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Abstract 
We prove that any nonrelativistic classical system must obey a statistical wave 
equation that is exactly the same as the Schrödinger equation for the system, 
including the usual “canonical quantization” and Hamiltonian operator, pro-
vided an unknown constant is set equal to  . We show why the two equa-
tions must have exactly the same sets of solutions, whereby this classical sta-
tistical theory (CST) and nonrelativistic quantum mechanics may differ only 
in their interpretations of the same quantitative results. We identify some of 
the different interpretations. We show that the results also imply nonrelativis-
tic Lagrangian classical mechanics and the associated Newtonian laws of mo-
tion. We prove that the CST applied to a nonrelativistic rigid rotator yields 
spin angular momentum operators that obey the quantum commutation rules 
and allow both integer and half-odd-integer spin. We also note that the CST 
applied to systems of identical massive particles is mathematically equivalent 
to nonrelativistic quantum field theory for those particles. 
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1. Introduction 

During the latter part of the nineteenth century, Ludwig Boltzmann initiated the 
application of statistics to many-particle systems. He pursued this approach 
despite the strongly prevailing belief in a continuum structure of matter during 
that period. With the introduction of the ensemble concept by Willard Gibbs in 
1902, the resulting statistical mechanics achieved several great successes, 
including the statistical definition of entropy and derivations of thermodynamics 
and fluid mechanics. 

During the past century, the belief that quantum mechanics (QM) is the truly 
fundamental theory of nature has become overwhelmingly prevailing. On the 

How to cite this paper: Goedecke, G.H.  
(2017) Statistical Description of Nonrelati-
vistic Classical Systems. Journal of Modern 
Physics, 8, 786-802. 
https://doi.org/10.4236/jmp.2017.85050  
 
Received: March 5, 2017 
Accepted: April 22, 2017 
Published: April 25, 2017 
 
Copyright © 2017 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2017.85050
http://www.scirp.org
https://doi.org/10.4236/jmp.2017.85050
http://creativecommons.org/licenses/by/4.0/


G. H. Goedecke 
 

787 

basis of an enormous number of correct predictions, and apparently no incorrect 
ones, this belief continues to strengthen despite the puzzling fact that QM makes 
only statistical predictions. How can a statistical theory be fundamental? Any 
such theory must involve a statistical treatment of some number of underlying 
quantities. 

Many attempts have been made to establish a classical statistical foundation 
for the single-particle Schrödinger or Dirac equation, e.g., Bohm’s hidden 
variable theory [1] [2]; the stochastic mechanics approach of Nelson [3] and 
Baublitz [4]; Okamoto’s approach using a complex Langevin equation [5]; 
Srinivasan and Sudarshan’s use of quaternion measures and the Langevin 
equation (to obtain the Dirac equation) [6]; use of the Fokker-Planck equation 
[7]; and extensive work on the global statistical hidden variable theory known as 
stochastic electrodynamics (SED) [7] [8] [9] [10] [11]. (The first two of these 
SED references are to review articles that contain references to the very many 
seminal and comprehensive papers on SED published during the years 1960-1990. 
The last three are to more recent papers on SED). Also, Gilson [12] and Collins 
[13] [14] [15] [16] used the Madelung transform [17] in reverse to derive a wave 
equation that must be obeyed by any system that satisfies a continuity equation 
for a non-negative density and associated flux in three-dimensional Eulidean 
space. Their wave equation has exactly the same form as the Schrödinger 
equation for a single pointlike massive spinless particle, but contains unknown 
functions instead of the potential energy and electromagnetic vector potential, 
and an unknown constant instead of Planck’s constant. The unknown functions 
and constant would be different for, say, a classical fluid than for the statistical 
description of a one-particle system. 

None of the abovementioned approaches has been shown to apply to all 
classical systems. The principal goals of the work reported in this paper are to 
develop a statistical description of the nonrelativistic classical motions of the 
coordinates of any system, based on the probability continuity relation in the 
coordinate configuration space, and to investigate how close is that description 
to the nonrelativistic quantum mechanics of the system. 

We pursue those goals as follows: In section 2, we consider a general non- 
relativistic classical system involving N  generalized (curvilinear or rectilinear) 
coordinates that define the N -dimensional configuration space (not the phase 
space) of the system. We note that if for any reason we wish to treat the system 
statistically, we may apply the continuity equation for the probability density 
and flux in that configuration space. Then we prove that this equation alone 
implies the existence of a statistical wave equation (SWE) that is exactly the same 
as the Schrödinger equation (SEQ) for the system, provided an unknown constant 
is set equal to   and two unknown functions are set equal to the physical 
potentials in the N -space. The new results include an actual derivation of 
general “canonical quantization” and the operator Hamiltonian, as well as a 
derivation of nonrelativistic Lagrangian classical mechanics and the associated 
Newton’s laws of motion. Furthermore, we show that the quantitative solutions 
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of the SWE must be exactly the same as those of the axiomatic SEQ for any given 
nonrelativistic system, but that some interpretations of these solutions must be 
different. In section 3, we provide analyses for three important illustrative 
examples, including particles with spin and systems of arbitrarily many identical 
particles. In sections 4 and 5, we offer a brief summary and discussion of our 
results, as well as a few conclusions. 

