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Abstract 
As one of the most essential and important operations in linear algebra, the 
performance prediction of sparse matrix-vector multiplication (SpMV) on 
GPUs has got more and more attention in recent years. In 2012, Guo and 
Wang put forward a new idea to predict the performance of SpMV on GPUs. 
However, they didn’t consider the matrix structure completely, so the execu-
tion time predicted by their model tends to be inaccurate for general sparse 
matrix. To address this problem, we proposed two new similar models, which 
take into account the structure of the matrices and make the performance 
prediction model more accurate. In addition, we predict the execution time of 
SpMV for CSR-V, CSR-S, ELL and JAD sparse matrix storage formats by the 
new models on the CUDA platform. Our experimental results show that the 
accuracy of prediction by our models is 1.69 times better than Guo and 
Wang’s model on average for most general matrices. 
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1. Introduction 

Sparse matrix-vector multiplication (SpMV) is an essential operation in solving 
linear systems and eigenvalue problems. For many iterative methods, the frac-
tion of the execution time of SpMV may be more than 80% in the total time, so 
the study of its performance has attracted a lot of attention. Right now, the GPU 
has been from a graphics accelerator to a computing device with a broad spec-
trum of purposes, due to the characteristics of the multi-thread, high memory 
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bandwidth. It can solve massively parallel problems and obtain very high per-
formance. However, how to predict the execution time of SpMV on GPUs accu-
rately is still a big challenge. 

In 2003, Bolz et al. [1] first implemented conjugate gradient (CG) method on 
GPU which contains SpMV. Bell and Garland [2] proposed SpMV CUDA ker-
nels for some well-known sparse matrix storage formats, such as compressed 
sparse row (CSR), Ellpack-Itpack (ELL), Coordinate (COO), Diagonal (DIA) 
and Hybrid (HYB). The jagged diagonal format (JAD) was used to implement 
the SpMV kernel in [3], and they also realized the GPU-accelerated precondi-
tioned CG and GMRES methods. In this paper, we utilize the SpMV kernels in 
[3]: CSR-V, CSR-S, ELL and JAD. 

In order to improve the performance of SpMV on GPUs, Vazquez et al. [4] 
presented a new sparse storage format, termed ELLR-T, which is improved from 
ELL format, to achieve higher performance. Monakov et al. [5] put forward a 
sliced ELL format and used auto-tuning to find the optimal configuration for 
batter performance. Zheng and Gu [6] proposed bisection ELL (BiELL) and bi-
section JAD (BiJAD) format based on ELL and JAD format for optimizing 
SpMV on GPUs. Especially for irregular matrices, BiELL and BiJAD format can 
get greater load balance and higher performance by adjusting the elements sto-
rage location of matrix and make the zero-padding less. Meanwhile, they rea-
lized CG and GMRES method with BiELL and BiJAD format on GPU [7]. Choi 
et al. [8] designed blocked ELL format and select proper parameters for better 
performance. Guo et al. [9] proposed an auto-tuning framework that can select 
the parameters of SpMV kernels to obtain the optimal performance on GPUs. 

Besides studying how to improve the performance of SpMV on the GPUs, 
there are also many performance models focusing on performance prediction. 
Resios [10] proposed a parameterized analytical model to estimate execution 
time and identify potential bottlenecks in programs. Dinkins [11] put forward a 
model for predicting SpMV performance using memory bandwidth require-
ments and data locality. Werkhoven et al. [12] gave an analytical performance 
model that includes PCIe transfers and overlapping computation and commu-
nication to predict the execution time for CPU-GPU data transfers. Baghsorkhi 
et al. [13] presented a model to predict the performance of GPU applications 
based on the string and work flow graph. Guo et al. [9] showed a performance 
modeling and optimizing analysis to predict and optimize SpMV performance 
on GPUs. A simple analytical GPU model to predict the execution time of mas-
sively parallel programs was given by Hong et al. [14]. Schaa et al. [15] presented a 
model to accurately estimate the execution time of GPU applications by varying 
the configurations. In a word, most of the performance prediction researches 
analyze and predict the execution time from the perspective of the machine it-
self, which focus on the physical properties and parameters of GPUs. There has 
few performance prediction models were established from the view of mathematics. 

In this paper, we present two new improved models based on [16] and get 
better prediction accuracy. Our models mainly consist of two phases: generating 
parameters and fitting for prediction. In the first phase, some benchmark ma-
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trices will be generated according to a GPU’s architecture features and four dif-
ferent sparse matrix storage formats, then SpMV with these benchmark matrices 
are implemented on the GPU to obtain the execution times. We will establish 
two parametric models according to the results of the benchmark matrices and 
predict the execution time of the SpMV kernels with a given target matrix on the 
GPU by our models in second phase. 

