε= + −            (2) 

( )2 0. nilpotencys =                      (3) 

where 0Xε =  or 1 for bosonic (commutative) or fermionic (anticommutative) 
variable X , respectively. 

Any nilpotent derivation has a degree in a N -grading space denoted by  

( )deg 1.s = ±                          (4) 

The positive degree of the differential s  increases the grading while the neg-
ative degree decreases it, i.e. ( ) 1n ns X X ±⊂  depending on the degree of the dif-
ferential operator. The grading of s  is the so-called ghost number ( gh ), equal 
to one, consists of the pureghost number ( pgh ) and the antighost number 
(agh ):  

( ) ( ) ( ) ,X X X= −gh pgh agh                    (5) 

with the following property 

( ) ( ) ( ) ,XY X Y= +gh gh gh                     (6) 

where the operators pgh  and agh  stand for the pureghost and antighost 
numbers, respectively. For the Koszul-Tate differential δ  and the longitudinal 
differential γ , we get:  

( ) ( ) ( ) ( )0, 1, 1, 0,δ δ γ γ= = − = =pgh agh pgh agh          (7) 

such ( ) ( ) ( ) 1s δ γ= = =gh gh gh . The differentials δ  and γ  increase the 
ghost number by one unit. The differential δ  reduces the antighost number, 
but maintains the pureghost number, whereas the differential γ  increases the 
pureghost number, but maintains the antighost number. 

The cohomology algebra of the differential s  is ( ) Ker Im H s s s= , where 
the elements of the kernel subspace, Ker s , are closed and vanish via the diffe-
rential s :  

0, Ker ,sa a s= ∈                        (8) 

while the elements of its image subspace, Im s , are exact:  
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, Im .sb a a s= ∈                        (9) 

The cohomology algebra of s , denoted by ( )kH s  ( k  is a cohomology de-
gree), exists if its degree is positive, whereas its homology algebra, denoted by 

( )kH s , has a negative degree. The co-/homology with the grading algebra then 
reads as follows  

( ) ( ) ( )

( ) ( ) ( )

deg 1 ,

deg 1 .

k n

n

k n
n

s H s H s

s H s H s
∈

∈

= + → = ⊕

= − → = ⊕




               (10) 

If the co-/homology ( )kH s  is zero, the differential s  is called to be acyclic 
in a degree of k . 

The zeroth cohomology group of the BRST differential ( )0H s  leads to Equ-
ation (3), the essential aspect of the BRST symmetry, that implies the vanishing 
squares of its derivations δ  and γ :  

2 20, 0.δ γ= =                        (11) 

and also their anticommutation:  

0.γδ δγ+ =                          (12) 

It means that the Koszul-Tate differential δ  commutes with the longitudinal 
differential γ . 

The generator of the Koszul-Tate complex may be chosen in an equal number 
of freedom as the generator of the longitudinal exterior complex. It follows that 
they are canonically conjugate in the extended space of original and new gene-
rators of δ  and γ . This implies that the BRST transformation maintains a 
canonical transformation in the BRST complex space kx  �  through a bracket 
structure:  

[ ], , ,ksX X X x = Ω ∀ ∈  �
                  

(13) 

which is called the Poisson bracket and defined as follows:  

[ ], k k
k k

X Y X YX Y
p pq q

∂ ∂ ∂ ∂
≡ −

∂ ∂∂ ∂                   
(14) 

where kq  and kp  are positions and canonical momenta of a Hamiltonian 
system, respectively. 

Equation (13) represents the BRST symmetry in the Hamiltonian formalism. 
The choice of s  as canonical transformation manifests the BRST symmetry 
where the canonical variables remain unchanged under transformation. The fer-
mionic charge Ω  is called the BRST generator for the Hamiltonian formalism. 
Applying the Jacobi identity to the Poisson bracket and the nilpotency definition 
of the BRST differential yields:  

[ ], 0,Ω Ω =                          (15) 

which is the master equation of the BRST generator in the Hamiltonian formalism. 