2. General Statistical Wave Equation 

In this section we treat general nonrelativistic classical systems, which are 
invariably described in terms of N  of generalized coordinates, where N  may 
be any integer 1≥ . For example, for a classical nonrelativistic system of pN  
identical particles, each having only translational and rigid rotational degrees of 
freedom, the coordinates for each particle could be three Cartesian coordinates 
for the center-of-mass (CM) motion, and three Euler angles for the rigid 
rotational motion about the CM, or altogether 6 pN N=  generalized coordinates 
that comprise the configuration space of the system. 

2.1. Generalized Coordinates for Nonrelativistic Classical Systems 

We include this subsection to establish our notation, which is the notation used 
by Lichnerowicz [18] and Hartle [19], simply extended to N  dimensions. We 
represent the generalized-coordinate manifold of a system under consideration 
by the set 1, , Nx x x =   , where each coordinate px  is an independent real 
continuous variable that may have any physical dimension and any range. A 
classical nonrelativistic system moves on a trajectory in this N -space given by 

( ) ( ), 1, ,p px X t p N = =  , where t  is the continuous time variable as read 
on a reference clock. 

For such systems, the kinetic energy T  is always a positive definite quadratic 
form in the coordinate velocities d dp pX X t= :  

( ) ( )1 2 ,p q
pqT mg X X X=                       (1) 

where we use the extended Einstein summation convention that all repeated 
indices are summed over from 1 to N . Here, 0m >  is an overall mass para- 
meter that may be chosen at will, and pq qpg g=  is the metric of the N -space, 
whereby the system configuration space is a Riemannian space. In general, 
off-diagonal pqg  may be nonzero, so the coordinates may not be orthogonal. 
We use the coordinate basis vector approach to general tensor calculus [18] [19] 
[20]. That approach employs the covariant (subscripted) basis vectors ( )p xe  
and the contravariant (superscripted) basis vectors ( )p xe  as dual sets of basis 
vectors for the linear vector space that is tangent to the configuration space. The 
generalized inner or dot products of these basis vectors are symmetric and are 
defined by  

;    ;    ,q q p q pq
p p p q pqg gδ⋅ = ⋅ = ⋅ =e e e e e e                (2) 

where q
pδ  is the Kronecker delta, and the matrix with elements pqg  is the 

inverse of the metric matrix that has elements pqg . Any N -vector field ( ),x tA  
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may be written as a linear combination (LC) of either set of basis vectors:  
( ) ( ) ( ) ( ) ( ), , ,p p

p px t x A x t x A x t= =A e e . The fields ( ),p
pA A  are the (contra- 

variant, covariant) components of ( ),x tA . Indices may be raised or lowered 
with the metric: ( ) ( )p pq

qx g x=e e ; q
p pqA g A= ; etc. Please see e.g. Chap. 20 of 

Hartle’s textbook [19], esp. Table 20.1, for more details. 

2.2. Statistical Wave Equation 

In treating classical motions statistically, one may always begin with the coor- 
dinate probability density. The fine-grained coordinate probability density in the 
N -space is  

( ) ( )( )1 2

1
, ,

N
f q q

q
x t g x X tρ δ−

=

= −∏  

where δ  is the Dirac delta and g  is the magnitude of the determinant of the 
metric matrix. Note that the integral of fρ  over all N -space is unity, since the 
volume element is 1d d dN NV g x x=  . The corresponding fine-grained proba- 
bility current density is ( ), .f p f

p X x tρ=j e   These quantities satisfy the N -space 
continuity equation 0f f

tρ∂ +∇ ⋅ =j ; this equation is necessary and sufficient 
to guarantee conservation of probability. The N -space vector gradient operator 
∇  is defined [19] by  

( ) ,p
px= ∂e∇                         (3) 

where p
p x∂ = ∂ ∂ . 

These fine-grained probability densities are almost never useful in application, 
because it would be virtually impossible to solve for the detailed coordinate 
trajectories ( )pX t  even if we knew all the force fields acting on every element 
of the system exactly, which we do not. What is needed are smooth densities that 
are continuous, bounded, and at least first order differentiable. Smooth densities 
have always been (tacitly) assumed to exist in all statistical treatments. In earlier 
work [21] [22] [23] [24], we showed that the smoothing must be accomplished 
by an ensemble average over the global random variables associated with the 
classical statistical description of a system. The smooth coordinate probability 
density ρ  satisfies the requirement that ( ), d Nx t Vρ  be equal to the proba- 
bility that the system coordinates are within the volume element d NV  around 
x  at time t . Conservation of probability demands that the smooth densities 
ρ  and j  must also satisfy the continuity equation  

