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Abstract 
The aim of this paper is to study the boundedness of Calderón-Zygmund op-
erator and their commutator on Herz Spaces with two variable exponents 
( ) ( ). , .p q . By applying the properties of the Lebesgue spaces with variable 

exponent, the boundedness of the Calderón-Zygmund operator and the 
commutator generated by BMO function and Calderón-Zygmund operator is 
obtained on Herz space. 
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1. Introduction 

Definition 1.1. Let T  be a bounded linear operator from ( )nS 
 to ( )nS ′   

(see [1], [2]). T  is called a standard operator if T  satisfies the following con-
ditions:  

1) T  extends to a bounded linear operator on ( )2 nL  .  
2) There exists a function ( ),K x y  defined by ( ) ( ) ( ){ }, ;n nx y x y∈ × ≠ 

 
satisfies 

( ), ,nK x y C x y≤ −                      (1.1) 

where 0C > .  
3) ( ) ( ) ( ) ( ) ( ), , d d ,n nTf g K x y f y g x x y= ∫ ∫ 

 for ( ), nf g S∈ 
 with  

( ) ( )supp suppf g∩ =∅  
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A standard operator T  is called a γ -Calderón - Zygmund operator if K  is 
a standard kernel satisfies: 

( ) ( ), , ;nK x y K z y C x z x yγ γ+− ≤ − −           (1.2) 

( ) ( ), , ,nK y x K y z C x z x yγ γ+− ≤ − −           (1.3) 

if 1
2

x z x y− < −  for some 0 1γ< ≤ . 

The bounded mean oscillation BMO space and BMO norm are defined, re-
spectively, by 

( ) ( ) ( ){ }1 : ,n
n n

loc BMOBMO b L b= ∈ < ∞


          (1.4) 

( ) ( )
:ball

sup1 d .n BBMO BB
b B b x b x= −∫



           (1.5) 

The commutator of the Calderón-Zygmund operator is defined by  

[ ] ( ) ( ) ( ) ( ) ( ), .b T f x b x Tf x T bf x= −           (1.6) 

In 1983, J.-L. Jouné proved γ -Calderón - Zygmund operator is bounded on 

( )p nL 
 in [3]. Coifman, Rochberg and Weiss proved that commutator [b,T] is 

bounded on ( ) ( )1 1p nL p< <
 (see [4]). 

Kovácik and Rákosník introduced Lebesgue spaces and Sobolev spaces with 
variable exponents (see [5]). The function spaces with variable exponent has 
been recently obtained an increasing interest by a number of authors since many 
applications are found in many different fields, for example, in fluid dynamics 
(see [6]), image restoration (see [7] [8] [9]) and differential equations. 

Herz spaces play an important role in harmonic analysis. After they were in-
troduced in [10], the boundedness of some operators and some characteriza- 
tions of Herz spaces with variable exponents were studied extensively (see 
[11]-[16]). In 2015, Wang and Tao introduced the Herz spaces with two variable 
exponents ( ) ( ). , .p q , and studied the parameterized Littlewood-Paley operators 
and their commutators on Herz spaces with variable exponents in [17]. 

In this paper, we will discuss the boundedness of the Calderón-Zygmund op-
erator T  and their commutator [ ],b T  are bounded on Herz spaces with two 
variable exponents ( ) ( ). , .p q . 

2. Definitions of Function Spaces with Variable Exponent 

In this section we recall some definitions. Let Ω  be a measurable set in n  
with 0Ω > . We firstly recall the definition of the Lebesgue spaces with variable 
exponent. 

