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Abstract 
It is a starting point in string theory to assume that elementary particles are in 
fact rotating strings, and the final goal of the theory is a complete description 
of fundamental physics, including general relativity. This paper is instead 
concerned with the reversed question: starting from general relativity, is there 
a good way to motivate why rotating strings should be more natural models 
for elementary particles than, say, spherical particles or point-particles? Also, 
the purpose here is not to motivate full string theory. For example, no hidden 
dimensions come into play, only the four usual ones, and strings are defined 
in a very simple geometric way. Rather, the focus is on investigating an inter-
esting mathematical property, which implies that strings may have special 
features with respect to rotation which spherically symmetric particles have 
not. In particular, it turns out that in a certain sense rotating strings are simp-
ler than non-rotating ones. This is a consequence of the indefinite metric, and 
the main result states that the curvature of a non-rotating string, as measured 
by the square of the scalar curvature, may be reduced by letting it rotate in an 
appropriate way. The calculations underlying this theorem are heavy and have 
partly been carried out using Mathematica, although in principle the essential 
theorem may not require super-human labour. 
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1. Introduction 

String Theory is an ambitious project which starts from the assumption (among 
other things) that elementary particles can be understood as rotating strings, and 
it aims at a complete description of fundamental physics, including general rela-
tivity. 

The present paper is not about string theory, but rather in a certain sense in-
vestigates an implication in the other direction: starting from general relativity, 
is there a good way to motivate why rotating strings should be more natural 
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models for elementary particles than, say, spherical particles or point-particles? 
The first question is of course: what should “natural” refer to in this context? 

A possible hint can be given by an analogy with mechanics: In statics, there is an 
old and well-known principle which asserts that the most “natural” state, and the 
one which will actually occur, is the one which minimizes the energy. In general 
relativity, the presence of mass-energy manifests itself through non-zero curva-
ture, thus it could be argued that in the four-dimensional statics of space-time, 
the most natural states are the ones which minimize curvature. 

Although other view-points are possible, I will in the following interpret this 
as minimizing the integral  

2 d ,R V∫                          (1.1) 

where R  is the scalar curvature. It should be noted that the use of the word 
“minimizing” here is essential: it is not equivalent to looking for stationary 
solutions as the traditional theory usually does. This minimizing principle could 
be further motivated (and be made more precise) starting from an analogy with 
Feynmann’s principle of “democracy of all histories” (see [1]). But this is in fact 
a complicated question, so it will be discussed elsewhere (see however [2] [3]). 

In any case, minimizing (1.1) leads to interesting and difficult mathematical 
problems. In particular, it pin-points an unexpected difference between 
Euclidian geometry and Lorentz geometry. 

The starting point for the study in this paper will be an extremely simple 
model for a particle: let us simply assume that the particle is defined by the 
region in space which it occupies. But in addition it can be noted that 
somewhere inside or close to the particle, the Ricci tensor should in general be 
different from zero if the resulting metric is to agree with a non-trivial 
Schwarzschild metric far away from the particle. For instance, if we consider the 
case of a spherically symmetric metric, then an elementary computation shows 
that no non-trivial, non-singular such metric will have vanishing Ricci tensor. 

Exactly what this deviation from the Schwarzschild geometry looks like is 
something which a complete theory of elementary particles should be able to tell 
us, but we are not there yet. General relativity can not really help us either; even 
if we could in principle attempt to solve the field equations inside the particle, 
this would inevitably have to make use of so far unmotivated assumptions about 
matter, and also would require the use of the theory of general relativity in a 
situation where it has very little support. 

An alternative approach, one which is close the the spirit of this paper, is to 
consider the metric inside the particle to be unknown, but nevertheless try to 
find general properties of all such metrics. Thus, we are led to a purely 
mathematical problem and, as it seems, to a difficult one. 

In this paper, I will only attempt to achieve partial results. Thus, consider a 
string-shaped region in three-space (for a more precise definition, see Section 2). 
Far away from this region, one can expect the metric to be close to the 
Schwarzschild metric, and in particular to have 0R = . In view of this and the 
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extrem weakness of the gravitational force, I will, at least to start with, 
completely neglect any deviation from flat space-time outside the defining 
region of the string itself and only consider deformations of the metric inside 
this region. Thus, the only way the Schwarzschild metric comes in is to motivate 
why the curvature in general should be non-zero inside, but all other influences 
are discarded. For reasons to be discussed elsewhere (see however Section 2), the 
case where these deformations are located near the ends of the string is of 
particular interest. 