3. Consistent Interactions 

To understand the consistent interactions among fields with a gauge freedom, 
we begin our study with a Lagrangian action:  



A. Danehkar 
 

372 

( )0 0 0 0 0
1 20 0d , , , , ,

k

L DS xα α α α α
µ µ ν µ µ µφ φ φ φ φ  = ∂ ∂ ∂ ∂ ∂ ∂  ∫ � �

     
(16) 

where the action 0
0
LS αφ    is local functional of the fields 0αφ  and their Lo-

rentz covariant derivatives. 
The equations of motion then read ( )0

0 0,LS xαδ δφ =  where 0
0
LS αδ δφ  is 

functional derivatives. The action 0
0
LS αφ    possesses generic free gauge sym-

metries  
00 1

1
,Zαα α

ε αδ φ ε=
                       

(17) 

The equations of motion is then determined from the action principle: 
0

0 0LS α
εδ φ  =  . 
Let consider the deformations of the action in such a way  

0 0 0 0 02
0 0 1 2 ,L L L L LS S S S Sα α α α αφ φ φ λ φ λ φ         → = + + +          �     

(18) 

that implies the deformation of gauge symmetries as  
( ) ( )

0 0 0 0 0

1 2
2

1 1 1 1 1 .Z Z Z Z Zα α α α α
α α α α αλ λ→ = + + +�               (19) 

This provides the deformed gauge transformations:  

0
10

0.
LS Zα

αα

δ
δφ

=                         (20) 

Equation (18) and Equation (19) lead to the following expression:  
( ) ( )

0 0 0
10 0 0

1 2
2 20 1 2

1 1 0.
L L LS S S Z Z Zα α α

α ααα α α

δ δ δ
λ λ λ λ

δφ δφ δφ

  
+ + + + + + =     

� �     (21) 

Hence, the deformations by their orders are as follows:  

( )

( ) ( )

0
10

00
10 0

00 0
10 0 0

0 0

1
1 0 1

1

2 1
2 0 1 2

1 1

: 0,

: 0,

: 0,

L

L L

L L L

S
Z

S SZ Z

S S SZ Z Z

α
αα

αα
α αα α

αα α
α α αα α α

δ
λ

δφ

δ δ
λ

δφ δφ

δ δ δ
λ

δφ δφ δφ


=



 + =


 + + =

� �

            (22) 

which define the deformed gauge transformations that close on-shell for the in-
teracting action, the so-called consistent interactions, while the original gauge 
transformations are reducible [28]. 

Assume that the gauge fields of consistent interactions are trivially defined to 
be the following sum:  

20 0 0 0 0 0 0 ,F Fα α α α β α βφ φ φ λ φ λ φ   → = + + +    �          (23) 

we then obtain  

( )

0 0 0 0

0 0

0

0 0 0

0 0 0

0 0

0
0 1

2 2
2 0 0

1 1 22

                             

                                 ,

L L L

L
L

L L

S S S F
S

S F

S S
F F F

α α α α

α α
α

α β α
α β α

φ φ φ λ
δ

φ λ
δφ

δ δ
λ

δφ δφ δ φ

     → = + +     

 = + 
 
 + + +  
 

�

�

    (24) 
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which does not manifest an exact interacting theory. A theory is strict if the con-
sistent deformations are merely proportional to its free theory action 0

0
LS αφ    

up to the redefinition of the gauge fields. Thus, the interaction is formulated as 
follows:  

( )( )0 0 02
0 1 2 01L L LS S Sα α αφ φ λ λ φ     → = + + +     �   

where charges k  in the k  order of the coupling constants kλ  are given by  

( )

0

0

0 0 0

0 0 0

1 1

2 2
2
2 1 1 22

,

,

F

F F F

α
α

α β α
α β α

δ
δφ

δ δ
δφ δφ δ φ

≡

≡ +

�





              

(25) 

It represents the unperturbed action by charges of the coupling constants. 

4. BRST Deformations of the Master Equation 

Let us consider the gauge transformation defined by the Equation (17). The clas-
sical fields 0αφ  possesses the ghost number zero. It implies an ghost 1αη  asso-
ciated to ghost number one, as well as the one-level ghost of ghost 2αη  have 
number two, etc., i.e.  

{ }1 , , ,kA ααη η η= �                       (26) 

which have the following ghost numbers, gh , and Grassmann parities, ε :  

( ) ( ) ( ), mod  2 .k kk kα αη ε η= =gh
               

(27) 

It also implies antifields 
0α

φ∗  and antighosts Aη
∗  of opposite Grassmann 

parity with the following ghost numbers, gh , and Grassmann parities, ε , re-
spectively:  

( ) ( ) ( ) ( )0 0
0 0

( ) 1, 1 mod  2 ,α α
α αφ φ ε φ ε φ∗ ∗= − − = +gh gh         (28) 

( ) ( ) ( ) ( )1 , 1 mod  2 .
k k

k kα αη ε η∗ ∗= − + = +gh            (29) 

The presentation of the gauge variables is therefore provided by  

{ } { }0
0

, , , ,A A
A A

α
αφ η φ η∗ ∗ ∗Φ = Φ =                 (30) 

where a set of fields AΦ  includes the original fields, the ghost, and the ghosts of 
ghosts, and A

∗Φ  includes the their corresponding antifields. 
The BRST symmetry is a canonical transformation, and defined by an anti-

bracket structure:  