0.tρ∂ + ⋅ =j∇                         (4) 

Note that Equation (4) must be satisfied irrespective of what stochastic 
process is considered, e.g., Markovian or not, and independently of what kind of 
stochastic dynamics is considered, e.g., the Langevin equation, the Fokker- 
Planck equation, etc., and independently of what kind of position-velocity or 
position-momentum phase space treatment may be valid. Therefore, the statistical 
description of a system’s classical coordinates that evolves from just this conti- 
nuity equation will be incomplete, but still must be obeyed. 
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Now we proceed by following Collins’ method [13] (which mathematically is 
essentially Bohm’s approach in reverse order), but with our new generalization 
to the N -dimensional metric configuration space required by an arbitrary 
nonrelativistic classical system. The first step is to define an N -vector proba- 
bility flow velocity field ( ),x tv  by writing  

( ) ( ) ( ), , , .x t x t x tρ=j v                       (5) 

Then v  is smooth since both ρ  and j  are smooth by definition. (Note 
well that v  is not related directly to the underlying coordinate velocity com- 
ponents ( )pX t ; instead, it is analogous to a fluid flow velocity). This definition 
of v  may always be made provided that ρj  is bounded everywhere, which 
is the case in any physical theory. Then, with no loss of generality, one may 
invoke the N -space analog of Helmholtz’ theorem to express v  as the sum of 
a gradient and another vector field that is not a gradient:  

( ) ( ) ( ), , , ,x t x t x t
m
Γ

= Φ −v u∇                    (6) 

where ( ),x tΦ  is an unknown real-valued function that we require to be 
dimensionless, whereby Γ  is an unknown real constant that has the physical 
dimension of angular momentum; and ( ),x tu  is an unknown real-valued 
N -vector field, not a gradient, having physical dimension velocity. (The methods 
of Gilson [12] and Collins [13] did not treat arbitrary curvilinear coordinates, 
and were not applied in general N -dimensional configuration spaces. Only 
Collins included the vector field u , and then only in the 3-space of a single 
particle’s CM coordinates). The next step defines the complex-valued function 
( ),x tψ  as  

( ) ( ), exp .x t iψ ρ= Φ                       (7) 

This relation is known as the Madelung transform [17]; it is usually applied to 
a given SEQ in a Euclidean 3-space, to obtain the Madelung/Bohm “hydrody- 
namical” equations, which did not include the non-gradient vector field u . 
Here, the transform is being used in reverse in a general metric N -space. Note 
that 0ρ ≥ , so ρ  is well-defined and real 0≥  if ρ  is smooth, e.g., not a 
product of Dirac deltas as is the fine-grained density. Equations (5)-(7) combine 
to yield  

ρ ψ ψ∗=                            (8) 

( )2im
ψ ψ ψ ψ ψ ψ∗ ∗ ∗Γ

= − −j u∇ ∇                  (9) 

Then, requiring that the continuity Equation (4) be satisfied yields easily  

( ), ,O O w x tψ ψ
ψ ψ

∗ ∗

∗= =                     (10) 

where O  is the operator  

( )21
2tO i i m

m
= Γ∂ − − Γ − u∇                  (11) 
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and ( ),w x t  is an unknown real-valued N -scalar field having physical di- 
mension energy. Therefore, the equation that must be satisfied by ψ  is  

,op
ti Hψ ψΓ∂ =                        (12) 

where opH  is defined by  

( ) ( )1 22 .opH m i m w−= − Γ − +u∇                (13) 

This N -space SWE (12) has exactly the same form as the conventional SEQ 
for the system. Since the smoothed probability continuity Equation (4) is as 
discussed above an ensemble-averaged equation, then the SWE is an ensemble- 
averaged equation, and the eigenvalues of its Hamiltonian operator opH  must 
be ensemble-averaged energies. 

Note that we are not getting something for nothing: The quantities  
( ) ( ), , , ,w x t x t Γu  and 0m >  must be real-valued and have the physical 

dimensions noted above, but are otherwise arbitrary. The N -space probability 
continuity equation merely guarantees that the SWE (12) must be obeyed for 
arbitrary functions w  and u . However, the meanings of ρ  and j  are 
known a priori here (which was not the case during the original development 
and interpretation of the SEQ), whereby ψ  must satisfy the same continuity, 
integrability, boundedness, and boundary conditions that are imposed by postu- 
late on the conventional SEQ wavefunction for a system involving an N -dimen- 
sional configuration space. Thus, for any system, the quantitative solutions of 
the SWE and SEQ must be identical, for given potentials w  and u , if Γ =  . 
Therefore, all typically quantum-mechanical relations, such as the uncertainty 
principle, also follow from the SWE, but some must be interpreted differently. 
We will discuss such differences in detail in later work. 

