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Abstract 
It is common practice in science to take a weighted average of estimators of a 
single parameter. If the original estimators are unbiased, any weighted average 
will be an unbiased estimator as well. The best estimator among the weighted 
averages can be obtained by choosing weights that minimize the variance of 
the weighted average. If the variances of the individual estimators are given, 
the ideal weights have long been known to be the inverse of the variance. 
Nonetheless, I have not found a formal proof of this result in the literature. In 
this article, I provide three different proofs of the ideal weights. 
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1. Introduction 

Oftentimes in science, multiple point estimators of the same parameter are com- 
bined to form a better estimator. One method of forming the new estimator is 
taking a weighted average of the original estimators. If the original estimators are 
unbiased, the weighted average is guaranteed to be unbiased as well. 

A weighted average may be used to combine the results of several studies (meta- 
analysis), or when several estimates are obtained within a study. For example, to 
deconfound it may be necessary to stratify on a covariate when estimating an 
effect. Assuming that the effect is the same in every stratum of the covariate, we 
may take a weighted average of the stratum-specific estimates. 

The question remains though as to which weights should be chosen. Since the 
estimator will be unbiased regardless of the weights, we only need to consider 
the variance. In particular, the weights should be chosen to minimize the va- 
riance of the weighted average. Although it has long been known that the ideal 
weights should be the inverse of the variance, I have not found any complete, 
formal proof in the literature. Several sources mention the ideal weights either in 
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general or for specific cases without any proof [1]-[6]. Others mention something 
similar to the ideal weights but again without proof [7] [8]. Hedges offers a so- 
called proof in his 1981 paper [9], which is far from a complete proof. The first 
two sentences of his proof contain the same content as the first two sentences 
and the last sentence of proof 1 in this paper. Hedges then continues to prove 
approximations for the ideal weights under a certain condition. In his 1982 and 
1983 papers, he writes that this result is “easy to show” referencing his 1981 (and 
1982) papers [10] [11]. Goldberg and Kercheval [12] provide a “proof” that 
contains only slightly more content than Hedges’ proof in that they mention the 
use of Lagrange multipliers. Proof 1 in this paper goes over the details tho- 
roughly. Cochran also mentions the ideal weights, but proves only that these 
weights give the maximum likelihood estimate when the estimators are inde- 
pendent and normally distributed about a common mean [13]. Lastly, the pro- 
blem of finding the ideal weights is included as an exercise (exercise 7.42) in 
Casella and Berger [14]. The problem, however, is not worked out in their 
solution manual [15]. A version of the problem when taking a weighted average 
of only two estimators is also an exercise (exercise 24.1) in Anderson and Ban- 
croft [1]. 

Searching through articles dating back to the 1930s, it seems that this basic 
result has not been formally proven in the literature. One reason may be that the 
result depends on the variances of the estimators being known. The case when 
the variances are unknown is more difficult and attracted more attention. For 
example, a few articles briefly mentioned the ideal weights when the variances 
are known before continuing to discuss the case when the variances are unknown 
[2] [4] [5] [13]. In this paper, I present three proofs of the ideal weights that 
minimize the variance of a weighted average. 

2. Three Proofs  

Let ( )1, , 2nX X n ≥  be estimators of a single parameter θ . In practice, the 

iX  are independent, and they are often assumed to be unbiased. If that’s the 
case, then any weighted average 1

n
i iiX w X

=
= ∑  ( 1 1n

ii w
=

=∑  and 0iw ≥  for all 
i ) is an unbiased estimator of θ . Since the estimator is unbiased regardless of 
the weights, we want to choose weights that minimize the variance of X . 

As far as the ideal weights are concerned, it is not necessary though that the 

iX  be independent and unbiased. The proof of the ideal weights only requires 
that the iX  be uncorrelated and have a finite non-zero variance. 

Proposition 1. If ( )1, ,  2nX X n ≥  are uncorrelated random variables with 
finite non-zero variances, then ( )1Var n

i ii w X
=∑  is minimized when  
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and its minimum value is  



D. J. Shahar 
 

218 

( )1
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iX=∑
 

The first proof uses the method of Lagrange multipliers. 
Proof 1: ( ) ( ) ( )2

1 1 1Var Var Varn n n
i i i i i ii i iw X w X w X

= = =
= =∑ ∑ ∑ , because the iX  

are uncorrelated. We wish to minimize the previous expression under the con- 
straint that 1 1n

ii w
=

=∑  and 0iw ≥  for all i . The set T  of all ( )1, , n
nw w ∈   

for which 1 1n
ii w

=
=∑  and 0iw ≥  for all i  is closed and bounded. The 

extrema in the interior of T  can be found by considering only the first con- 
straint, which may be written as 1 1 0n

ii w
=

− =∑ . Later we shall find the extrema 
on the boundary of T . To find the extrema in the interior of T , let  

