
Journal of Computer and Communications, 2017, 5, 65-83
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2017.56005 April 28, 2017

Performance Prediction Based on Statistics of
Sparse Matrix-Vector Multiplication on GPUs*

Ruixing Wang1, Tongxiang Gu2#, Ming Li3

1Country Graduate School of Chinese Academy of Engineering Physics, Beijing, China
2Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, China
3Country Xi’an Aeronautics Computing Technique Research Institute, AVIC, Xi’an, China

Abstract
As one of the most essential and important operations in linear algebra, the
performance prediction of sparse matrix-vector multiplication (SpMV) on
GPUs has got more and more attention in recent years. In 2012, Guo and
Wang put forward a new idea to predict the performance of SpMV on GPUs.
However, they didn’t consider the matrix structure completely, so the execu-
tion time predicted by their model tends to be inaccurate for general sparse
matrix. To address this problem, we proposed two new similar models, which
take into account the structure of the matrices and make the performance
prediction model more accurate. In addition, we predict the execution time of
SpMV for CSR-V, CSR-S, ELL and JAD sparse matrix storage formats by the
new models on the CUDA platform. Our experimental results show that the
accuracy of prediction by our models is 1.69 times better than Guo and
Wang’s model on average for most general matrices.

Keywords
Sparse Matrix-Vector Multiplication, Performance Prediction, GPU, Normal
Distribution, Uniform Distribution

1. Introduction

Sparse matrix-vector multiplication (SpMV) is an essential operation in solving
linear systems and eigenvalue problems. For many iterative methods, the frac-
tion of the execution time of SpMV may be more than 80% in the total time, so
the study of its performance has attracted a lot of attention. Right now, the GPU
has been from a graphics accelerator to a computing device with a broad spec-
trum of purposes, due to the characteristics of the multi-thread, high memory

*The project is partly supported by the NSF of China (61472462, 11671049) and foundation of Key
Laboratory of Computational Physics.

How to cite this paper: Wang, R.X., Gu,
T.X. and Li, M. (2017) Performance Predic-
tion Based on Statistics of Sparse Ma-
trix-Vector Multiplication on GPUs. Jour-
nal of Computer and Communications, 5,
65-83.
https://doi.org/10.4236/jcc.2017.56005

Received: March 17, 2017
Accepted: April 25, 2017
Published: April 28, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2017.56005
http://www.scirp.org
https://doi.org/10.4236/jcc.2017.56005
http://creativecommons.org/licenses/by/4.0/

R. X. Wang et al.

66

bandwidth. It can solve massively parallel problems and obtain very high per-
formance. However, how to predict the execution time of SpMV on GPUs accu-
rately is still a big challenge.

In 2003, Bolz et al. [1] first implemented conjugate gradient (CG) method on
GPU which contains SpMV. Bell and Garland [2] proposed SpMV CUDA ker-
nels for some well-known sparse matrix storage formats, such as compressed
sparse row (CSR), Ellpack-Itpack (ELL), Coordinate (COO), Diagonal (DIA)
and Hybrid (HYB). The jagged diagonal format (JAD) was used to implement
the SpMV kernel in [3], and they also realized the GPU-accelerated precondi-
tioned CG and GMRES methods. In this paper, we utilize the SpMV kernels in
[3]: CSR-V, CSR-S, ELL and JAD.

In order to improve the performance of SpMV on GPUs, Vazquez et al. [4]
presented a new sparse storage format, termed ELLR-T, which is improved from
ELL format, to achieve higher performance. Monakov et al. [5] put forward a
sliced ELL format and used auto-tuning to find the optimal configuration for
batter performance. Zheng and Gu [6] proposed bisection ELL (BiELL) and bi-
section JAD (BiJAD) format based on ELL and JAD format for optimizing
SpMV on GPUs. Especially for irregular matrices, BiELL and BiJAD format can
get greater load balance and higher performance by adjusting the elements sto-
rage location of matrix and make the zero-padding less. Meanwhile, they rea-
lized CG and GMRES method with BiELL and BiJAD format on GPU [7]. Choi
et al. [8] designed blocked ELL format and select proper parameters for better
performance. Guo et al. [9] proposed an auto-tuning framework that can select
the parameters of SpMV kernels to obtain the optimal performance on GPUs.