( ), ,sX X S≡                         (31) 

where S  is the canonical generators, and the antibracket (see appendix 7.1) is 
defined in the space of fields AΦ  and antifields A

∗Φ  as follows [24]:  

( ), .l lr r
A A

A A

Y YX XX Y ∗ ∗

∂ ∂∂ ∂
≡ −
∂Φ ∂Φ ∂Φ ∂Φ                  

(32) 
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The Grassmann parity and ghost number of the antibracket are, respectively:  

( ) ( ), 1 mod  2 ,X YX Yε ε ε= + +                  (33) 

( ) ( ) ( ), 1.X Y X Y= + +gh gh gh                  (34) 

The antifields are now considered as mathematical tool to construct the BRST 
formalism. The solution can be interpreted as source coefficient for BRST trans-
formation, i.e., an effective action in the theory. 

The fields and antifields establish the solution ,A
AS ∗ Φ Φ   of the classical 

master equation for consistent interactions [31], 
2

0 1 2 .S S S Sλ λ= + + +�                     (35) 

Section 2 presented the master Equation (15) of the BRST generator in the 
Hamiltonian formalism. The gauge structure is now constructed through the 
solution S  of the master equation in the antifield formalism by [24] [25] [34]  

( ), 0.S S =                          (36) 

This shows the consistency of the gauge transformations. The master Equa-
tion (36) includes the closure of the gauge transformations, the higher-order 
gauge identities, and the Noether identities. The master equation maintains the 
consistent specifications on 0S  and 0

1
Zα
α . 

Substituting the definition (35) into the master Equation (36) yields  

( )2 2
0 1 2 0 1 2, 0.S S S S S Sλ λ λ λ+ + + + + + =� �

           
(37) 

We then derive  

( )
( ) ( )

0
0 0

1
0 1 1 0

: , 0,
: , , 0,

S S
S S S S

λ
λ λ λ

 =


+ =

 � �

                 

(38) 

which are simplified as follows [31] [36] [37] [38]  

( )0 0, 0,S S =                          (39) 

( )0 12 , 0,S S =                         (40) 

( ) ( )0 2 1 12 , , 0,S S S S+ =                     (41) 

( ) ( )0 3 1 2, , 0,S S S S+ =                      (42) 

( ) ( ) ( )0 4 1 3 2 22 , 2 , , 0,S S S S S S+ + =                 (43) 

( ) ( ) ( )0 5 1 4 2 3, , , 0,S S S S S S+ + =                  (44) 

�  

the so-called deformations of the master equation [31] [32]. 
The Equation (40) implies that 1S  is a cocycle for the free differential defined 

by ( )0,s S≡ ⋅ , i.e., 1S  is a coboundary, ( )1 1 0,S B S= . The Equation (39) hence 
corresponds to 2 0s = . The Equation (41) indicates that ( )1 1,S S  is trivial in 

( )1H s , and ( )0H s  is mapped trivially into ( )1H s  by the antibracket. Fur-
thermore, the higher orders ( )0H s  mapped into ( )1H s  are trivial, and pro-
vide the existence of the terms 3 4, ,S S  etc, up to an element of ( )0H s . So, the 
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k  orders kλ  freely link the interaction of an arbitrary element of ( )0H s . 
The free gauge invariant action 0

LS  and the gauge transformations can be re-
trieved from  

0 1
0 10 0 ,LS S Zα α

α αφ η∗= + +�
                   

(45) 

by setting  

0 0 , 0 .L A
AS S ∗ = Φ Φ =                      

(46) 

It provides the solution 0S  of the classical master equation for field gauge 
symmetries, 

( )0 0, 0.S S =                         (47) 

The BRST differential s  is now defined by 0S  through the antibracket, 

( )0, .sX X S≡                         (48) 

Using the definitions (48), the deformations of the master equation are re-
written as follows:  

( )
( )
( ) ( )

( ) ( )

1
1

2
1 1 2

3
1 2 3

4
1 3 2 2 4

5
1 4 2 3 5

: 2 0,

: , 2 0,

: , 0,

: 2 , , 2 0,

: , , 0,

sS

S S sS

S S sS

S S S S sS

S S S S sS

λ

λ

λ

λ

λ

=

+ =

+ =

+ + =

+ + =

� �
               

(49) 

which are the deformations of the master equation in terms of the BRST diffe-
rential s . 