Given such a string in an otherwise flat three-space, we can ask what will 
happen if we add a time-coordinate and let the string perform motions. In 
particular, we may study the case of a rotating string and ask what speed of 
rotation of the string will minimize the curvature in the sense of (1.1). 

It may seem intuitively obvious that the behavior which generates the least 
four-dimensional curvature should be to assume the string to stay at rest for all 
times. And indeed this appears to be what happens in Euclidian geometry. What 
is curious however, is that this does not seem to be what happens in the case of 
Lorentz geometry: rotating strings may have lower curvature than non-rotating 
ones. 

It should be said right away that from a four-dimensional, relativistic 
perspective, such rotations must of course involve the time-coordinate in a 
non-trivial way. And in general, rotation in general relativity is a complicated 
concept (see e.g. [4] and also the discussion in Section 5). In the following, I will 
only make use of a very simplified kind of rotation which essentially neglects 
changes in the time coordinate. This defect should be kept in mind when 
considering the numerical computations with high-speed rotations below. On 
the other hand, in the main theorem this draw-back plays no essential role, since 
there the aim is to prove that non-rotating strings are not curvature minimizing, 
and for this purpose any kind of rotation which makes the curvature smaller, 
physically plausible or not, will do. In addition, the main theorem is concerned 
with infinitesimal speed of rotation, in which case the essentially classical 
rotations used here may be considered to be rather natural. To describe the kind 
of rotation which actually minimizes the curvature when the speed of rotation is 
not small, seems to be a much harder problem which I will not attempt to solve 
here. 

After some introductory definitions in Section 2, I proceed in Section 3 to give 
a few numerical examples computed by Mathematica to give a feeling for what 
may happen. In this case, I also consider high-speed rotations, even if this means 
that one should be careful when drawing conclusions. As it seems, the general 
behavior is rather independent of the exact form of the metric inside the string; 
all examples indicate a similar behavior where the minimum of the curvature is 
assumed when the ends of the string rotate with (approximately) the speed of 
light. 

In Section 4, I state and prove the best I can do rigorously: the main Theorem 
1 can be expressed by saying that for any metric with certain specific symmetry 
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properties and which is close to the flat one, the non-rotating case is not 
curvature minimizing in the sense of (1.1). In fact, what is proved is that for the 
special kind of rotation considered here, the case of zero angular velocity gives a 
local maximum for (1.1), rather than a minimum. As a contrast, Theorem 2 
states that in the case of Euclidian geometry we really do have a local minimum. 

As is not uncommon in differential geometry, the computations of curvature 
involved tend to be very lengthy. Although it may in fact be possible to carry 
them out by hand, I have used Mathematica for this purpose. The reason is that 
even if one could do it all without computers, the amount of work is so large that 
human errors are almost impossible to avoid. However, the use of Mathematica 
is restricted to the symbolic part, i.e. the computation of R . When it comes to 
computing the integral in (1.1) in the theorems, this part can be made by hand, 
so no approximate methods are involved here. In general, I’m indebted to [5] for 
the use of tensor calculus with Mathematica. 

In Section 5 finally, I discuss possible further developments. Let me also again 
emphasize that I do not in this paper make any claims about actual string theory. 
String theory is a quantum mechanical theory, and it is not at all clear what a 
corresponding quantum treatment of this problem would lead to. Nevertheless, I 
do think that the topic of this paper has got something important to say about 
Lorentz geometry on the microscopic level and, as a consequence, may 
contribute to our understanding of the connection between general relativity 
and quantum mechanics. 

2. Rotating Classical Strings 

The strings in this paper will not be considered to be strictly one-dimensional, 
but rather to be three-dimensional objects which can however be arbitrarily thin. 
The precise definition will be to let the string be the convex hull of two balls Bδ

−  
and Bδ

+  with radius δ  and centers at some points p  and q , where δ  is a 
strictly positive number. Outside this region, the metric is assumed to be 
completely flat. 