Besides studying how to improve the performance of SpMV on the GPUs,
there are also many performance models focusing on performance prediction.
Resios [10] proposed a parameterized analytical model to estimate execution
time and identify potential bottlenecks in programs. Dinkins [11] put forward a
model for predicting SpMV performance using memory bandwidth require-
ments and data locality. Werkhoven et al. [12] gave an analytical performance
model that includes PCIe transfers and overlapping computation and commu-
nication to predict the execution time for CPU-GPU data transfers. Baghsorkhi
et al. [13] presented a model to predict the performance of GPU applications
based on the string and work flow graph. Guo et al. [9] showed a performance
modeling and optimizing analysis to predict and optimize SpMV performance
on GPUs. A simple analytical GPU model to predict the execution time of mas-
sively parallel programs was given by Hong et al. [14]. Schaa et al. [15] presented a
model to accurately estimate the execution time of GPU applications by varying
the configurations. In a word, most of the performance prediction researches
analyze and predict the execution time from the perspective of the machine it-
self, which focus on the physical properties and parameters of GPUs. There has
few performance prediction models were established from the view of mathematics.

In this paper, we present two new improved models based on [16] and get
better prediction accuracy. Our models mainly consist of two phases: generating
parameters and fitting for prediction. In the first phase, some benchmark ma-

R. X. Wang et al.

67

trices will be generated according to a GPU’s architecture features and four dif-
ferent sparse matrix storage formats, then SpMV with these benchmark matrices
are implemented on the GPU to obtain the execution times. We will establish
two parametric models according to the results of the benchmark matrices and
predict the execution time of the SpMV kernels with a given target matrix on the
GPU by our models in second phase.

The performance prediction models are essentially at the statistical point of
view to predict the execution time of different SpMV kernels on GPUs. Firstly,
the execution time of the benchmark matrices with different parameters is re-
quired, and then fitting the prediction functions according to the execution time
of the benchmark matrices and two parameters. Finally, the estimated execution
time of a target matrix will be got after putting two parameters into the predic-
tion functions.

Compared with [16]’s model, the important difference of this paper is gene-
rating benchmark matrices. In [16], the number of non-zero elements per row
(NZP) of the benchmark matrices is set to a fixed value. While in many practical
problems, such as in computer science or mathematics, there are many matrices
are in irregular structure, which NZP is different largely. So if NZP of bench-
mark matrices generated is fixed, the performance prediction model will go awry
to some extent and then the accuracy of prediction will be decreased. Keeping
this in mind that we generated two kinds benchmark matrices whose NZP in
the uniform distribution or normal distribution, respectively, and then establish
its own performance prediction model. In the numerical experiments, we used
our model to estimate the execution time of different SpMV kernels with 30 ma-
trices, these matrices are from the University of Florida Sparse matrix collection
[17]. The experimental results show that the average prediction error of our
models are two to three times lower than [16] at least, some matrix even tens of
times lower.

The remainder of this paper is organized as follows: Section 2 gives some pre-
liminaries and Section 3 shows the details of the performance prediction model.
Experimental results and analyses are reported in Section 4. Finally, some con-
clusions and future works are stated in Section 5.

2. Preliminaries

Firstly, we state in brief the GPU architecture and CUDA (Compute Unified De-
vice Architecture) programming model. Traditionally, GPUs have been espe-
cially designed to handle the computation for computer graphics in real-time.
Today, they are increasingly being exploited as general-purpose attached pro-
cessor to speed-up computations in image processing, physical simulations, data
mining, linear algebra, etc. [3]. It is suitable for processing massively parallel
tasks, which have high density and simple branching logic. CUDA introduced by
NVIDIA is similar in style to a single program multiple data (SIMD) software
model [18]. CUDA programs on the host (CPU) invoke a kernel which runs on
the device (GPU). All threads within a block are executed concurrently on a ar-

R. X. Wang et al.

68

chitecture [14]. In addition, when a multiprocessor is given one or more thread
blocks to execute, it partitions them into groups of 32 parallel threads termed
warp.

