
Journal of Applied Mathematics and Physics, 2017, 5, 836-843 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

DOI: 10.4236/jamp.2017.54073  April 27, 2017 

 
 
 

Archimedes’ Principle Revisited 

Pirooz Mohazzabi 

Department of Mathematics and Physics, University of Wisconsin-Parkside, Kenosha, WI, USA 

 
 
 

Abstract 
Based on Newton’s third law of motion, we present a different but quite gen-
eral analysis of Archimedes’ principle. This analysis explains the reduction in 
apparent weight of a submerged object in all cases, regardless of its position in 
the fluid. We also study the case in which the object rests on the bottom of the 
container where the net hydrostatic force on it is downward, and explain 
where in this case the reduction in the apparent weight comes from. 
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1. Introduction 

Although the law of buoyancy was discovered by Archimedes over 2200 years 
ago, even today from time to time new articles appear in the literature inspecting 
its various aspects. More specifically, in the last two decade or so, more than a 
dozen papers have been published in different journals, ranging from pedagogi-
cal points of view [1] [2] to scrutinizing the original statements made by Archi-
medes [3] [4]. 

Archimedes’ principle is one of the most essential laws of physics and fluid 
mechanics. Basically the principle states an object immersed in a fluid is buoyed 
up by a force equal to the weight of the fluid that it displaces. This principle, 
which is perhaps the most fundamental law in hydrostatics, explains many nat-
ural phenomena from both qualitative and quantitative points of view. The prin-
ciple of isostasy, for example, which states that Earth’s crust is in floating equili-
brium with the denser mantle below [5] [6], is simply based on Archimedes’ 
principle. 

One of the applications of Archimedes’ principle is in measurement of density 
of an irregularly shaped object. The simplest method is to use a graduated cy-
linder filled with water to a certain level. The object is then slowly lowered into 
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the cylinder until it becomes completely submerged. The increase in the level of 
water inside the cylinder is simply equal to the volume of the object. This me-
thod, however, requires that the diameter of the cylinder be at least as large as 
the diameter of the object, which reduces the accuracy of the measurement. In 
addition, this method certainly cannot be used to measure the volume of a large 
object such as a boulder. The problem, however, can be resolved by taking ad-
vantage of Archimedes’ principle. A container partially filled with water is 
placed on a scale and the reading of the scale is recorded. The object is then 
hung from a string above the water, and slowly lowered into it until it is com-
pletely submerged, but without touching the bottom of the container (if the ob-
ject is less dense than water, it can be pushed under water). The reading of the 
scale will increase by the mass of the displaced water (assuming that the scale 
measures mass), from which the volume of the object can be determined [7]. Al-
ternatively, the object can be hung above water from a scale. As the object is lo-
wered into water, the reading of the scale decreases by an amount equal to the 
mass of the displaced water. Thus, a boulder hanging from a spring or dial scale 
can be lowered into a large volume of water, such as a pond or a lake, and from 
the change of the reading of the scale, its volume can be determined. 

Even though Archimedes’ principle is over 2200 years old and despite its im-
portance in hydrostatics, there are still some questions about it that have not yet 
been fully answered in the literature. For instance, debates are still going on re-
garding the interpretation of the principle when an object rests on the bottom of 
a fluid-filled container, where it experiences a net downward force by the fluid. 
It is therefore the objective of this article to derive the principle from a different 
point of view and answer some of the questions associated with the principle 
that have not been settled in the literature. 

2. Derivations of Archimedes’ Principle 

A rigorous derivation of Archimedes’ principle involves the concept of virtual 
work. In this method, the buoyant force is set equal to the negative of the gra-
dient of the potential energy during an infinitesimal virtual displacement of the 
submerged object [8] [9]. This approach applies to objects of any shape; however, 
it has the limitation that the object must be completely surrounded by the fluid 
and that it should not be in contact with the container. 

Alternatively, there are two simpler derivations of the principle [8]. One is 
based on the plausible argument that if the principle were not true, the subvo-
lume of a fluid displaced by an object would not be in equilibrium. More specif-
ically, the net fluid force on an arbitrarily shaped object would be the same as 
that on an equal volume of the fluid which was in equilibrium before it was dis-
placed by the object [10] [11] [12] [13]. Therefore, the buoyant force is equal to 
the weight of the fluid displaced. This argument applies to any object of any 
shape regardless of its position in the container. 