To get a model for a string, rotating around an axis perpendicular to the string 
itself, let us now for definiteness put ( )1,0,0p = −  and ( )1,0,0q =  at time 

0t = , and for arbitrary t  suppose the string to be the convex hull of the balls 
( ),bB tδ

−  and ( ),bB tδ
+  with centers at ( )cos , sin ,0bt bt− −  and  

( )cos ,sin ,0bt bt . In addition, the metric should satisfy an obvious time 
invariance property in the sense that pull-back by the time-translation map 
equals rotation by the corresponding angle. 

Finally, we suppose that whatever it is that generates mass, it is located at the 
ends of the string, i.e. within ( ),bB tδ

−  and ( ),bB tδ
+ . Certainly, other models are 

possible, but nevertheless this seems like a natural starting point. In particular, it 
appears that strings with a more evenly spread distribution of curvature would 
share the same general properties as the ones studied here, except for the speed 
of the rotation at the ends of the string which may no longer be close to the 
speed of light. 
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3. Some Numerical Examples of Rotating Strings 

Consider the following metric: let ( )f s  be a function defined for 0s ≥  with 
continuous derivate, piecewise continuous second derivative, and which is equal 
to 0 for 2s δ≥ , where 0 1δ< < . In addition, in order for the metric below not 
to give singular contributions to the curvature, it is important to note that 

( )2 0f δ′ =  (and we also assume that ( )0 0f+′ = , although a weaker condition 
would suffice). Small values of δ  correspond to thin strings and large values to 
thick ones. In the following, the exact value of δ  is not important so for the 
rest of this section I put 1 2δ = . 

Next, put  

( ) ( )( ) ( )( )( )
( )( ) ( )( )( )

2 2 2

2 2 2

, , , cos sin

 cos sin .

bh x y z t f x bt y bt z

f x bt y bt z

= − + − +

+ + + + +
         (3.1) 

Clearly, this function is now defined on 4  and sufficiently regular for the 
following metric to make good sense:  

( ) ( ) ( )2 2 2 2
, d 1 d 1 d 1 d .b b b bg t h x h y h z= − + + + + + +              (3.2) 

We note that it coincides with the ordinary Minkowski metric outside the 
rotating string, in fact outside the balls ( ),bB tδ

−  and ( ),bB tδ
+ . In the following, 

  should in general be thought of as small numbers. However, to illustrate the 
basic mechanism, I have in this section chosen to work with = 1 100 . 

Using Mathematica, one may now attempt to compute numerically the 
integral of 2R  per unit of time for different choices of , ,f b , which, in view 
of the obvious time-homogeneity, equals the integral over , ,x y z  for 0t = :  

( )

( )( )

2 2 3 2

3 22
,

1 d d d d d
2

1 , , ,0 d d d ,

T t T

b

I b R V R V R g x y z
T
R h x y z x y zδ

− < <
= = = −

= +

∫ ∫ ∫

∫ 
         (3.3) 

where I have used the notation 3d d d dV g x y z= −  for the three-dimensional 
volume measure on the hypersurface 0t = .  

In Figure 1, I have plotted ( )I b  as a function of the speed of rotation b  
with three different simple choices for f : in the first case, f  is positive, in the 
second it takes both positive and negative values, and in the last example it is 
purely negative. The plots are remarkably similar for different choices of f . In 
fact, in all cases we get a function which takes its global minimum when the 
centers of the balls ( ),bB tδ

−  and ( ),bB tδ
+  move with approximately the speed 

of light ( 1= ). If we would normalize the graphs by instead considering  
( ) ( )0I b I , all three graphs would be essentially indistinguishable. 
Of course, the graphs in Figure 1 are only examples. And in fact even for the 

very simple choices above for the metric, the computations seem to be close to 
the limit of what Mathematica can handle on an ordinary MacBook, hence 
should be judged with a certain care. For the sake of completeness: the three 
functions plotted are ( ) ( )2

1 1f s p s δ= , ( ) ( )2
2 2f s p s δ=  and  

( ) ( )2
3 3f s p s δ= , with 1 2δ =  and the three fourth degree polynomials  
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(a)                                                            (b) 

Figure 1. (a) three different choices for f . (b) the graphs of the corresponding functions ( )I b . 

 

( ) ( ) ( )4 2 2 3 4 4 2
1 2 34 8 4,  12 20 9 1,  2 4 2p s s s p s s s s p s s s= − + = − + − = − + − . These 

functions have been chosen because they seem to illustrate the general situation, 
but still give computations which are within reach. Even with only slightly more 
complicated functions (e.g. polynomials of higher degree) I have not been able to 
complete the computations within reasonable time. 