The performance prediction models are essentially at the statistical point of 
view to predict the execution time of different SpMV kernels on GPUs. Firstly, 
the execution time of the benchmark matrices with different parameters is re-
quired, and then fitting the prediction functions according to the execution time 
of the benchmark matrices and two parameters. Finally, the estimated execution 
time of a target matrix will be got after putting two parameters into the predic-
tion functions. 

Compared with [16]’s model, the important difference of this paper is gene-
rating benchmark matrices. In [16], the number of non-zero elements per row 
( NZP ) of the benchmark matrices is set to a fixed value. While in many practical 
problems, such as in computer science or mathematics, there are many matrices 
are in irregular structure, which NZP  is different largely. So if NZP  of bench-
mark matrices generated is fixed, the performance prediction model will go awry 
to some extent and then the accuracy of prediction will be decreased. Keeping 
this in mind that we generated two kinds benchmark matrices whose NZP  in 
the uniform distribution or normal distribution, respectively, and then establish 
its own performance prediction model. In the numerical experiments, we used 
our model to estimate the execution time of different SpMV kernels with 30 ma-
trices, these matrices are from the University of Florida Sparse matrix collection 
[17]. The experimental results show that the average prediction error of our 
models are two to three times lower than [16] at least, some matrix even tens of 
times lower. 

The remainder of this paper is organized as follows: Section 2 gives some pre-
liminaries and Section 3 shows the details of the performance prediction model. 
Experimental results and analyses are reported in Section 4. Finally, some con-
clusions and future works are stated in Section 5. 

2. Preliminaries 

Firstly, we state in brief the GPU architecture and CUDA (Compute Unified De-
vice Architecture) programming model. Traditionally, GPUs have been espe-
cially designed to handle the computation for computer graphics in real-time. 
Today, they are increasingly being exploited as general-purpose attached pro-
cessor to speed-up computations in image processing, physical simulations, data 
mining, linear algebra, etc. [3]. It is suitable for processing massively parallel 
tasks, which have high density and simple branching logic. CUDA introduced by 
NVIDIA is similar in style to a single program multiple data (SIMD) software 
model [18]. CUDA programs on the host (CPU) invoke a kernel which runs on 
the device (GPU). All threads within a block are executed concurrently on a ar-
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chitecture [14]. In addition, when a multiprocessor is given one or more thread 
blocks to execute, it partitions them into groups of 32 parallel threads termed 
warp. 

Four sparse matrix storage formats used in our model are described below. 
The CSR is probably the most popular format for storing general sparse matrices 
[19]. To parallelize the SpMV for a matrix in the CSR format, a simple scheme 
called CSR-S (CSR scalar) kernel [2] is to assign each thread by one row. The 
main drawback of this scheme is that the pattern of memory access is 
un-coalesced, so it shows not very efficient. A better approach, termed CSR-V 
(CSR vector) is proposed in [2] and modified in [3] to realize the memory access 
contiguously. [2] assign a warp (32 threads) to each row, while [3] assign each 
row a half-warp (16 threads). In this approach, since all threads within a warp or 
a half-warp access non-zero elements of one row, these accesses are more likely 
to belong to the same memory segment, so the chance of coalescing should be 
higher. In addition, CSR-V kernel in [3] will be used in our model. ELL format is 
efficient if the maximum number of non-zeros per row is not substantially dif-
ferent from the average. However, when the number of non-zeros varies largely 
between rows, excess padded zeros decrease the performance of SpMV. The JAD 
can be viewed as a generalization of ELL format which removes the assumption 
on the fixed-length rows [3]. Compared to the ELL format, there are fewer ze-
ro-padding in the JAD format, so the performance of JAD will be better than 
ELL when implement SpMV on GPUs. Other details of these sparse matrix sto-
rage formats can be consulted in [19]. 

3. The Performance Prediction Model for SpMV 

The work-flow of our model is similar to [16], which contains two phases. The 
main difference is the criteria for generating the benchmark matrices, which we 
described in follows. 