( ) ( )2
1

1 1
, , , Var 1
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n i i i
i i

F w w w X wλ λ
= =

 = − − 
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∑ ∑              (1) 

By the method of Lagrange multipliers, the values of 1, , nw w  for which  

/ 0jF w∂ ∂ =  are the critical points of ( )1Var n
i ii w X

=∑ . (These contain all the ex-  

trema of ( )1Var n
i ii w X

=∑  in the interior of T .) ( )/ 2 Varj j jF w w X λ∂ ∂ = −  
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( )1, , nw w  is indeed in the interior of T  since 0iw > . For these values of 

iw , 
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 (5) 

Next, let’s find the extrema on the boundary of T . The boundary of T  is 
characterized by having some of the iw  equal zero. For any point on the boun- 
dary, let { }: 0iS i w= ≠ . At such a point, ( ) ( )1Var Varn

i i i ii i Sw X w X
= ∈

=∑ ∑ . 
Using the method of Lagrange multipliers again, the critical points of  

( ) ( )1Var Varn
i i i ii i Sw X w X

= ∈
=∑ ∑  are found to be ( )1, , nw w  where  
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(These contain all the extrema of ( )1Var n
i ii w X

=∑  on the boundary of T .) 
For these values of iw , 
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Note that  
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That is, of all critical points, the one in the interior of T  minimizes  
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and its minimum value is  
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The second proof is done by induction. 

Proof 2: The case 2n =  will be our base case for the induction. 
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The global minimum of the above expression occurs when  
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and  
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The minimum variance is then  

( )

( )
( ) ( )

( ) ( )

2
2

12

22 21
21 1

1

1 1
Var Var 1Var =

1 1
1

VarVar
Var

i
i i

i
i

j i
ijj

j

X X
X

XX
X

=

=
= =

=

 
 
  =       
   

 

∑
∑

∑ ∑∑

  (12) 

For the induction step, suppose that for some 2n ≥ , ( )1Var n
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( )

( )1

1
Var

1
Var

i
i

n
j

j

X
w

X=

=
∑

 

and its minimum value is  

( )1

1
1

Var
n
i

iX=∑
 

Then, 
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where 
1

n
i i jju w w

=
= ∑  are weights that do not depend on 1nw + . So for any 

possible values of iu , the above expression is minimized when  
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By plugging the above value for 1nw +  into Equation (13), we find a lower 
bound for the variance of the weighted average: 
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where equality is achieved for the specified value of 1nw + . 
The variance of the weighted average will be minimized when it equals the right 

side of the above inequality and the right side of the inequality is minimized. The 
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right side of the inequality is minimized when ( )1Var n
i ii u X

=∑  is minimized. We 
have assumed in the induction step that ( )1Var n
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for { }1, , .i n∈   
Therefore, ( )1
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This completes the induction step, and the proof.                      
The third proof utilizes the Cauchy-Schwarz inequality. 
Proof 3: Using the Cauchy-Schwarz inequality, we obtain  
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Dividing both sides of Equation (18) by 
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iX=∑ , we have a lower bound  
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By the Cauchy-Schwarz inequality, ( )1Var n
i ii w X

=∑  equals the lower bound 
iff  
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are linearly dependent vectors. Since neither of these vectors is the zero vector, 
they are linearly dependent iff there exists an α  such that  
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Therefore, ( )1Var n
i ii w X

=∑  obtains the lower bound, and hence, is mini- 
mized when  
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3. Discussion  

Given the frequent use of inverse variance weighting, it is surprising that the 
proof of proposition 1 was never published, to the best of my knowledge, in any 
book or journal. That the proofs use standard techniques is no excuse for their 
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absence in the literature; there is value in a proof beyond the result it proves. For 
example, it is interesting that the proposition can be proven by induction and 
more succinctly using the Cauchy-Schwarz inequality. 

Even more surprising are the trails of citations leading nowhere. It appears 
that generations of statisticians simply assumed that a proof has been published 
somewhere, relying on old, inaccurate citations. In that sense, this article not only 
offers three different proofs but also a broader lesson: every so often it is worth- 
while to review the history of well-known facts. Surprises are possible. 
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