The second approach is based on the variation of hydrostatic pressure fP  as 
a function of depth of the fluid, 
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f fP D gy=                               (1) 

where fD  is density of the fluid, y  is the depth, and g  is the acceleration 
due to gravity. In this approach, an object of simple geometry such as a rectan-
gular or cylindrical block is considered and the net fluid force due to the differ-
ence of hydrostatic pressure at the top and the bottom of the block is calculated 
[14]. This approach is simple; however, the proof for arbitrarily shaped objects is 
more involved as stated above [15], and it works only for objects that are com-
pletely surrounded by fluid. For objects resting on the bottom of the container, 
there is no fluid pressure in the contact area and the proof fails. 

We now present a different quite general, yet simple derivation of Archimedes’ 
principle that is valid regardless of the position of the object in the fluid. In this 
approach, the object can be completely surrounded by the fluid, be in contact 
with the walls of the container, rest on the bottom of the container, or even float 
in the fluid with only a fraction of its volume submerged. 

3. A Different Approach to Archimedes’ Principle 

Consider a fluid of density fD  and an object of arbitrary shape of mass m  
and volume V , denser than the fluid. The fluid is in a container of cross-sec- 
tional area A  and has a height H  before the object enters it, as shown in 
Figure 1(a). The object is supported by a string and, at this time, the tension in 
the string is mg . 

Because fluid forces on the side walls of the container cancel, before the object 
enters the fluid, the net force F  exerted by the fluid on the container is only 
due to the hydrostatic pressure at the bottom of the container, which is given by 

.fF D gHA=                             (2) 

Now we lower the object down into the fluid until it is submerged as shown in 
Figure 1(b). This causes the height of the fluid in the container to increase by 

Hδ , where Hδ  is given by 

VH
A

δ =                              (3) 

Therefore, the net fluid force on the bottom of the container increases by Fδ , 
which is given by 

f fF D g HA D gVδ δ= =                        (4) 

which is exactly equal to the weight of the fluid displaced. Therefore, when the 
object enters the fluid, the level of the fluid increases and the container expe-
riences an additional downward fluid force equal to the weight of the fluid dis-
placed by the object. This downward force can easily be detected by placing the 
container on a scale [7]. But then according to Newton’s third law of motion, the 
container (through the fluid) exerts an equal upward force on the submerged 
object. 

Therefore, regardless of its position, a submerged object experiences an  
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(a)                                 (b) 

Figure 1. A fluid and an object of arbitrary shape which is denser than the fluid. (a) Be-
fore the object is lowered into the fluid, the height of the fluid is H ; (b) When the object 
is lowered into the fluid, the height of the fluid increases by Hδ . 
 
upward force from the container-fluid system which is equal to the weight of the 
fluid displaced, fD gV . Consequently, the tension in the string in Figure 1(b) 
and the reading of the scale in Figure 2(b) (to be explained later) would each be 
given by 

fF mg D gV= −                          (5) 

which is exactly the apparent weight of the object. 
Note that the above analysis remains valid regardless of the position of the 

object in the fluid. Thus the object can be completely surrounded by the fluid, 
rest on the bottom of the container with no fluid under it, touch the walls of the 
container, or even float in the fluid with only a fraction of it submerged. In the 
case of a floating object, however, the volume V  in the above equations should 
be taken to be the sub-volume of the object that is submerged. 

A question that normally comes up during discussions of Archimedes’ prin-
ciple is that when an object in the form of a rectangular block rests on the bot-
tom of a container with no fluid under it, where does the upward buoyant force 
come from? In fact, in this case because of the fluid pressure on top of the block, 
the net hydrostatic force on it would be downward, resulting in the apparent 
weight of the block to be greater than its true weight. But this conclusion is in 
complete contradiction with all observations since even in this case the apparent 
weight of the block is less than its true weight by the weight of the fluid dis-
placed. 

To resolve this contradiction, one may argue that in reality when a submerged 
object rests on the bottom of the container, there is almost always some fluid 
between the surfaces that appear to be in contact unless the surfaces are specially 
prepared and treated to prevent fluid seepage. This is because for ordinary flat 
surfaces, the actual area of contact is always much smaller than the apparent 
contact area [16] [17]. In fact the real contact area can be less than the apparent  
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(a)                                 (b) 

Figure 2. (a) An object denser than a fluid rests on the bottom of a container filled with 
the fluid. A weight scale is also located at the bottom of the container. The dashed region 
shows a volume of the fluid equal to the volume of the object; (b) The object has been 
moved to the top of the scale, displacing an equal volume of the fluid from that region. 
 
macroscopic area by a factor of 410  [18]. However, if the surfaces are prepared 
properly to prevent fluid seepage between them, then obviously there is no fluid 
pressure there. Therefore, if a block rests on the bottom of the container with no 
fluid seepage between them, there would be no upward fluid force on the object 
and consequently there would be no buoyant force on it. Nonetheless, as ex-
plained below, experiments show that the even under these circumstances the 
apparent weight of the object is less than its true weight by the weight of the flu-
id displaced. 