Of course, one can identify w , u , Γ , and m  in Equation (12) by com- 
parison of its predictions with experimental results, or equivalently by comparison 
with the known SEQ. (It probably requires a complete cosmological model to 
predict the value of  ). Several authors [7] [13] have provided arguments to 
identify w  and u  for a single pointlike particle. One method that has been 
used for such a particle, but as far as we know not in the generalized-coordinate 
N -space needed for more complex systems, is to require that Equation (12) 
yield the Hamilton-Jacobi equation in the classical (non-statistical) limit. This 
approach is quite simple. As is easily shown, (e.g. see Goedecke and Davis [25] 
for the 3-space version), substitution of Equation (7) into the SWE, Equation 
(12), yields two equations that must be satisfied. One is the probability continuity 
Equation (4) itself, while the other is  

( ) ( ) ( ) ( )1 2 2 2 1 2 1 22 2 0.t m m w m ρ ρ−Γ∂ Φ + Γ∇Φ − + − Γ ∇ =u       (14) 

If Γ =  , the last term on the left-hand side of this equation is the so-called 
quantum-mechanical potential (energy) [1] [2], generalized to the N -space. If 
it is negligible, then this equation reduces to the classical limit, the Hamilton- 
Jacobi equation for Hamilton’s principal function S = ΓΦ  for the N -space 
classical nonrelativistic system, with w  and u  being the physical fields (elec- 
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tromagnetic, gravitational, etc.) that appear in the classical N -space Hamil- 
tonian of the system. 

These identifications and the above derivation of the SWE from the probability 
continuity relation actually provide a derivation of classical mechanics (CM) for 
any nonrelativistic Lagrangian system as well, since the Hamilton-Jacobi equation 
implies the existence of a Hamiltonian, a Lagrangian containing the kinetic 
energy and metric (Equation (1)), the Euler-Lagrange equations, and thereby 
Newton’s laws of motion, for arbitrarily chosen potentials w  and u . Note that 
the hydrodynamic form of the SEQ, identical to Equation (14) if Γ =  , does 
not allow quite the same conclusion, because in conventional QM the SEQ is not 
derived from a more fundamental equation. Also note that although Lagrangian/ 
Hamiltonian CM follows from Hamilton’s principle, that principle is yet another 
postulate, in contrast to the manifestly essential conservation of probability used 
to derive the SWE. 

Canonical quantization. We define the vector conjugate momentum operator  

.op i= − Γp ∇                           (15) 

Then the covariant components of opp  follow from Equation (3):  

,op op
r r rp i= ⋅ = − Γ∂e p                      (16) 

and the Hamiltonian operator of Equation (13) is  

( )21 .
2

op opH m w
m

= − +p u                    (17) 

Therefore, the general rule for obtaining the SWE for any nonrelativistic 
classical Lagrangian system is simply to write down the classical Hamiltonian 
and then replace the conjugate momentum N -vector P  by opp . This is 
exactly the standard “canonical quantization” rule, except for the unknown 
constant Γ  replacing  . Note that the commutator ,s op s

r rx p i δ  = Γ   is 
predicted. Also note that the presence of the combination ( )op m−p u  in opH  
ensures that the N -vector potential field u  must have the same significance as 
the electromagnetic vector potential for a single electric monopole, that of a 
gauge field. 

3. Examples 

In this section, we consider three examples that should help clarify the gene- 
ralized-coordinate approach. One is a system of two spinless pointlike particles 
that may have different masses. Another is a system of arbitrarily many identical 
spinless pointlike particles with two-body central force instantaneous internal 
interactions. A third is a system of one nonrelativistic rigid rotator. In these 
examples, we put Γ =  , as implied by the general results above. 

3.1. Two Pointlike Particles 

The designation “pointlike” does not mean that the particles are actual points; 
instead, it means that the model particles considered are allowed no coordinates 
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other than their CM coordinates. In this example, let the masses be 1 2,m m , and 
choose three Cartesian coordinates for each particle’s CM location, 1 2 3, ,x x x  
for particle 1, 4 5 6, ,x x x  for particle 2. Then the kinetic energy T  on the 
trajectory ( )( ), 1, , 6p px X t p= =   is  

3 31 21 1 ,
2 2

i i i i p q
pq

m mT m X X X X mg X X
m m

+ + = + = 
 

                (18) 

where the index i  ranges and sums from 1 to 3. From Equation (18), we may 
read off the diagonal 6-space metric:  

11 22 33 1 44 55 66 2;    ,g g g m m g g g m m= = = = = =            (19) 

with other components zero. Since pq p qg = ⋅e e  in general, and 1pq
pqg g=  

for p q=  in this example, and zero otherwise, we have  

1 2 3ˆ ˆ,  ;    ,  3,p p
i im m p i m m p i+= = = = +e e e e            (20) 

where ˆie  and 3ˆi+e  are the Cartesian unit basis vectors in the 6-space. 
For this example, we consider the unperturbed central force case, by choosing 