In the next section, I will instead turn to rigorous methods for proving general 
theorems about these phenomena. 

4. A Weak Theorem about Rotation 

In view of the numerics of the previous section, it would be tempting to 
conjecture that it is a general fact for the kind of classical strings of this paper, 
that curvature in the sense of (1.1) can be diminished by letting them rotate in 
such a way that the ends move with (approximately) the speed of light. (In the 
limit of very thin strings, one would even suspect that the word “approximately” 
could be replaced by “exactly”). However, one should be careful when making 
predictions from this kind of numerical computations. In any case, to decide 
what actually happens may turn out to be a very difficult problem. 

In this section I will prove a weaker result, namely that for any function f  
as in Section 3, in the limit 0→ , the corresponding non-rotating string is not 
curvature minimizing. More precisely, I will prove:  

Theorem 1. For any f ,   sufficiently small and the metric ,bg  as in (3.2) 
above, the second derivative of the function ( )I b  at 0b =  is strictly negative.  

This should be compared with the corresponding situation in Euclidian 
geometry. In fact, if we replace the metric in (3.2) above by  

( ) ( ) ( )2 2 2 2
, d 1 d 1 d 1 d ,b b b bg t h x h y h z= + + + + + +            (4.1) 

then we have  
Theorem 2. For any f ,   sufficiently small and the metric ,bg  as in (4.1) 

above, the second derivative of the function ( )I b  at 0b =  is strictly positive. 
The proof of Theorem 2 is very similar to the proof of Theorem 1, hence will 

be omitted (see however (4.6) below). 
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Proof: To prove Theorem 1, we need to compute the scalar curvature R  for 
the metric in (3.2). Although this is in principle strait forward, the computations 
become very heavy, and are in fact most easily carried out on a computer. Here I 
will only sketch the main steps. Also, note that the contributions from the two 
ends ( ),bB tδ

−  and ( ),bB tδ
+  are obviously equal, hence it is enough to consider 

( ),bB tδ
+ . 
Due to the special diagonal form of the metric in (3.2), a comparatively short 

computation gives that  

( ) ( )( ) ( )
( )

2 2 2 2

3

6 1 4 1 3
.

2 1
tt xx yy zz x y zh h h h h h h h h

R
h

′′ ′′ ′′ ′′ ′ ′ ′+ − + + + + + +
=

+

    


   (4.2) 

Inserting the expression for h  in (3.1) into (4.2), we obtain after a somewhat 
longer computation that  

( )( )( )
( )

( ) ( ) ( )( )( )
( )

2

3

2 2

3

3 2 1 2 3
1 1
2

3 2 cos sin cos sin
,

1 1
2

wf f wf f
R

f

bf b y bt x bt f x bt y bt f

f

′ ′′ ′− + +
=

+

′′ ′+ − + +
+

+

  



 



(4.3) 

where , ,f f f′ ′′  are in fact all functions of ( ) ( )2 2 2cos sinw x bt y bt z= − + − + . 
Computing the second derivative with respect to b  of 2R  and then putting 

0b t= = , after a very long computation gives  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )
( )( )

2
2

2
, 0

22 2

4

48 2 3 2 1 2 3
,

1

b t

R
b

y f w xf w wf w f w wf w f w

f w

=

∂
∂

′′ ′ ′ ′′ ′+ − + +
=

+

  



(4.4) 

where w  now has become equal to ( )2 2 21x y z− + + . Taylor expanding this 
expression with respect to   (and noting that the zero and first order terms 
vanish) we obtain  

( ) ( )( ) ( ) ( )( ) ( )
2

2 2 2 3
2 8 12 6 4 6 .R y f w xf w wf w f w O

b
∂ ′′ ′ ′′ ′= + − − +
∂

    (4.5) 

Note that the use of the metric (4.1) would instead give  

( ) ( )( ) ( ) ( )( ) ( )
2

2 2 2 3
2 8 12 6 4 6 .R y f w xf w wf w f w O

b
∂ ′′ ′ ′′ ′= + + +
∂

     (4.6) 

To prove the claim, it is enough to prove that the integral of the coefficient for 
2 , i.e.  