3.1. Phase One: The Establishment of Fitting Function for  
Performance Prediction 

Firstly, we give the definition of matrix strip. The strip of a matrix is a maximum 
sub-matrix that can be handled by a GPU with a full load of thread blocks within 
one iteration. Let SMN  be the number of streaming multiprocessors for a 
NVIDIA GPU, HWN  be the number of half-warps per multiprocessor and TN  
denote the number of threads per multiprocessor. Then, the size of strip for 
CSR-V, CSR-S, ELL and JAD format can be computed as follows: 

CSR-V SM HWS N N= ×                        (1) 

CSR-S SM TS N N= ×                         (2) 

ELL JAD CSR-SS S S= =                        (3) 

Secondly, we state the criteria for generating benchmark matrices. 
• The number of rows ( R ): 

R S I= ×                            (4) 
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where I  is a positive integer, S  is the size of strip defined for four formats 
(in different sub-index) as above. 
• The number of non-zero elements per row ( NZP ): 

In [16]’s model, each row has the same NZP  for the benchmark matrices. 
However, NZP  will not be same exactly for a target matrix in practical situa-
tions. So we combine with the characteristics of the matrix structure and let NZP  
to meet a certain distribution. Two distributions will be adopted: normal and 
uniform. In addition, the mean of the distribution will be treated as NZP . The 
benchmark matrices meet two kinds of distribution can be generated by Matlab. 
In addition, we assume that then on-zero elements are in single precision (float). 
• The number of columns ( C ): 

For the sake of simplicity, the benchmark matrices generated in our numerical 
experiments will be square. Obviously, it should be assumed that NZC P> . 

Thirdly, we set parameters of benchmark matrices. 
In order to get more accurate fitting functions in our models, a series of 

benchmark matrices will be generated according to the above criteria. A bench-
mark matrix is only determined by R  and NZP . Since R S I= × , where S is 
fixed for a certain sparse matrix format, we just need change the value of I  to 
get different benchmark matrices. Due to NZP  in the benchmark matrices fol-
lows two kinds of distributions, so it is determined by the mean of each distribu-
tion based on the distribution density P . Then combine the value of I  and 
P , we can obtain a benchmark matrix. 
• The number of strips ( I ): 
 CSR-V: Let 1, 2,3, ,9,10,15, 20, 25, , 45,50I = � �  

In our experimental platform, the size of matrix strip for CSR-V format is 
fewer than other formats, in order to predict the performance accurately, we in-
crease the value of I  to 50. 
 CSR-S, ELL, JAD: Let 1, 2,3, ,9,10I = �  
• The distribution density ( P ): 

 CSR-V: Let 4 8 16 512 1024 1536 2048 2560 3072, , , , , , , , ,P
R R R R R R R R R

= �  

Because of out of memory occurred in Matlab when P  is too large, so we 
make 3072 R  as the maximum value, but it does not affect the accuracy of the 
performance prediction. 

 CSR-S, ELL, JAD: Let 4 8 16 512 1024, , , , ,P
R R R R R

= �  

Finally, the formula for calculating average the execution time of benchmark 
matrices BT  is same as that of [16]. 

( )( ) ( )( )1 1R C C R C Cj j
B

M V M V
T

β αφ φ

β α
× ×= =

× − ×
=

−
∑ ∑

           (5) 

where R CM ×  denotes a benchmark matrix of dimension R C× ; CV  is a ran-
dom vector of length C ; α  and β  are the number of executions and α β< . 
φ  is the execution time for each time the benchmark matrix be executed. For a 
target matrix with RN  rows and NZN  non-zero elements, the number of 



R. X. Wang et al. 
 

70 

strips I  and the number of non-zero elements per row NZP  with four formats 
can be compute as follows: 

CSR-V CSR-S ELL JAD
CSR-V CSR-S ELL JAD

,   ,   ,   R R R RN N N NI I I I
S S S S
      

= = = =      
      

   (6) 

Let D  be the set consisting of the number of non-zero elements in each row 
of the target matrix. Then NZP  is set to be mode of D  for CSR-V matrix, 
while it is the maximum value of D  for CSR-S, ELL, JAD matrices. 

3.2. Phase Two: Prediction Based on the Performance Model 

According to the statistics methods, we fit the performance function of SpMV 
for different storage formats, which based on three parameters of benchmark 
matrices: I , NZP  and BT . After the performance function obtained, we can 
estimate the execution time of SpMV for a target matrix TT  by substituting two 
parameters I  and NZP  of the target matrix into it. 