0=u  and ( ) ( )x X tw w r
=

=  in the classical Hamiltonian, where  

( ) ( ) 1 23 3i i i ir x x x x+ + = − −   

is the distance between the particle CM’s. The classical Hamiltonian is  
( ) ( )

2 2 x X tH m w r
=

= +P , and op p
pi i= − = − ∂p e ∇ . Thus, according to our 

general results in Section 2, the Hamiltonian operator in the statistical wave 
equation is ( ) ( )2 22opH m w r= − ∇ + . Therefore, that SWE is  

( ) ( )2 2
1 2 3 32 2t i i i ii m m wψ ψ ψ ψ+ +∂ = − ∂ ∂ − ∂ ∂ +           (21) 

At this point, one may go to the conventional notation 3
1 2,  i i i ix x x x+= = , and 

then to the system CM and relative coordinates. 
One reason for choosing this particular example is that it is probably the 

simplest two-particle example of the general method derived in section 2. 
Another reason is to emphasize that what you get in the Hamiltonian operator 
in the derived SWE is exactly what you have included in the classical 
Hamiltonian. For example, it is clearly physically incorrect to choose 0=u  and 
thus omit all incident and self radiation fields. It is fortunate that perturbation 
theory works well in some cases. It is also incorrect in principle to neglect 
retardation in two-body interactions, but that will be a negligible effect in cases 
involving slow motions of particles that remain close together. 

3.2. Many Identical Pointlike Particles 

Consider the extension of the two-particle system above to pN  pointlike 
spinless particles interacting with each other via two-body central force potential 
energies involving their CM coordinates and also allowing external electro- 
magnetic fields. We let the particles be identical, each with electric charge q , 
mass m , and possibly other charges, and each with CM location but no other 
degrees of freedom. Then the classical nonrelativistic Lagrangian, Hamiltonian, 
and motion equations each involve 3 pN N=  coordinates,  
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( ) ,  1, ,p px X t p N= =  . The development in Section 2 yields the general 
statistical wave Equation (12) involving these N  coordinates. For this example, 
the metric may be chosen as the N -space Kronecker delta metric,  

pq
pq pqg gδ= = , corresponding to three independent Cartesian coordinates for 

each particle CM. In order to achieve a familiar notation, we relabel the 
coordinates by letting ( ) ( ), 1, , 1, , 1,3p i

n px p N x n N i= → = = , so that n  is a 
particle index and i  is a Cartesian coordinate index. Then, by analogy with the 
previous example, the simplest nontrivial unperturbed classical Hamiltonian 
contains 0=u  and  

( ) ( )int

1 1

1, ,
2

p pN N

nn
n n

w x t w V r ′
′= =

= = ∑∑                   (22) 

where terms with n n′=  are omitted from the double sum,  

( ) ( ) 1 2i i i i
nn n n n nr x x x x′ ′ ′

 = − −  , and V  is a two-body central force interaction 
energy that could involve not only the Coulomb repulsion but also other forces 
such as Yukawa interactions and gravity. If we allow given external electro- 
magnetic potentials ext ext, iAϕ  to perturb the system, then the Hamiltonian 
would include the terms  

( ) ( ) ( ) ( ) ( )int ext ext
,

1
, , ;   , , ,

pN

n n i i n
n

w x t w q x t u x t q mc A x tϕ
=

= + =∑       (23) 

where nx  stands for ( )1 2 3, ,n n nx x x . The N -vector ,
p i

p n n iu u= =u e e , where  
ˆi i

n =e e , the Cartesian unit basis vector, the same for all n . Again we emphasize 
that the functions w  and u  that appear in the Hamiltonian operator are 
exactly those that are chosen for inclusion in the classical Hamiltonian. This 
often-used example omits internal vector potentials and also neglects retardation 
and self-fields. 

For the identical particles in this example, the total Hamiltonian is invariant 
under all pair interchanges of particle indices. This invariance leads immediately 
to the result that the total wavefunction solution of the general many-particle 
SWE must either change sign under each pair interchange, yielding Fermions, or 
not change sign, yielding Bosons. As discussed in detail by Schweber [26], the set 
of all Schrödinger equations for ( )1, 2,3, ,pN = ∞  identical particles is mathe- 
matically equivalent to the “second quantized” many-particle quantum field 
theory for Fermions or Bosons in occupation number space. 

3.3. Nonrelativistic Rigid Rotator 

Many authors have considered classical spinning top models and their possible 
connections to quantum spin and magnetic moment, e.g. [27]-[37]. Their 
treatments either postulate the usual commutation rules for the Cartesian 
components of the spin operator in the non-rotating coordinate system, by 
analogy with the rules for orbital angular momentum, or postulate that the 
momenta conjugate to the Euler angles become operators equal to i−   times 
derivatives with respect to to the angles, by analogy with conjugate translational 
momenta. In our approach, no such postulates are needed; we simply apply the 
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general statistical description developed in section 2 to the nonrelativistic 
rotations of a rigid body described by three Euler angle coordinates, as shown 
below. 