Four sparse matrix storage formats used in our model are described below.
The CSR is probably the most popular format for storing general sparse matrices
[19]. To parallelize the SpMV for a matrix in the CSR format, a simple scheme
called CSR-S (CSR scalar) kernel [2] is to assign each thread by one row. The
main drawback of this scheme is that the pattern of memory access is
un-coalesced, so it shows not very efficient. A better approach, termed CSR-V
(CSR vector) is proposed in [2] and modified in [3] to realize the memory access
contiguously. [2] assign a warp (32 threads) to each row, while [3] assign each
row a half-warp (16 threads). In this approach, since all threads within a warp or
a half-warp access non-zero elements of one row, these accesses are more likely
to belong to the same memory segment, so the chance of coalescing should be
higher. In addition, CSR-V kernel in [3] will be used in our model. ELL format is
efficient if the maximum number of non-zeros per row is not substantially dif-
ferent from the average. However, when the number of non-zeros varies largely
between rows, excess padded zeros decrease the performance of SpMV. The JAD
can be viewed as a generalization of ELL format which removes the assumption
on the fixed-length rows [3]. Compared to the ELL format, there are fewer ze-
ro-padding in the JAD format, so the performance of JAD will be better than
ELL when implement SpMV on GPUs. Other details of these sparse matrix sto-
rage formats can be consulted in [19].

3. The Performance Prediction Model for SpMV

The work-flow of our model is similar to [16], which contains two phases. The
main difference is the criteria for generating the benchmark matrices, which we
described in follows.

3.1. Phase One: The Establishment of Fitting Function for
Performance Prediction

Firstly, we give the definition of matrix strip. The strip of a matrix is a maximum
sub-matrix that can be handled by a GPU with a full load of thread blocks within
one iteration. Let SMN be the number of streaming multiprocessors for a
NVIDIA GPU, HWN be the number of half-warps per multiprocessor and TN
denote the number of threads per multiprocessor. Then, the size of strip for
CSR-V, CSR-S, ELL and JAD format can be computed as follows:

CSR-V SM HWS N N= × (1)

CSR-S SM TS N N= × (2)

ELL JAD CSR-SS S S= = (3)

Secondly, we state the criteria for generating benchmark matrices.
• The number of rows (R):

R S I= × (4)

R. X. Wang et al.

69

where I is a positive integer, S is the size of strip defined for four formats
(in different sub-index) as above.
• The number of non-zero elements per row (NZP):

In [16]’s model, each row has the same NZP for the benchmark matrices.
However, NZP will not be same exactly for a target matrix in practical situa-
tions. So we combine with the characteristics of the matrix structure and let NZP
to meet a certain distribution. Two distributions will be adopted: normal and
uniform. In addition, the mean of the distribution will be treated as NZP . The
benchmark matrices meet two kinds of distribution can be generated by Matlab.
In addition, we assume that then on-zero elements are in single precision (float).
• The number of columns (C):

For the sake of simplicity, the benchmark matrices generated in our numerical
experiments will be square. Obviously, it should be assumed that NZC P> .

Thirdly, we set parameters of benchmark matrices.
In order to get more accurate fitting functions in our models, a series of

benchmark matrices will be generated according to the above criteria. A bench-
mark matrix is only determined by R and NZP . Since R S I= × , where S is
fixed for a certain sparse matrix format, we just need change the value of I to
get different benchmark matrices. Due to NZP in the benchmark matrices fol-
lows two kinds of distributions, so it is determined by the mean of each distribu-
tion based on the distribution density P . Then combine the value of I and
P , we can obtain a benchmark matrix.
• The number of strips (I):
 CSR-V: Let 1, 2,3, ,9,10,15, 20, 25, , 45,50I = � �

In our experimental platform, the size of matrix strip for CSR-V format is
fewer than other formats, in order to predict the performance accurately, we in-
crease the value of I to 50.
 CSR-S, ELL, JAD: Let 1, 2,3, ,9,10I = �
• The distribution density (P):

 CSR-V: Let 4 8 16 512 1024 1536 2048 2560 3072, , , , , , , , ,P
R R R R R R R R R

= �

Because of out of memory occurred in Matlab when P is too large, so we
make 3072 R as the maximum value, but it does not affect the accuracy of the
performance prediction.

 CSR-S, ELL, JAD: Let 4 8 16 512 1024, , , , ,P
R R R R R

= �

Finally, the formula for calculating average the execution time of benchmark
matrices BT is same as that of [16].