Definition 2.1. [5] Let ( ) [ ): 1,p ⋅ Ω → ∞  be a measurable function. The Le-
besgue space with variable exponent ( ) ( )pL ⋅ Ω  is defined by  

( ) ( ) ( ) ( )

 is measurable : d  for some constant 0 .
p x

p f x
L f x η

η
⋅

Ω

   Ω = < ∞ >      
∫  (2.1) 

For all compact K ⊂ Ω , the space ( ) ( )p
locL ⋅ Ω  is defined by  
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( ) ( ) ( ) ( ){ } is measurable : .p p
locL f f L K⋅ ⋅Ω = ∈             (2.2) 

The Lebesgue spaces ( ) ( )pL ⋅ Ω  is a Banach spaces with the norm defined by 

( )( )
( ) ( )

inf 0 : d 1 .p

p x

L

f x
f xη

η
⋅ Ω Ω

   = > ≤      
∫            (2.3) 

We denote ( ){ } ( ){ }inf : ,  sup :p ess p x x p ess p x x− += ∈Ω = ∈Ω . Then 
( )Ω  consists of all ( )p ⋅  satisfying 1p− >  and p+ < ∞ . Let M  be the 

Hardy-Littlewood maximal operator. We denote ( )Ω  to be the set of all 
function ( ) ( )p ⋅ ∈ Ω  satisfying the M  is bounded on ( ) ( )pL ⋅ Ω . 

Definition 2.2. [18] Let ( ) ( ) ( ),p q⋅ ⋅ ∈ Ω . The mixed Lebesgue sequence 

space with variable exponent ( ) ( )( )q pL⋅ ⋅


 is the collection of all sequences 

{ } 0j j
f

∞

=
 of the measurable functions on n  such that  

{ }
( ) ( )( ) ( ) ( )( )

( ) ( )( ) { }( ) ( )

( )

( )

0
0

10
0

inf 0 : 1 ,

inf 0; d 1 .

q pq p

nq p

j
j j LL j

p x

j
j j RjL j q x

j

f
f Q

f x
Q f x

η
ζ

ζ

ζ

⋅ ⋅⋅ ⋅

⋅ ⋅

∞
∞

=
=

∞∞

=
=

     = > ≤ < ∞        
  
   = > ≤  

      

∑ ∫







     (2.4) 

Let { } 1: 2 , \ ,
k

n k
k k k k k CB x x C B B χ χ−= ∈ ≤ = =

, .k ∈ , for q+ < ∞ , we 
have that  

( ) ( ) { }( ) ( )
( )
( )0

0
.p

pq L q

q
j jj Lj

Q f f ⋅
⋅ ⋅ ⋅ 

 

∞∞ ⋅

=
=

= ∑


             (2.5) 

Let { } 1: 2 , \ ,
k

n k
k k k k k CB x x C B B χ χ−= ∈ ≤ = =

, .k ∈  
Definition 2.3. [17] Let ( ) ( ) ( ), , n nq pα ∈ ⋅ ⋅ ∈  . The homogeneous Herz 

space with variable exponent ( )
( ) ( ),q n

pKα ⋅
⋅




 is defined by  

( )
( ) ( ) ( ) { }( )

( )
( )( ){ },

, \ 0 : .q n
p

q pn n
locp KK f L f α

α
⋅

⋅

⋅ ⋅
⋅ = ∈ < ∞







   

Equipped the norm  

( )
( ) ( ) { }

( ) ( )( )
( )

( )
( )

,
0

2

2
inf 0 : 1 .

q n
q pp

p
q

k
kK k l L

qk
k

k
L

f f

f

α
α

α

χ

χ
η

η

⋅
⋅ ⋅⋅

⋅
⋅

∞

=

⋅
∞

=−∞

=

   = > ≤      
∑





 

Remark 2.1. [17] Let ( ) ( ) ( )1 2, nq q⋅ ⋅ ∈   satisfying ( ) ( )1 2q q
+ +
≤  and sa-

tisfy the following results: 
1) ( )

( ) ( ) ( )
( ) ( )1 2, , .q qn n

p pK Kα α⋅ ⋅
⋅ ⋅⊂ 

 
 

2) If 
( )
( ) ( )2

1

nq
q

⋅
∈

⋅
  and 

( )
( )

2

1

1
q
q

⋅
≥

⋅
. For any ( )

( ) ( ),q n
pf Kα ⋅
⋅∈ 


, by using 
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Lemma 3.7 and Remark 2.2, we have  

( )

( )
( )

( )

( )
( )

( )

( )
( )