3.3.1. Euler Angles and Angular Velocity 
We include this subsection to establish our notation and method. For a rigid 
rotator with a fixed CM, the coordinates are a set of Euler angles,  

( ), 1, 2,3b bx bα = = . We adopt the set ( ), ,bα α β γ=  used by Arfken [38], and 
called the “zyz” set [39]. (Altogether there are twelve sets of Euler angles; all 
yield the same general results found below). A general rotation of Cartesian 
coordinates from a non-rotating system with Cartesian unit basis vectors ˆie  to 
a rotating system with Cartesian unit basis vectors ˆ

ie , with the origins of both 
systems at the body center of mass, is obtained by the relation  

( ) ( ) ( ) ( )3 2 1ˆ ˆ ˆ ,z y z
i ij jk kl l il lR R R Rα α α α= =e e e               (24) 

where the orthogonal matrices zR  and yR  are given by  

( ) ( )
cos sin 0 cos 0 sin
sin cos 0 ;    0 1 0 .
0 0 1 sin 0 cos

z yR R
µ µ µ µ

µ µ µ µ
µ µ

−   
   = − =   
   
   

     (25) 

Thus, the complete rotation is specified by the orthogonal matrix  
( ) ( ) ( ) ( )3 2 1z y zR R R Rα α α α= . 
The angular velocity 3-vector can be found from the relations defining rigidly 

rotating Cartesian coordinates,  
ˆ ˆd di it = ×e ω e                         (26) 

where × is the cross-product, and ω  is the instantaneous angular velocity. Its 
Cartesian components ˆi iω = ⋅e ω  in the non-rotating frame, and ˆ

i iω = ⋅e ω  
in the rotating frame, can be obtained using Equations (24)-(26). The results are  

;   ,b b
i ib i ib ik ka b Rω α ω α ω= = =                  (27) 

where we have specified the time-dependent trajectories of the Euler angles by 
( )b b tα α= . The matrices ( )a  and ( ) ( ) ( )b R a=  are easily shown to be  

( ) ( )

1 2 1 2 3 3

1 2 1 2 3 3

2 2

0 sin sin cos sin cos sin 0
0 cos sin sin ;   sin sin cos 0 .
1 0 cos cos 0 1

a b
α α α α α α
α α α α α α

α α

   − −
   

= =   
   
   

 (28) 

3.3.2. Model Rotator, Metric, and Conjugate Momenta 
In this introductory work, we treat a very simple model rotator, a non-translating 
but freely rotating rigid extended symmetric object having only the attributes of 
mass m , three equal principal moments of inertia I , and three Euler angle 
coordinates and the associated 3-vector angular velocity ( )tω  about the fixed 
CM. The Lagrangian L  is the kinetic energy  

21 1 1 .
2 2 2

b c b c
ib ic ib icL T I Ia a Ib bα α α α= = = =ω                 (29) 

The metric of the Euler angle 3-space is easily identified as  
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( ) ( )bc ib ic ib icg I m a a I m b b= = . It is not diagonal, so these Euler angle coor- 
dinates are not orthogonal. We do not need the metric in what follows. 

We may define the conjugate momentum 3-vector by  

,L I= ∂ ∂ =S ω ω                       (30) 

where S  is the intrinsic (spin) angular momentum about the CM, conjugate to 
ω . Then the Hamiltonian H T=  is simply  

( )21 .
2

H
I

= S                        (31) 

The (angular) momenta conjugate to the angles are  

.b c c
b ib ic ib icP L Ia a Ib bα α α= ∂ ∂ = =                 (32) 

Contraction with 1
bka−  and 1

bkb−  and comparison with Equation (30) yields  
1 1;   ,k bk b k k bk b kS a P I S b P Iω ω− −= = = =               (33) 

where the ( ),k kS S  are the (non-rotating system, rotating system) Cartesian 
components of the conjugate spin angular momentum 3-vector S . 

3.3.3. Statistical Wave Equation and Spin Operators 
The relevant SWE for any nonrelativistic system having three coordinates is the 
three-dimensional version of the general SWE (12). In this case, the fields u  
and w  are zero, and the gradient operator in the Euler angle space is given by  

,b
b∇ = ∂e                          (34) 

where b
b α∂ = ∂ ∂ . Therefore, the conjugate classical momenta must be re- 

placed by the operators  

,op
b b bP p i→ = − ∂                       (35) 

just as postulated by some of the authors mentioned above. Writing Equation 
(31) in summation notation and making these substitutions yields  

1
2

op op op
i iH S S

I
=                        (36) 

where, from Equations (33) and (35),  
1 1 .op op

i bi b bi bS a p i a− −= = − ∂                     (37) 

It is not difficult to show that the operators opH  and opS  are Hermitian 
provided the coordinate probability density obeys periodic boundary conditions 
in the Euler angle space. Using Equations (28) and (37), it is easy to show that 
the spin operators op

iS  satisfy the usual angular momentum commutation 
rules,  

, ,op op op
i j ijk kS S i S  =                        (38) 

where ijk  is the completely antisymmetric Levi-Civita symbol. Equations (33) 
and (35) also yield the expressions  

1 1 .op op
i bi b bi bS b p i b− −= = − ∂                   (39) 

Equations (28) and (39) then yield easily  
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, .op op op
i j ijk kS S i S  = −                      (40) 

Note the minus sign, compared to Equation (38). These “left-handed” commu- 
tation rules must be obeyed by the rotating system Cartesian components of S . 