()() ()()1 1R C C R C Cj j
B

M V M V
T

β αφ φ

β α
× ×= =

× − ×
=

−
∑ ∑

 (5)

where R CM × denotes a benchmark matrix of dimension R C× ; CV is a ran-
dom vector of length C ; α and β are the number of executions and α β< .
φ is the execution time for each time the benchmark matrix be executed. For a
target matrix with RN rows and NZN non-zero elements, the number of

R. X. Wang et al.

70

strips I and the number of non-zero elements per row NZP with four formats
can be compute as follows:

CSR-V CSR-S ELL JAD
CSR-V CSR-S ELL JAD

, , , R R R RN N N NI I I I
S S S S

= = = =

 (6)

Let D be the set consisting of the number of non-zero elements in each row
of the target matrix. Then NZP is set to be mode of D for CSR-V matrix,
while it is the maximum value of D for CSR-S, ELL, JAD matrices.

3.2. Phase Two: Prediction Based on the Performance Model

According to the statistics methods, we fit the performance function of SpMV
for different storage formats, which based on three parameters of benchmark
matrices: I , NZP and BT . After the performance function obtained, we can
estimate the execution time of SpMV for a target matrix TT by substituting two
parameters I and NZP of the target matrix into it.

3.2.1. CSR-V Format
After a large amount of experiments and fitting, we found that for CSR-V ma-
trices, the relationship between BT and NZP is different when NZP is smaller
or larger than the number of maximum threads per block (1024 for GeForce
GTX 540 M). Therefore, the performance fitting function is obtained by the fol-
lowing method.
• Establish the function ()NZT P

For the benchmark matrices with the same number of strips, we establish the
relationship between NZP and the execution time BT for SpMV. The fitting
functions of two distributions for the number of strips 40 are shown in Figure 1.
As can be seen, the relationship between NZP and BT is approximately linear,
so we make ()NZ NZT P m P n= × + .
• Establish the function ()E I

For the benchmark matrices with same NZP , we establish the relationship
between I and the execution time E (i.e. BT in the above) of the bench-
mark matrices for SpMV. The fitting functions of two distributions for 64NZP =
and 2048 are shown in Figure 2. The relation between I and E is also ap-
proximately linear, so we make ()E I p I q= × + .
• Estimate the execution time of a target matrix

For a target matrix, we need to calculate two parameters according to the Eq-
uation (6) and D : the number of non-zero elements per row 0P and the
number of strips 0I , then derive ()0T P and ()0E I from above functions,
respectively. In order to combat the effects of the difference about functions
when the number of non-zero elements per row is smaller or larger than 1024,
another execution time 0t of any previously tested benchmark matrix whose

NZP is set to be the number of non-zero elements per row in ()E I . At this
point, estimated execution time of the target matrix in CSR-V format is

() ()0
0 0

0

T P
T E I

t
= × .

R. X. Wang et al.

71

Figure 1. The fitting functions of two distributions for 40I = ((a) and (b): 1024NZP < , (c) and (d): 1024NZP >).

Figure 2. The fitting functions of two distributions for 64NZP = and 2048 ((a) and (b): 64NZP = , (c) and (d): 2048NZP =).

R. X. Wang et al.

72

3.2.2. CSR-S Format
• Establish the function ()NZT P

For the benchmark matrices with the same I , we establish the relationship
between NZP and BT for SpMV. The fitting functions of two distributions for

5I = are shown in Figure 3. As showed in the Figure, the relationship between

NZP and BT is approximately linear, so we make () () ()1 1NZ NZT P f I P g I= × +
(1I can be any arbitrary value within the range of I).
• Establish the function ()f I

For sets of benchmark matrices with different number of strips, we establish
the relationship between the number of strips I and the coefficient of the li-
near functions ()f I in ()NZT P . The fitting functions of two distribution are
shown in Figure 4. In Figure 4, it is approximately linear between I and
()f I , so we make ()f I A I B= × + .

• Establish the function () () ()1E I f I P g I= × +
For Like the fitting function ()NZT P , we establish the relationship between

the number of strips I and the execution time E (i.e. BT in the above) of
the benchmark matrices with the same number of non-zero elements per row

Figure 3. The fitting functions of two distributions for 5I = .

Figure 4. The fitting functions for I versus ()f I .