5. BRST Cohomology of the Free Yang-Mills Theory 

Let us consider a set of N  potentials aAµ  described by the abelian action in 
terms of the free (massless) Lagrangian action  

0
1d , 1, , , ,
4

L a D a
aS A x F F a N Nµν

µ µν
   = − = ∈    ∫ � 

        
(50) 

where aAµ  is the abelian field potential, D  is the spacetime dimension, strictly 
2D > , since the theory has no local degree of freedom in two dimensions, and 

the abelian field strengths aFµν  is defined by  

,
aa

a a a AA
F A A

x x
µν

µν µ ν ν µ µ ν

∂∂
≡ ∂ − ∂ = −

∂ ∂                 
(51) 

in such a way  

,b
a abF k Fµν µα νβ

αβσ σ=                      (52) 

where ( )diag 1,1, ,1µασ = − �  is the ( )1, 1SO D −  invariant flat metric in 
Minkowski space with the particular hermitian representation of the Clifford al-
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gebra { }, 2µ ν µνγ γ σ= , and abk  is a given symmetric invertible matrix with 
following properties  

( ) , , , , 1, , .ab a
ab ba bc cabk k k k k a b c Nδ= = = = �

          
(53) 

The gauge transformation with the free equation of motion,  

0 0,
L

aa

S
F

A
νµ

ν
µ

δ
δ

= ∂ =
                      

(54) 

manifests an irreducible transformation by  

,a aAε µ µδ ε= ∂                         (55) 

while  

0.a a aFε µν µ ν ν µδ ε ε= ∂ ∂ − ∂ ∂ =                  (56) 

The differential operator µ∂  is determined by the structure 0
1

Zα
α  of the 

gauge transformations of an abelian algebra. The action (50) is close according 
to an abelian algebra, and invariant under the gauge transformation (55). The 
gauge invariant (55) eliminates unphysical terms, i.e. the longitudinal and tem-
poral degrees of freedom. 

The implementation of the BRST transformation in the minimal sector pro-
vides the field aAµ , its ghost aη , and their antifields aA µ∗  and aη

∗  with the 
respective Grassmann parities, antighost, pureghost, and (total) ghost numbers,  

( )
( )
( )
( )

0 1 1 0
0 1 0 2
0 0 1 0
0 1 1 2

a a
a aZ A A

Z
Z
Z
Z

µ
µ η η

ε

∗ ∗

− −

agh

pgh

gh                   

(57) 

which can schematically be illustrated:  

0  

*

11

*

2

0

1

0

a a

gh

a
a

ghgh

a
gh

A

A

δε
µ µ

µ

ε ε

ε η

ε η

=

==−

=−

= → ∂

↓ ↓
=

↓
=

↘

 

We calculate the BRST-differential s  that decomposes into the sum of two 
differentials, the Koszul-Tate differential δ  and the longitudinal differential γ  
along the gauge orbits. Both δ  and γ  are derivations, and commute with µ∂ , 
and acting on aAµ , aA µ∗ , aη , and aη

∗  via [33] [39]  

0

0

0

0 0
0

a a

L

a aa

a

a a

Z Z Z
A

S
A F

A

A

µ µ

µ νµ
ν

µ

µ
µ

δ γ
η

δ
δ

η
η

∗

∗ ∗

∂

− = −∂

−∂
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The classical master Equation (47) of the action (50) holds the minimal solu-
tion (45) in such a way  

0 0 d .L a D a
aS S A xA µ

µ µη
∗ = + ∂  ∫                   

(58) 

5.1. First-Order Deformation 

We now consider the deformed solution of the master equation for the action 
(50) smoothly in the coupling constant λ  that brings to the solution (58), while 
the coupling constant λ  vanishes. In Section 4, we noticed that the first-order 
deformation ( 1λ ) of the master equation satisfies the solution 1 0sS = , where 

1S  is bosonic (commutative) function with ghost number zero. 
Let us assume  

1 d ,DS xa= ∫                          
(59) 

where a  is a local function. Then, the first-order deformation, 1 0sS = , takes 
the local form 

( )d 0D xsa sa a a jµµδ γ= → = + = ∂∫                
(60) 

( ) ( )0, 0,a aε= =gh                      (61) 

where jµ  is a local current that manifests the non-integrated density of the 
first-order deformation corresponding to the local cohomology of s  in ghost 
number zero, ( )0a H s d∈ , where d  is the exterior spacetime differential. 