3.2.1. CSR-V Format 
After a large amount of experiments and fitting, we found that for CSR-V ma-
trices, the relationship between BT  and NZP  is different when NZP  is smaller 
or larger than the number of maximum threads per block (1024 for GeForce 
GTX 540 M). Therefore, the performance fitting function is obtained by the fol-
lowing method. 
• Establish the function ( )NZT P  

For the benchmark matrices with the same number of strips, we establish the 
relationship between NZP  and the execution time BT  for SpMV. The fitting 
functions of two distributions for the number of strips 40 are shown in Figure 1. 
As can be seen, the relationship between NZP  and BT  is approximately linear, 
so we make ( )NZ NZT P m P n= × + . 
• Establish the function ( )E I  

For the benchmark matrices with same NZP , we establish the relationship 
between I  and the execution time E  (i.e. BT  in the above) of the bench-
mark matrices for SpMV. The fitting functions of two distributions for 64NZP =  
and 2048 are shown in Figure 2. The relation between I  and E  is also ap-
proximately linear, so we make ( )E I p I q= × + . 
• Estimate the execution time of a target matrix 

For a target matrix, we need to calculate two parameters according to the Eq-
uation (6) and D : the number of non-zero elements per row 0P  and the 
number of strips 0I , then derive ( )0T P  and ( )0E I  from above functions, 
respectively. In order to combat the effects of the difference about functions 
when the number of non-zero elements per row is smaller or larger than 1024, 
another execution time 0t  of any previously tested benchmark matrix whose 

NZP  is set to be the number of non-zero elements per row in ( )E I . At this 
point, estimated execution time of the target matrix in CSR-V format is  

( ) ( )0
0 0

0

T P
T E I

t
= × . 
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Figure 1. The fitting functions of two distributions for 40I =  ((a) and (b): 1024NZP < , (c) and (d): 1024NZP > ). 

 

 

 
Figure 2. The fitting functions of two distributions for 64NZP =  and 2048 ((a) and (b): 64NZP = , (c) and (d): 2048NZP = ). 
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3.2.2. CSR-S Format 
• Establish the function ( )NZT P  

For the benchmark matrices with the same I , we establish the relationship 
between NZP and BT  for SpMV. The fitting functions of two distributions for 

5I =  are shown in Figure 3. As showed in the Figure, the relationship between 

NZP  and BT  is approximately linear, so we make ( ) ( ) ( )1 1NZ NZT P f I P g I= × +  
( 1I  can be any arbitrary value within the range of I ). 
• Establish the function ( )f I  

For sets of benchmark matrices with different number of strips, we establish 
the relationship between the number of strips I  and the coefficient of the li-
near functions ( )f I  in ( )NZT P . The fitting functions of two distribution are 
shown in Figure 4. In Figure 4, it is approximately linear between I  and 
( )f I , so we make ( )f I A I B= × + . 

• Establish the function ( ) ( ) ( )1E I f I P g I= × +  
For Like the fitting function ( )NZT P , we establish the relationship between 

the number of strips I  and the execution time E  (i.e. BT  in the above) of 
the benchmark matrices with the same number of non-zero elements per row  

 

 
Figure 3. The fitting functions of two distributions for 5I = . 
 

 
Figure 4. The fitting functions for I  versus ( )f I . 
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1P , which can be any arbitrary value within the range defined NZP . The fitting 
functions of two distributions for 32NZP =  are shown in Figure 5. We can see 
that the relationship between I  and E  is approximately linear, so we make 
( ) ( ) ( )1E I f I P g I= × + , and the intercept function ( ) ( ) ( ) 1g I E I f I P= − × . 

• Estimate the execution time of a target matrix 
Given a target matrix, we need to calculate two parameters according to the 

Equation (6) and D : the number of non-zero elements per row 0P  and the 
number of strips 0I , then derive ( )0f I  and ( )0g I  from above functions, 
respectively. At this moment, estimated execution time of the target matrix in 
CSR-S format is ( ) ( ) ( )0 0 0 0T P f I P g I= × + . 

After getting the performance function of CSR-S format, we find that the rela-
tionship between dependent variables BT  and two variables NZP , I  is saddle 
surface in the functional image, that is to say, when I  is fixed, the relationship 
between BT  and NZP  is linearity and vice versa, which coincided with the 3D 
fitting image we get in Matlab, as shown in Figure 6, which the darker of the 
colors means the smaller of the values. 

3.2.3. ELL and JAD Formats 
Note that, the granularity of ELL and JAD format is the same as CSR-S format, 
which assigns one thread to each row to implement SpMV on GPUs. Therefore, 
fitting the performance function of ELL and JAD format is done in a similar way 
with CSR-S format, except the functional expressions. In addition, the 3D im-
ages obtained by the Matlab can be fitted with the performance functions and 
need not be repeated here. 