R. X. Wang et al.

73

1P , which can be any arbitrary value within the range defined NZP . The fitting
functions of two distributions for 32NZP = are shown in Figure 5. We can see
that the relationship between I and E is approximately linear, so we make
() () ()1E I f I P g I= × + , and the intercept function () () () 1g I E I f I P= − × .

• Estimate the execution time of a target matrix
Given a target matrix, we need to calculate two parameters according to the

Equation (6) and D : the number of non-zero elements per row 0P and the
number of strips 0I , then derive ()0f I and ()0g I from above functions,
respectively. At this moment, estimated execution time of the target matrix in
CSR-S format is () () ()0 0 0 0T P f I P g I= × + .

After getting the performance function of CSR-S format, we find that the rela-
tionship between dependent variables BT and two variables NZP , I is saddle
surface in the functional image, that is to say, when I is fixed, the relationship
between BT and NZP is linearity and vice versa, which coincided with the 3D
fitting image we get in Matlab, as shown in Figure 6, which the darker of the
colors means the smaller of the values.

3.2.3. ELL and JAD Formats
Note that, the granularity of ELL and JAD format is the same as CSR-S format,
which assigns one thread to each row to implement SpMV on GPUs. Therefore,
fitting the performance function of ELL and JAD format is done in a similar way
with CSR-S format, except the functional expressions. In addition, the 3D im-
ages obtained by the Matlab can be fitted with the performance functions and
need not be repeated here.

4. Experimental Results and Analyses

The experiments are performed on NVIDIA GeForce GTX 540 M with 1 GB
global memory, the operating system is a 64-bit Linux with CUDA 6.5 driver.
We evaluated our performance prediction model on 30 matrices with each
sparse matrix storage format, respectively. These matrices are square real ma-
trices from the University of Florida Sparse matrix collection [17]. Moreover,

Figure 5. The fitting functions of two distributions for 32NZP = .

R. X. Wang et al.

74

Figure 6. The 3D fitting images of two distributions for BT .

in order to compare with [16]’s model, we also implement the model in [16]
whose NZP is fixed in benchmark matrices. The estimated time and the perfor-
mance difference rate of the 30 target matrices in four sparse matrix storage for-

R. X. Wang et al.

75

mats with three models are given, which is convenient to compare with each other.
We define the performance difference rate for different model as

estimated time mesured time
mesured timerD

−
= (7)

For CSR-V format, the performance difference rate of SpMV in three models
of 30 matrices is shown in Figure 7. We can see that rD in [16]’s model is
5.05% on average, while it is 2.42% and 2.56% for our normal and uniform mod-
el, respectively. Compared with the [16]’s model, the prediction accuracy of the
normal model and uniform model are improved by 2.08 times and 1.97 times on
average, respectively.

Furthermore, there are three cases for the prediction accuracy of [16]’s model
is higher than that of uniform model (such cavity05), and that of normal model
(such as bcsstk04). The prediction accuracy of normal distribution model is
higher than uniform distribution model for bp_1600 and other 17 matrices.

When implement SpMV on GPU with CSR-S format, the performance dif-
ference rate in three models of 30 matrices is shown in Figure 8. The average

rD in [16]’s model, our uniform and normal model is 5.44%, 3.21% and 3.52%,
respectively. The average factor for the prediction accuracy of uniform model
higher than that of [16]’s model is 1.69, while for normal model, it is 1.54.

In addition, the prediction accuracy of [16]’s model is higher than that of
normal model on 15 matrices (such as bcsstk16), while for uniform model the
better number is 12 (such as bips98_1142). The better number for normal mod-
el vs. uniform model is 13 (such as bayer09) in 30 cases.

Figure 7. The performance difference rate of SpMV on CSR-V matrices.

R. X. Wang et al.

76

The similar results for ELL matrices are given in Figure 9. It says the average

rD of three models are 5.79%, 3.53% and 3.26%, respectively. The average

Figure 8. The performance difference rate of SpMV on CSR-S matrices.

Figure 9. The performance difference rate of SpMV on ELL matrices.

R. X. Wang et al.

77

better number for the factor of normal and uniform model vs. [16]’s model are
1.77, 1.64 respectively. The better number for [16]’s model vs. normal model and
uniform model is the same 7:23, while for normal model vs. uniform model it is
20:10.