To evaluate Equation (60), we assume  

( ) ( ) ( )
0

, , 0, 0, 0, , ,
I

i i i i
i

a a a i a a i Iε
=

= = = = ∀ =∑ �agh gh
    

(62) 

( )

( )
( )

( )
( )

( )
( )

0
, , 0, 0,

i i iiI

i
j j j i j jµ µ µ µ µε

=

= = = =∑ agh gh
        

(63) 

where 
( )k

jµ  are some local currents. Substituting (62) and (63) into (60) yields 
( )

0 0 0
,

iI I I

i i
i i i

a a jµµδ γ
= = =

+ = ∂∑ ∑ ∑
                   

(64) 

obviously  

( ) ( )1, .i ia i a iδ γ= − =agh agh                  (65) 

They can be decomposed on the several orders of the antighost number:  

( )
( )

( )

( )

1

1

1

,

1 ,

, 0, , 2

I

I
I

I I
k

k k

Z Z

I a j

I a a j

k a a j k I

µ
µ

µ
µ

µ
µ

γ

δ γ

δ γ

−

−

+

= ∂

− + = ∂

+ = ∂ = −�

agh

          

(66) 

The positive antighost number are strictly given as replacement for the first 
expression [35]:  
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( )0, 0 .I
I Ia I a Hγ γ= > → ∈                 (67) 

To proof it, let us consider Ie  as the elements with pureghost number I  of 
a basis in the polynomial space. The generic solution of (67) then takes the form  

,I
I Ia eα=                          (68) 

while 

( ) ( ), .I
I I e Iα = =agh pgh

                  
(69) 

The objects Iα  obviously are nontrivial in ( )0 ,H γ  the so-called invariant 
polynomials. In other words, the strict positive antighost numbers provide tri-
vially the cohomology of the exterior differential γ  in the space of invariant 
polynomials Iα . Hence, a jµµγ = ∂  reduces to 0aγ =  (see [35] for general 
proof). 

Moreover, Ia  may exclusively be reduced to γ -exact terms  
,I Ia bγ=                           (70) 

corresponding to a trivial definition, which states 0Ia = . This result is ob-
viously given by the second-order nilpotency of γ  that implies the unique so-
lution of (67) up to γ -exact contributions, i.e.  

,I I Ia a bγ→ +                         (71) 

( ) ( ) ( ), 1, 1.I I Ib I b I bε= = − =agh pgh              (72) 

Hence, the non-triviality of the first-order deformation Ia  requires the co-
homology of the exterior longitudinal derivative γ  in pureghost number equal 
to I , i.e. ( )I

Ia H γ∈ . To solve (66), it is necessary to provide the cohomology 
of γ  and δ , ( )H γ  and ( )H dδ :  

( ) ,I I I Ia m a H dµ
µδ δ= ∂ → ∈

                 
(73) 

where 

( ) ( ){ }, .IH d a a I a m Nµ
µδ δ= = = ∂agh

            
(74) 

For an irreducible linear situation, where gauge generators are field indepen-
dent, we assume that 

( ) 0, 2.IH d Iδ = >
                     

(75) 

where ( )IH dδ  manifests the local cohomology of the Koszul-Tate differential 
δ , while antighost number is I  and pureghost number vanishes. In this case 
( 2I = ), we obtain  

( )

( )

2
1

2 1
0

1 0

0,

,

.

a

a a j

a a j

µ
µ

µ
µ

γ

δ γ

δ γ

 =

 + = ∂

 + = ∂                       

(76) 

The first-order deformation up to antighost number two are:  

0 1 2 .a a a a= + +                        (77) 

The 2a  is generated by arbitrarily smooth functions in the form (68), with 
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2α  from ( )inv
2H dδ  and 2e  denote the elements with pureghost number two 

of a basis in the polynomial space, i.e.,  

( ) ( ) ( )inv 2
2 2 2 2, 2,a H d eδ α∈ → = =agh pgh

          
(78) 

where ( )inv
IH dδ  is the local cohomology of the Koszul-Tate differential δ  

with antighost number I  in the invariant polynomial space. 
We now consider the Koszul-Tate differential δ  and the exterior longitu-

dinal differential γ  in the action (58): 

0, , ,a a
a a a aA A F Aµ νµ µ

µ ν µδ δη δ δη∗ ∗ ∗= = = −∂ = −∂  

, 0.a a
a aA Aα µ

µ µγ η γ γη γη∗ ∗= ∂ = = =  

The local cohomology of the exterior longitudinal derivative γ  in pureghost 
number one, ( )1 ,H γ  has one ghost aη , while ( )2H γ  has two ghosts a bη η , 
i.e.  