Note that opH , Equation (31), has eigenvalues ( ) 21 2sE s s I= +  , where 
the spin 0,1 2,1,3 2, 2,5 2, ,s = ∞ . Therefore, the energy required to produce 
a transition from 1 2s =  to 3 2s =  is 23 2E I∆ =  . Let 2I ma= , where a  
is the approximate linear extension of the model rotator. For a nucleon, with 

3 210  MeV cm ≈  and 1a ≈  fm, 50 MeVE∆ ≈ , so (unstable) spin-3/2 baryons 
should exist, and they do. However, for an electron, with 20.5 MeV cm ≈  and 

510  fma −≤ , 1510  MeVE∆ ≥ . One must conclude that creating a spin-3/2 
lepton having 510  fma −≤  is virtually impossible. Furthermore, any model of a 
charged object having semi-definite charge density, mass and intrinsic magnetic 
moment of the order of electronic values, and relevant linear extension  

510  fma −≤ , rotating rigidly with angular speed ω , and having spin angular 
momentum of order  , predicts a linear surface speed a cω   [40]. There- 
fore, rotations and translations of electrons and probably other leptons must be 
treated relativistically, which is beyond the scope of this work. (See the Appendix 
for a simple illustrative relativistic rotator model). 

In a paper to follow, we will derive several relevant detailed results for a 
charged nonrelativistically spinning top of arbitrary shape and structure 
immersed in a magnetic field, including the following: 1) The commutation rules 
of Equations (38) and (40) are unchanged, whereby the commuting operators 

( )2

3 3, ,op op opS SS  still have the same simultaneous eigenfunctions, sometimes 
called the Wigner harmonics, with eigenvalues ( ) 21s s +  , sm  , sm  , 
respectively, where ss m s− ≤ ≤ , and independently, ss m s− ≤ ≤ , in integer 
steps; 2) a general rigid rotator wavefunction may be a superposition of integer 
spin eigenstates only, or of half-odd-integer spin eigenstates only, but not both, 
whereby e.g. electromagnetic transitions from a half-odd-integer spin state to an 
integer spin state are forbidden; 3) In the presence of a constant uniform 
magnetic field, one obtains the expected spinor equations consisting of 2 1s +  
coupled equations for each choice of s  and sm . For example, for 1 2s = , and 

sm  either 1 2  or 1 2− , one obtains two coupled equations that comprise the 
Pauli-Schrödinger equation, when written in matrix/spinor form; and 4) For an 
anisotropic rotator, the Hamiltonian eigenvalues may depend on sm  and/or 

sm  as well as on s . 

4. Summary, Discussion, and Conclusions 

In this work, using a derivation from first principles with no approximations, we 
proved that any nonrelativistic classical physical system must obey a statistical 
wave equation (SWE) that has the same form and the same quantitative solu- 
tions as the Schrödinger equation (SEQ) for the system. In the non-statistical 
(“classical”) limit, the SWE yields a system Hamiltonian and Lagrangian and 
thus the Euler-Lagrange equations and Newton’s laws of motion for the system 
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coordinates. The SWE also yields quantum spin and many-body quantum field 
theory for nonrelativistic systems. On the basis of these results, should we not 
conclude that the classical statistical theory (CST) developed in this work 
actually provides a derivation of nonrelativistic classical and quantum dynamics 
for all Lagrangian systems composed of massive particles? 

Our answer to that question is “not yet, and maybe never”. In earlier work 
[21] [22] [23] [24] and in this work (see Section 2.2) we found that a classical 
statistical theory based on continuity equations does not allow the conventional 
QM interpretations of the same quantitative results. In particular, the SWE by 
itself does not provide a complete statistical description of any system. For 
example, restrictions on initial conditions may exist such that the system cannot 
be in a single excited state initially, but only in a mixture of excited states [23] 
[24]. Also, the SWE is an ensemble-averaged equation, so its quantized Ha- 
miltonian eigenvalues, the same as those of the SEQ, are ensemble-averaged 
energies; the actual energies are not quantized. Nevertheless, standard per- 
turbation theory applied to a perturbed SWE still yields the Einstein rule in- 
volving the differences of the unperturbed eigenvalues for the frequencies of the 
dominant transitions, as well as the conventional transition rules and pro- 
babilities. (Prediction of transition probabilities for spontaneous emission using 
either the SEQ or the SWE requires either quantized electromagnetic fields or 
the inclusion of a radiation reaction vector portential in the vector potential u ; 
please see below, and also see reference [24] for a detailed discussion of this 
feature). 