Figure 10 give the results for JAD matrices. rD of three models are 5.97%,
3.94% and 4.28% on average, respectively. The average improved factor for nor-
mal and uniform model over [16]’s model are 1.46 and 1.35. The better number
for [16]’s model vs. normal model is 9:21, while for uniform model it is 11:19,
while for normal model vs. uniform model it is 16:14.

The execution time of four SpMV kernels in three model on 30 matrices is
shown in Figures 11-14. There is large difference in the execution time for all
matrices in different storage formats. So we put the execution time into two fig-
ures: the shorter and the longer in (a) and (b), respectively. Almost all of the es-
timated time of the matrices in four different storage formats is greater than the
actual measured time. The possible reasons are that we take the number of strips
I by rounding up to an integer.

5. Conclusion and Future Work

Aiming at the better performance model of SpMV on GPU based on statistics
and [16], we have presented two new models, which consider the structure of
matrices. We predict four SpMV CUDA kernels: CSR-V, CSR-S, ELL and JAD.
The numerical result shows that the prediction accuracy of our models is higher
than that of [16]’s model.

Figure 10. The performance difference rate of SpMV on JAD matrices.

R. X. Wang et al.

78

Figure 11. The comparison of estimated and measured time on CSR-V matrices.

R. X. Wang et al.

79

Figure 12. The comparison of estimated and measured time on CSR-S matrices.

R. X. Wang et al.

80

Figure 13. The comparison of estimated and measured time on ELL matrices.

R. X. Wang et al.

81

Figure 14. The comparison of estimated and measured time on JAD matrices.

R. X. Wang et al.

82

In the future, we will extend our performance prediction model to other
SpMV with different storage formats on different kinds of GPUs. In addition, we
will propose a new performance model to predict the execution time of a class of
iterative methods on heterogeneous parallel machines.

References
[1] Bolz, J., Farmer, I., Grinspun, E. and Schroder, P. (2005) Sparse Matrix Solvers on

the GPU: Conjugate Gradients and Multigrid. ACM Transactions on Graphics, 22,
917-924.

[2] Bell, N. and Garland, M. (2009) Implementing Sparse Matrix-Vector Multiplication
on Throughput-Oriented Processors. Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis, Portland, 14-20 November
2009, Article No. 18. https://doi.org/10.1145/1654059.1654078

[3] Li, R.-P. and Saad, Y. (2013) GPU-Accelerated Preconditioned Iterative Linear
Solvers. The Journal of Supercomputing, 63, 443-466.
https://doi.org/10.1007/s11227-012-0825-3

[4] Vazquez, F., Ortega, G., Fernandez, J.J. and Garzon, E.M. (2010) Improving the
Performance of the Sparse Matrix Vector Product with GPUs. Proceedings of the
10th IEEE International Conference on Computer and Information Technology,
IEEE Computer Society, Bradford, 29 June-1 July 2010, 1146-1151.

[5] Monakov, A., Lokhmotov, A. and Avetisyan, A. (2010) Automatically Tuning
Sparse Matrix-Vector Multiplication for GPU Architectures. In: Patt, Y.N., Foglia,
P., Duesterwald, E., Faraboschi, P. and Martorell, X., Eds., High Performance Em-
bedded Architectures and Compilers. HiPEAC 2010. Lecture Notes in Computer
Science, Vol. 5952. Springer, Berlin, Heidelberg, 111-125.
https://doi.org/10.1007/978-3-642-11515-8_10

[6] Zheng, C., Gu, S., Gu, T.-X., Yang, B. and Liu, X.-P. (2014) BiELL: A Bisection
ELLPACK Based Storage Format for Optimizing SpMV on GPUs. Journal of Paral-
lel and Distributed Computing, 74, 2639-2647.
https://doi.org/10.1016/j.jpdc.2014.03.002

[7] Gu, T.-X., Zheng, C., Gu, S. and Liu, X.-P. (2014) Solving Sparse Linear Systems on
GPUs Based on the BiELL Storage Format. Proceedings of International Conference
on Parallel, Distributed Systems and Software Engineering, Singapore, 96-107.