{ } ( ) { } ( )1 2,a a bH Hη γ η η γ∈ ∈
                

(79) 

From (79), we then solve  

2 0,aγ =  

by  

2
1 ,
2

a b c
a bca fη η η∗=

                      
(80) 

where a
bcf  contains the structure constants of a non-abelian algebra coupling 

the Yang-Mills fields, and it is antisymmetric on indices bc :  

[ ] .a a a a
bc bc cbbcf f f f= → = −

                    
(81) 

The expression 
( )1

2 1a a jµµδ γ+ = ∂  is solved by taking the Koszul-Tate diffe-
rential δ  from (80): 

( )

( ) ( )

2
1
2

1
2

a b c
a bc

a b c a b c
a bc a bc

a f

A f A f Aµ µ
µ µ

δ δ η η η

η η γ η

∗

∗ ∗

=

= − ∂ +
            

(82) 

We simply notice that  

( ) ( )2
1 .
2

a b c a b c
a bc a bca A f A A fµ µ

µ µδ γ η η η∗ ∗− = − ∂
            

(83) 

This indicates  
( )1

1
1, .
2

a b c a b c
a bc a bca A f A j A fµ µ µ

µη η η∗ ∗= − = −
             

(84) 

To obtain 0a , we solve 
( )0

1 0a a jµµδ γ+ = ∂  by taking the Koszul-Tate diffe-
rential δ  from 1a :  

( )
( )

1

1 1 .
2 2

a b c
a bc

a b c a b c a b c
a bc a bc a bc

a A f A

F f A F f A A F f F

µ
µ

νµ νµ νµ
ν µ ν µ νµ

δ δ η

η γ η

∗= −

 = ∂ − + + 
       

(85) 

The last term in above relation vanishes, i.e. 
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0,a b c
a bcF f Fνµ

νµη =  

since 
1
2
1 0,
2

a b c m b a c
a bc am bc

m b c
mbc

F f F k F F f

F F f

νµ να µβ
νµ αβ νµ

να µβ
αβ νµ

η σ σ η

σ σ η

=

= =
 

while 

, .a
mbc am bc mbc bmcf k f f f= = −  

Therefore, we derive 

( )1
1 .
2

a b c a b c
a bc a bca F f A A F f Aνµ νµ

ν µ ν µδ γ η − = ∂ − 
              

(86) 

It shows 
( )0

0
1 , .
2

a b c a b c
a bc a bca F f A A j F f Aνµ µ νµ

ν µ µη= − = −
             

(87) 

The results for the first-order deformation are summarized as follows: 

1 1 .
2 2

a b c a b c a b c
a bc a bc a bca F f A A A f A fνµ µ

ν µ µη η η η∗ ∗= − − +
          

(88) 

Finally, we derive 

1
1 1d .
2 2

D a b c a b c a b c
a bc a bc a bcS x F f A A A f A fνµ µ

ν µ µη η η η∗ ∗ = − − + 
 ∫

       
(89) 

The first-order deformations of the solution ( 1S ) of the master equation were 
determined for the action (58). It is seen that gauge generators are field inde-
pendent, and are reduced to a sum of terms with antighost numbers from zero to 
two. 

5.2. Higher-Order Deformations 

We now consider the higher-order deformations of the master equation for the 
action (50). The second-order deformation ( 2λ ) of the master equation are de-
termined from the solution ( )1 1 2, 2 0S S sS+ = . Let us assume that  

2 d ,DS xb= ∫                          
(90) 

that takes the local form  

2 .sb mµ
µ∆ + = ∂                        (91) 

Using the Equation (88) from Section 5.1, we calculate ( )1 1,S S :  

( ) ( )
( ) ( )( )

1 1, d d , d

d d , ,

D D D

D D

S S x xa ya

x y a x a x

≡ ∆ =

=

∫ ∫ ∫
∫

 

while employing the following relations 

( ) ( )( ) ( ) ( )( ) ( ), , ,a a a D
b b bx y y x x yη η η η δ δ∗ ∗= = − −

         
(92) 

( ) ( )( ) ( ) ( )( ) ( ), , ,a a a D
b b bA x A y A y A x x yν ν ν

µ µ µδ δ δ∗ ∗= = − −
      

(93) 

and the definitions  
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( ) ,g g g
mg mgk f k A Aαρ βλ αρ βλ

ρλ ρ λ λ ρσ σ σ σ≡ ∂ − ∂
            

(94) 

( ) ( ) ( )d .D Dx x y f x f yδ − ≡∫                   
(95) 

They lead to the following expression ∆ :  

( )
( ) ( )

( ) ( )
 

 

 

a e m n p a e a e a e m n p
em np a em np en pm ep mn a

a e a e m n p a m b c n p
en pm em pn a bc ma np

a m b c n p a m b c n p
bc ma np bc ma np

a m
bc ma np

f f f f f f f f A A

f f f f F A A f k f A A A

f k f A A A f k f A A A

f k f

µ
µ

αβ αρ βµ
α β ρ µ α β

αρ βµ αµ βλ
ρ µ α β λ µ α β

αµ

η η η η η η

η σ σ η

σ σ η σ σ η

σ σ

∗ ∗∆ = − − + +

+ − + ∂

+ ∂ − ∂

− ( ) ,b c n pA A Aβλ
ρ µ α βη ∂

 

that is reduced to  

[ ] [ ]

[ ] ( )

1
3!