Detailed analysis of such profound interpretational differences is well beyond 
the scope of this introductory paper. Our results would require an ensemble 
interpretation of QM, as well as other re-interpretations; see e.g. work by 
Ballentine [41] [42]. Furthermore, all our derivations follow conventional logical 
paths, but in reverse. For example, in this work we started our derivation with 
classical systems that do have coordinate trajectories, and used the Madelung 
transform in reverse to obtain the SWE/SEQ. On the other hand, Erwin 
Schrödinger inferred his SEQ nearly a century ago; the Madelung transform was 
applied to the SEQ to obtain its full hydrodynamic form, Equation (14). How- 
ever, scientists are still discussing whether classical trajectories are compatible 
with conventional QM [43]. 

The CST derived herein makes sense only if there are reasons why even a 
one-particle classical system might require a statistical treatment. One possible 
reason is the known fact that any classical system is continually bombarded by 
thermal and other highly fluctuating background radiation fields. One model 
background field used in Stochastic Electrodynamics [7] [8] is the electro- 
magnetic stochastic zero-point field (SZPF), which is a stochastic analog of the 
quantized electromagnetic field; see e.g. [21]. Up to a multiplicative adjustable 
constant, chosen to be  , the SZPF is the only stochastic electromagnetic free 
field having a rotation-invariant, translation-invariant, and Lorentz-invariant 
ensemble-averaged energy density spectrum. Postulating the presence of this 
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field enabled Boyer [44] to derive the Planck spectrum without quantum as- 
sumptions, and also allowed classical statistical derivations of Casimir forces 
[45]. The presence of the SZPF also yields a phase space derivation that au- 
tomatically includes a radiation reaction vector potential in the SWE/SEQ, as 
well as a companion equation that restricts initial conditions, for the nonrelati- 
vistic charged harmonic oscillator [23] [24]. Together, these equations predict 
the correct (QM) transition rates, including those for spontaneous emission, 
without quantization of classical electromagnetic fields. The presence of the SZPF 
also provides a physical rationale for the interference phenomena predicted by 
the SWE/SEQ. All of these SED results are based on ensemble averages over the 
random amplitudes of the plane waves that comprise the SZPF. 

5. Conclusion 

In conclusion: Before we are willing to conclude that the CST actually provides a 
derivation of a good part of modern physics, we feel that at least two things must 
be accomplished. One is a statistical treatment of relativistic classical systems, 
with a closer correspondence to our nonrelativistic treatment herein than our 
work reported in 2010 [25]. The other is a resolution of the interpretational 
differences between the CST and conventional QM. This latter accomplishment 
may require clever experiments that will take some time. 
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Appendix A: Relativistic Rotation 

As mentioned above, one objection to a nonrelativistic extended spinning 
electron model having semidefinite charge density is that it seems to require 
tangential linear speeds v  that far exceed lightspeed c . In this appendix we 
treat a simple model relativistically and show that then v c<  for all parameter 
choices. The model is a circular ring of radius a  with mass m  and charge q  
uniformly distributed around the ring. Let the ring lie in the x y−  plane and 
be constrained to rotate about the z -axis, its symmetry axis, with angular 
velocity z -component zω α=  , where ( )tα  is the relevant Euler angle. If one 
neglects/ignores the self magnetic field and there are no applied fields, the 
nonrelativistic expression for the z -component of the canonical spin angular 
momentum is simply 2

zS ma α=  . If this expression must have magnitude 2 , 
one obtains 2a c macβ α= =

 . Using the electron mass 2710  gmm −≈  and 
radius 510  fma −≤  yields 710β ≥ ! 

Evidently we should have used relativistic expressions for the momenta. For 
this model rotator, any infinitesimal ring segment of restmass dm  has tangential 
linear momentum a dmγ α , where ( ) 1 22 2 21 a cγ α

−
= −  . Therefore, in the 

absence of magnetic fields the spin angular momentum of the ring is  
2

zS m aγ α=  . For 2zS =  , one obtains 2macβγ = ≡ Λ , whereby  
21 1β = Λ + Λ < . For the electron parameter values above, 710Λ ≥ , whereby 

141 0.5 10β −≥ − × ! For baryon parameter values, 241.8 10  gmm −≥ × , 1 fma ≥ , 
one obtains 0.1β ≤ , which is essentially nonrelativistic. 

It is interesting to to evaluate the magnitude µ  of the magnetic moment 
predicted by this electron model due to its intrinsic rotation only. Since 1β ≈ , 

2 2ea e mcµ ≈ = Λ , at most 710−  times the correct value. This result supports 
the old idea that the electron magnetic moment may be almost entirely due to 
highly irregular relativistic translational motion (zitterbewegung) that could be 
induced by a stochastic field such as the SZPF. 
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