4. Experimental Results and Analyses 

The experiments are performed on NVIDIA GeForce GTX 540 M with 1 GB 
global memory, the operating system is a 64-bit Linux with CUDA 6.5 driver. 
We evaluated our performance prediction model on 30 matrices with each 
sparse matrix storage format, respectively. These matrices are square real ma-
trices from the University of Florida Sparse matrix collection [17]. Moreover,  
 

 
Figure 5. The fitting functions of two distributions for 32NZP = . 
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Figure 6. The 3D fitting images of two distributions for BT . 

 
in order to compare with [16]’s model, we also implement the model in [16] 
whose NZP  is fixed in benchmark matrices. The estimated time and the perfor-
mance difference rate of the 30 target matrices in four sparse matrix storage for-
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mats with three models are given, which is convenient to compare with each other. 
We define the performance difference rate for different model as  

estimated time mesured time
mesured timerD

−
=                (7) 

For CSR-V format, the performance difference rate of SpMV in three models 
of 30 matrices is shown in Figure 7. We can see that rD  in [16]’s model is 
5.05% on average, while it is 2.42% and 2.56% for our normal and uniform mod-
el, respectively. Compared with the [16]’s model, the prediction accuracy of the 
normal model and uniform model are improved by 2.08 times and 1.97 times on 
average, respectively. 

Furthermore, there are three cases for the prediction accuracy of [16]’s model 
is higher than that of uniform model (such cavity05), and that of normal model 
(such as bcsstk04). The prediction accuracy of normal distribution model is 
higher than uniform distribution model for bp_1600 and other 17 matrices. 

When implement SpMV on GPU with CSR-S format, the performance dif-
ference rate in three models of 30 matrices is shown in Figure 8. The average 

rD  in [16]’s model, our uniform and normal model is 5.44%, 3.21% and 3.52%, 
respectively. The average factor for the prediction accuracy of uniform model 
higher than that of [16]’s model is 1.69, while for normal model, it is 1.54. 

In addition, the prediction accuracy of [16]’s model is higher than that of 
normal model on 15 matrices (such as bcsstk16), while for uniform model the 
better number is 12 (such as bips98_1142). The better number for normal mod-
el vs. uniform model is 13 (such as bayer09) in 30 cases. 
 

 
Figure 7. The performance difference rate of SpMV on CSR-V matrices. 
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The similar results for ELL matrices are given in Figure 9. It says the average 

rD  of three models are 5.79%, 3.53% and 3.26%, respectively. The average  
 

 
Figure 8. The performance difference rate of SpMV on CSR-S matrices. 
 

 
Figure 9. The performance difference rate of SpMV on ELL matrices. 
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better number for the factor of normal and uniform model vs. [16]’s model are 
1.77, 1.64 respectively. The better number for [16]’s model vs. normal model and 
uniform model is the same 7:23, while for normal model vs. uniform model it is 
20:10. 

Figure 10 give the results for JAD matrices. rD  of three models are 5.97%, 
3.94% and 4.28% on average, respectively. The average improved factor for nor-
mal and uniform model over [16]’s model are 1.46 and 1.35. The better number 
for [16]’s model vs. normal model is 9:21, while for uniform model it is 11:19, 
while for normal model vs. uniform model it is 16:14. 

The execution time of four SpMV kernels in three model on 30 matrices is 
shown in Figures 11-14. There is large difference in the execution time for all 
matrices in different storage formats. So we put the execution time into two fig-
ures: the shorter and the longer in (a) and (b), respectively. Almost all of the es-
timated time of the matrices in four different storage formats is greater than the 
actual measured time. The possible reasons are that we take the number of strips 
I  by rounding up to an integer. 

5. Conclusion and Future Work 

Aiming at the better performance model of SpMV on GPU based on statistics 
and [16], we have presented two new models, which consider the structure of 
matrices. We predict four SpMV CUDA kernels: CSR-V, CSR-S, ELL and JAD. 
The numerical result shows that the prediction accuracy of our models is higher 
than that of [16]’s model. 
 

 
Figure 10. The performance difference rate of SpMV on JAD matrices. 
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Figure 11. The comparison of estimated and measured time on CSR-V matrices. 
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Figure 12. The comparison of estimated and measured time on CSR-S matrices. 
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Figure 13. The comparison of estimated and measured time on ELL matrices. 
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Figure 14. The comparison of estimated and measured time on JAD matrices. 
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In the future, we will extend our performance prediction model to other 
SpMV with different storage formats on different kinds of GPUs. In addition, we 
will propose a new performance model to predict the execution time of a class of 
iterative methods on heterogeneous parallel machines. 
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