  2 .

a e m n p a e m n p
a ae m np e m np

a e m n p a m b c n p
a bc ma npe m np

f f f f A A

f f F A A f k f A A A

µ
µ

αβ αρ βµ
α β ρ µ α β

η η η η η η

η σ σ η

∗ ∗∆ = − −

− + ∂
 

We then decompose ∆  into the following terms, 

0 1 2 ,∆ = ∆ + ∆ + ∆                       (96) 

namely, 

[ ] ( )0 2 .a e m n p a m b c n p
a bc ma npe m npf f F A A f k f A A Aαβ αρ βµ

α β ρ µ α βη σ σ η∆ ≡ − + ∂
    

(97) 

[ ]1 ,a e m n p
ae m npf f A Aµ

µη η∗∆ ≡ −
                   

(98) 

[ ]2
1 ,
3!

a e m n p
ae m npf f η η η η∗∆ ≡ −

                  
(99) 

We also define  

0 1 2 .b b b b≡ + +                       (100) 

From (91), it follows a set of equations 
( )2

2 22 ,b mµ
µγ∆ + = ∂                      (101) 

( )1

1 2 12 2 ,b b mµ
µδ γ∆ + + = ∂                   (102) 

( )0

0 1 02 2 .b b mµ
µδ γ∆ + + = ∂                   (103) 

Equations (99) and (101) imply  

2 20, 0,b∆ = =                       (104) 

and 

[ ] 0.a e
e m npf f =

                       
(105) 

The later expression is called the Jacobi identity. Similarly, we obtain 

1 10, 0.b∆ = =                       (106) 

So, the Equation (103) remains to be solved: 

( )
( )0

02 2 .a m b c n p
bc ma npf k f A A A b mαρ βµ µ

ρ µ α β µσ σ η γ∂ + = ∂
        

(107) 

We solve it by substituting the exterior longitudinal differential γ  of poten-
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tials aAµ  ( aA α
µ µγ η= ∂ ): 

( ) 12 .
2

a m b c n p a m b c n p
bc ma np bc am npf k f A A A f k f A A A Aαρ βµ αρ βµ

ρ µ α β ρ µ α βσ σ η γ σ σ ∂ = − 
 

 

Accordingly, we derive  

0
1 .
4

a m b c n p
bc am npb f k f A A A Aαρ βµ

ρ µ α βσ σ= −  

Hence, the second-order deformations becomes 

2
1d .
4

D a m b c n p
bc am npS x f k f A A A Aαρ βµ

ρ µ α βσ σ = − 
 ∫

           
(108) 

The Jacobi identity (105) obviously implies  

( )1 2 3, 0 0.S S S= → =  

Similarly, all deformations with orders higher than the second-order com-
pletely vanish: 

0, 3.kS k= ∀ ≥  

As a result, the solution to the deformations becomes 2
0 1 2S S S Sλ λ= + + , 

that corresponds to the following Yang-Mills theory: 

2

1d
4

1 1  d
2 2
1  d .
4

D a a
a a

D a b c a b c a b c
a bc a bc a bc

D a m b c n p
bc am np

S x F F A

x F f A A A f A f

x f k f A A A A

µν µ
µν µ

νµ µ
ν µ µ

αρ βµ
ρ µ α β

η

λ η η η η

λ σ σ

∗

∗ ∗

 = − + ∂ 
 

 + − − + 
 
 + − 
 

∫

∫

∫
     

(109) 

We have determined the Yang-Mills theory from the first- and second-order 
deformations of the master equation. The solutions of the master equation, 
which entirely include the gauge structures, are decomposed into terms with the 
antighost numbers from zero to two. In other words, the part with the antighost 
number equal to zero represents the Lagrangian action, while the antighost 
number one is proportional to the gauge generators. The terms with higher an-
tighost numbers provide the reducibility functions, where the on-shell relations 
become linear components in the ghosts for ghosts. It is shown that all functions 
with order higher than second vanish in this model. 

5.3. Interacting Theory 

Let us consider the Equation (109) and identify the entire gauge structure of the 
Lagrangian model that describes all consistent interactions in the D
-dimensional free Yang-Mills theory. 