( ) ( ) ( )( ) ( ) ( )( )2
2 30 16 12 6 4 6 d ,

w
I y f w xf w wf w f w V

δ≤
′′ ′′ ′ ′′ ′= + − −∫    (4.7) 

is strictly negative (note the extra factor 2 since we only integrate over one of the 
balls). Making the trivial change of coordinates 1x x− = , and continuing to 
write w  for 2 2 2x y z+ + , we obtain  
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( ) ( ) ( ) ( )( ) ( ) ( )( )2
2 30 16 12 6 1 4 6 d .

w
I y f w x f w wf w f w V

δ≤
′′ ′′ ′ ′′ ′= + + − −∫ (4.8) 

Next, observe that  

( ) ( ) ( )( )2
34 6 d 0

w
x f w wf w f w V

δ≤
′ ′′ ′⋅ − − =∫             (4.9) 

for simple reasons of symmetry, since x  is an odd function whereas the rest of 
the integrand is even in x . Hence the integral reduces to  

( ) ( ) ( )( ) ( ) ( )( )2
2 30 16 12 6 4 6 d .

w
I y f w f w wf w f w V

δ≤
′′ ′′ ′ ′′ ′= + − −∫    (4.10) 

Furthermore, we note that, again for obvious symmetry reasons,  

( ) ( ) ( )( )2
2 34 6 d

w
y f w wf w f w V

δ≤
′′ ′′ ′− −∫               (4.11) 

( ) ( ) ( )( )2
2 34 6 d

w
z f w wf w f w V

δ≤
′′ ′′ ′= − −∫              (4.12) 

( ) ( ) ( )( )2
2 34 6 d ,

w
x f w wf w f w V

δ≤
′′ ′′ ′= − −∫              (4.13) 

which clearly implies that  

( ) ( ) ( )( )2
2 34 6 d

w
y f w wf w f w V

δ≤
′′ ′′ ′− −∫               (4.14) 

( ) ( ) ( )( )2
31 4 6 d .

3 w
wf w wf w f w V

δ≤
′′ ′′ ′= − −∫              (4.15) 

In fact, since 2 2 2x y z w+ + = , the sum of the three integrals in (4.11), (4.12) 
and (4.13) equals the integral in (4.15) from which the claim follows. Inserting 
this into (4.10), we obtain  

( ) ( ) ( )( )2

2 30 16 4 6 d ,
w

I wf w f w V
δ≤

′′ ′′ ′= − +∫              (4.16) 

which is clearly non-positive. Finally, to prove that ( )0I ′′  is strictly negative, 
we simply observe that to demand the right-hand side of (4.16) to be zero would 
require f  to satisfy the differential equation ( ) ( )4 6 0wf w f w′′ ′+ = . But the 
general solution to this equation is  

( ) 2
1 ,

Cf w C
w

= +                       (4.17) 

and no such function satisfies the conditions ( ) 0f δ′ =  of Section 3. 

5. Conclusions and Further Developments 

The calculations in this paper are obviously only a first step towards 
understanding why curvature is diminished by rotations in Lorentz geometry. 
The simple kind of rotation used here should of course in the future be replaced 
by a physically better motivated one. However, presently it is not clear how this 
should be done. In fact, it may be that when we leave the context of Euclidian 
Geometry and general relativity as defined by Einstein’s traditional field 
equations, it can be impossible to define rotations in a consistent way. The 
approach which to my mind seems to be the most promising one is to start from 
the minimizing principle (1.1) and then show that minimizing solutions will in 
fact have properties similar to ordinary rotations. However, this will first of all 
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require making this principle more precise, and in addition we will have to deal 
with mathematical difficulties of a different order of magnitude as compared to 
the ones encountered in this paper. 

Probably, an easier kind of generalization would be to do without the 
expansion in   (i.e. to weaken the requirement that the deviation from the flat 
metric should be small) but still restrict to infinitesimal speed b  of rotation. 
Also, one can try to consider more general metrics than the ones in Theorem 1. 
In particular it would be interesting to see if one could find a non-trivial rotation 
metric (in a sense yet to be made precise) which coincides with the flat one 
outside the string, but which does not satisfy the other requirements, and does 
not exhibit the typical behavior in Theorem 1. 

Finally, one can try to generalize the ideas of this paper to topologically 
non-trivial situations, e.g. to rotating worm-holes. For a (non-rigorous) attempt 
in this direction, see [6]. 
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