[8] Choi, J.W., Singh, A. and Vuduc, R.W. (2015) Model-Driven Autotuning of Sparse
Matrix-Vector Multiply on GPUs. ACM SIGPLAN Notices, 45, 115-126.
https://doi.org/10.1145/1837853.1693471

[9] Guo, P., Wang, L.-Q. and Chen, P. (2014) A Performance Modeling and Optimiza-
tion Analysis Tool for Sparse Matrix Vector Multiplication on GPUs. IEEE Trans-
actions on Parallel and Distributed Systems, 25, 1112-1123.
https://doi.org/10.1109/TPDS.2013.123

[10] Resios, A. (2011) GPU Performance Prediction Using Parametrized Models. Mas-
ter’s Thesis, Utrecht University, Utrecht.

[11] Dinkins, S. (2012) A Model for Predicting the Performance of Sparse Matrix Vector
Multiply (SpMV) Using Memory Bandwidth Requirements and Data Locality.
Master’s Thesis, Colorado State University, Fort Collins.

[12] van Werkhoven, B., Maassen, J., Seinstra, F.J. and Bal, H.E. (2014) Performance
Model for CPU-GPU Data Transfers. 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, Chicago, 26-29 May 2014, 11-20.

https://doi.org/10.1145/1654059.1654078
https://doi.org/10.1007/s11227-012-0825-3
https://doi.org/10.1007/978-3-642-11515-8_10
https://doi.org/10.1016/j.jpdc.2014.03.002
https://doi.org/10.1145/1837853.1693471
https://doi.org/10.1109/TPDS.2013.123

R. X. Wang et al.

83

[13] Baghsorkhi, S.S., Delahaye, M., Gropp, W.D. and Hwu, W.-M.W. (2012) Analytical
Performance Prediction for Evaluation and Tuning of GPGPU Applications.
Workshop on Exploiting Parallelism Using GPUs and Other Hardware-Assisted
Methods (EPHAM’09), in conjunction with the 2009 International Symposium on
Code Generation and Optimization (CGO), Seattle, Washington DC.

[14] Hong, S. and Kim, H. (2009) An Analytical Model for a GPU Architecture with
Memory-Level and Thread-Level Parallelism Awareness. Proceedings of the 36th
Annual International Symposium on Computer Architecture, Austin, 20-24 June
2009, 152-163. https://doi.org/10.1145/1555754.1555775

[15] Schaa, D. and Kaeli, D. (2009) Exploring the Multiple-GPU Design Space. Proceed-
ings of the 2009 IEEE International Parallel & Distributed Processing Symposium,
Rome, 23-29 May 2009, 1-12. https://doi.org/10.1109/IPDPS.2009.5161068

[16] Guo, P. and Wang, L.-Q. (2012) Accurate CUDA Performance Modeling for Sparse
Matrix-Vector Multiplication. Proceeding of the 2012 International Conference on
High Performance Computing and Simulation (HPCS), Madrid, 2-6 July 2012,
496-502. https://doi.org/10.1109/HPCSim.2012.6266964

[17] Davis, T. and Hu, Y. (2016) The University of Florida Sparse Matrix Collection.
http://www.cise.ufl.edu/research/sparse/matrices

[18] Nvidia Corporation (2011) NVIDIA CUDA Programming Guide. Santa Clara, Nvi-
dia Corporation, USA.

[19] Saad, Y. (2003) Iterative Methods for Sparse Linear Systems. Society for Industrial
Applied Mathematics, Philadelphia. https://doi.org/10.1137/1.9780898718003

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jcc@scirp.org

https://doi.org/10.1145/1555754.1555775
https://doi.org/10.1109/IPDPS.2009.5161068
https://doi.org/10.1109/HPCSim.2012.6266964
http://www.cise.ufl.edu/research/sparse/matrices
https://doi.org/10.1137/1.9780898718003
http://papersubmission.scirp.org/
mailto:jcc@scirp.org

	Performance Prediction Based on Statistics of Sparse Matrix-Vector Multiplication on GPUs*
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	3. The Performance Prediction Model for SpMV
	3.1. Phase One: The Establishment of Fitting Function for Performance Prediction
	3.2. Phase Two: Prediction Based on the Performance Model
	3.2.1. CSR-V Format
	3.2.2. CSR-S Format
	3.2.3. ELL and JAD Formats

	4. Experimental Results and Analyses
	5. Conclusion and Future Work
	References