The antighost number zero of (109) shall provide the Lagrangian action of the 
interacting theory: 

0

2

1 1d d
4 2

1   d .
4

L a D a D a b c
a a bc v

D a m b c n p
bc am np

S A x F F x F f A A

x f k f A A A A

µν νµ
µ µν µ

αρ βµ
ρ µ α β

λ

λ σ σ

     = − + −        
 + − 
 

∫ ∫

∫
      

(110) 
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Accordingly, the Yang-Mills theory is characterized by the following non- ab-
elian action: 

0
1d ,
4

L a D a
aS A x µν

µ µν
   = −    ∫  

                
(111) 

where the non-abelian field strengths a
µν  is defined by 

,a a a b c
bcF f A Aµν µν µ νλ= +                    (112) 

and a
bcf  is the gauge-invariant that provides the gauge symmetry of the 

Yang-Mills theory as follows 

.a a a b c a
bcA f A Dε µ µ µ µδ ε λ ε ε= ∂ − ≡                (113) 

So, the commutator among the deformed gauge transformations becomes: 

1 2
, .a aA Aε ε µ ε µδ δ δ  =                      

(114) 

The gauge symmetry remains abelian to order λ , and satisfies the equation of 
motion 

0.aDµ
µν =                         (115) 

The invariance of the action under the gauge transformations (113) is also 
obtained by the Noether identities 

0 0.a
aD D D

A
µ µ ν

µν
µ

δ
δ

 
≡ =  

 




                 
(116) 

The antighost number one of the deformation of the master equation allows 
to identify the gauge transformations (113) of the action (110) by substituting 
the ghost aη  with gauge parameter aε . The antighost number two in (109) 
reads the complete gauge structure of the so-called interacting theory that de-
termines the commutator (114) among the deformed gauge transformations. 

6. Conclusion 

In this paper, we reviewed deformed gauge transformations in the framework of 
the BRST-antifield formalism characterized by the antibracket that acts similar 
to the Poisson bracket in the Hamiltonian formalism. We provided the BRST 
cohomology of the consistent interactions through several order deformations of 
the master equation. The BRST-antifield formalism in the cohomological space 
provides the generalized framework of consistent interactions among fields with 
a gauge freedom by any types of invariant action. We see that higher order de-
formations could be neglected due to non local interactions and their obstruction 
of consistent local couplings, which are associated with the anomalous gauge 
quantization. We demonstrated its functions by applying the BRST-antifield 
formalism to the D -dimensional, free Yang-Mills theory. All deformations of 
the master equation for the massless Yang-Mills model were calculated by using 
the cohomological groups ( ) ,  0, , 2IH s d I = � , of the BRST differential. The 
first-order deformation is provided by the cohomological group ( )1H s d , 
whereas the second-order deformation given by the cohomological group 
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( )2H s d  obstructs all higher-order deformations. The results show that the 
deformations can be synthesized by the conception that all orders higher than 
two are trivial, while gauge generators are imposed to be field independent, 

( ) 0,  2IH s d I= > . The deformations stopped at the second-order of the 
coupling constants characterize the consistent interactions, which maintain the 
equation of motion, and provide the entire gauge structure of the interacting 
Yang-Mills theory. 
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Appendix 
Antibracket Structure  

For a function ( )X ψ  in a generic space, commutative or anticommutative, we 
state:  

,   .l rX XX X
ψ ψ ψ ψ

∂ ∂∂ ∂
= =

∂ ∂ ∂ ∂

� �

                
(117) 

The left derivative l∂  is an ordinary derivative (left to right). The right de-
rivative r∂  is the derivative action from right to left. 

For any ( )X ψ  in a generic space, we get  

( ) ( )11 .Xl rX Xψε ε

ψ ψ
+∂ ∂

= −
∂ ∂                    

(118) 

Considering Equation (32) and Equation (118), it follows that  

( ) ( )( )( ) ( )1 1, 1 , .X YX Y Y Xε ε+ += − −  

Assuming X Y= , one can find  

( )( )( )1 11 .X Xl lr r
A A

A A

X XX Xε ε+ +

∗ ∗

∂ ∂∂ ∂
= −

∂Φ ∂Φ ∂Φ ∂Φ              
(119) 

For bosonic (commutative) and fermionic (anticommutative) variables, we 
have  

( )
2  is commutative,

,
0  is anticommutative.

lr
A

A

XX X
X X

X

∗

∂∂
 ∂Φ ∂Φ= 

          

(120) 

For any X , we have  

( )( ), , 0, .X X X X= ∀
                   

(121) 

Furthermore, the antibracket has the following properties:  

( ) ( ) ( ) ( ), , 1 , ,Y ZX YZ X Y Z X Z Yε ε= + −              (122) 

( ) ( ) ( ) ( ), , 1 , ,X YXY Z X Y Z Y X Zε ε= + −              (123) 

( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )( )1 1, , 1 , , 1 , , 0.X Y Z Z X YX Y Z Y Z X Z X Yε ε ε ε ε ε+ + + ++ − + − =   (124) 
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