To resolve this apparent paradox, Jones and Gordon [19] designed an experi-
ment to eliminate the upward fluid force on the bottom of a submerged object. 
They used an aluminum block resting on another aluminum block with highly 
flat contact surfaces. The surfaces were flat enough to prevent water from seep-
ing between them but did not result in significant intermolecular forces between 
them [20]. They observed that the net fluid force on the object was in fact down- 
ward. Several years later, Bierman and Kincanon [3] re-examined this problem 
by using a submerged block in contact with the bottom of a container which had 
a hole in it, and studied the force needed to lift the block. Their experiment 
showed that this force increased linearly with the depth of the fluid, consistent 
with the laws of hydrostatics. Again, these experiments showed that the net fluid 
force on the object was indeed downward. Bierman and Kincanon concluded 
that in the statement of Archimedes’ principle involving the buoyant force; it 
should be stressed that the submerged object must be surrounded by the fluid 
and not simply submerged. 

What is missing in the interpretation of the experimental results of Jones and 
Gordon and of Bierman and Kincanon is that these experiments do not measure 
the apparent weight of the object. What they measure is the force needed to sep-
arate the object from the bottom of the container. This is similar to a suction cup 
sticking to a tabletop, where the net fluid (atmosphere) force on it is downward. 
The force needed to lift the suction cup straight up is much greater than the 
weight of the suction cup. To measure the weight of the suction cup, it must be 
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placed on a scale, regardless of whether air is driven out from under it or not. 
One year later, Graf [4] argued that the reading of a scale located at the bot-

tom of a container is the same when a submerged block is balanced on a thin pin 
and the pin bottom rests on the scale (where there is buoyant force) and when 
the block rests on the scale without any fluid seepage between them (where there 
is no buoyant force). He then concluded that when an object denser than a fluid 
is submerged in it, the apparent weight of the object is the same regardless of 
whether the submerged object rests on the bottom of the container or not. 
However, Graf did not explain where the upward force in the latter case comes 
from. In what follows, we address this issue and explain where in this case the 
reduction of the apparent weight comes from. 

Consider an object of any shape of mass m  and volume V  resting at the 
bottom of a container filled with a fluid of density fD , as shown in Figure 2(a). 
A scale similar to that described by Graf [4] is also placed at the bottom of the 
container, and its tare function is used to zero its reading. The region enclosed 
by the dashed line contains a volume of the fluid that is equal to the volume of 
the object. 

We now move the object and place it on the scale, as shown in Figure 2(b). 
There may or may not be fluid seepage between the object and the scale, which is 
immaterial. As a result, the weight of the object mg  is added to the scale but, at 
the same time, the weight of the fluid in the dashed region is removed from the 
top of the scale. Therefore, the reading of the scale S  will be 

fS mg D gV= −                        (6) 

where the second term on the right hand side is the weight of the fluid in the 
dashed region. Consequently, the apparent weight of the object is less than its 
true weight by exactly the buoyant force on the object as if it was completely 
surrounded by the fluid. This analysis clearly shows where the reduction in the 
apparent weight in this case comes from; it comes from removal of a volume of 
fluid, equal to the volume of the object, from the region directly above the scale. 

4. Discussion and Summary 

In this article, we have looked at Archimedes’ principle from a different, but 
quite general, perspective in the context of Newton’s third law of motion. When 
an object enters a fluid in a container, the height of the fluid increases, resulting 
in a higher hydrostatic pressure and hence a higher downward force on the bot-
tom of the container. Then according to Newton’s third law, the container-fluid 
system exerts an equal upward force on the object resulting in the reduction of 
its apparent weight, regardless of the position of the object in the fluid. We have 
also shown where the reduction of the apparent weight of a submerged object 
comes from, when the object rests on the bottom of the container with no fluid 
seepage between them. The analysis presented here helps clarify why Archi-
medes’ principle works the way it does, and why a submerged object appears to 
be lighter even when the net fluid force on it is downward. 
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Finally, we point out that Archimedes’ principle does not consider surface 
tension. In fact, presence of surface tension results in violation of the principle 
[21]. Furthermore, Archimedes’ principle breaks down in complex fluids [22]. 
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