2 1

2 1

*
1

1

2 2

2
1.

v

p p
q q

h

p
q

pq qk k
k k

k k
L L

ppqk
k

k
L

f f

f

α α

α

χ χ
η η

χ
η

⋅ ⋅
⋅ ⋅

⋅
⋅

⋅ ⋅
∞ ∞

=−∞ =−∞

⋅
∞

=−∞

   
≤      

   

 
  ≤ ≤   

  
 

∑ ∑

∑

 

where  

( )
( )
( )
( )

2

1

2

1

2
, 1,

2
, 1.

k
k

v k
k

fq
q

p
fq

q

α

α

χ
η

χ
η

−

+

 ⋅
≤  ⋅ 

= 
 ⋅ >  ⋅ 

 

0
*

0

, 1,min

, 1.max

v v
v v

v v
v v

p a
p

p a

∞

∈ =

∞

∈ =

 ≤= 
 >


∑

∑





 

This implies that ( )
( ) ( ) ( )

( ) ( )1 2, ,q qn n
p pK Kα α⋅ ⋅
⋅ ⋅⊂ 

 
. 

Remark 2.2. Let , 0, 1v vv a p∈ ≥ ≤ < ∞ . Then we have  
*

0 0
,

p

v h
v v

a a
∞ ∞

= =

 ≤  
 

∑ ∑  

where  

0
*

0

, 1,min

, 1.max

v v
v v

v v
v v

p a
p

p a

∞

∈ =

∞

∈ =

 ≤= 
 >


∑

∑





 

3. Properties and Lemmas of Variable Exponent 

In this section, we recall some properties and some lemmas of variable exponent 
belonging to the class ( )n . 

Proposition 3.1. [19] If ( ) ( )np ⋅ ∈   satisfies  

( ) ( ) ( ) , 1 2;
Log

Cp x p y x y
x y

−
− ≤ − ≤

−
          (3.1) 

( ) ( ) ( ) , .
Log

Cp x p y y x
e x

− ≤ ≥
+

            (3.2) 

Hence we have ( ) ( ) np ⋅ ∈  . 
Lemma 3.1. [5] Given ( ) [ ): 1,np ⋅ → ∞  have that for all functions f  and 

g ,  

( ) ( ) ( ) ( ) ( ) ( )d .p pn nn L Lf x g x x C f g ′⋅ ⋅≤∫
 



           (3.3) 

where 
1 11pC
p p− +

= + − . 
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Lemma 3.2. [5] Suppose that ( ) ( ) ( ) ( )1 2, , np p p⋅ ⋅ ⋅ ∈  , for any  

( ) ( ) ( ) ( )1 2, p pn nf L g L⋅ ⋅∈ ∈  , when 
( ) ( ) ( )2 1

1 1 1
p p p

= +
⋅ ⋅ ⋅

, we get  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )12 ,p ppn n nL L L
f x g x C g x f x⋅ ⋅≤

  
       (3.4) 

where 
1 2

1

,
1 1

1 11
p

p pC
p p

−

− +

 
= + − 
 

. 

Proposition 3.2. [20] Let ( ) ( )np ⋅ ∈   and T  be a Calderón - Zygmund 
operator. Then we have  

( ) ( ) ( ) ( ) .p pn nL LTf C f⋅ ⋅≤
 

                  (3.5) 

Lemma 3.3. [20] Let ( ) ( ) , BMOnp b⋅ ∈ ∈  function and T  be a Cal-
derón - Zygmund operator.Then  

[ ] ( )( ) ( ) ( )( )BMO, pn np n LL
b T f C b f ⋅⋅ ≤  

            (3.6) 

Lemma 3.4. [11] Let ( )BMO nb∈  . If ,i j∈  with i j< , then we have 

1. ( ) ( )( )
( ) ( )( ) ( )

1
BMO BMO

1sup .n np n
p n

B B LB B L

C b b b C bχ
χ ⋅

⋅

− ≤ − ≤ 


 

2. ( ) ( )( ) ( ) ( ) ( )( )BMO .nq qn ni j jB B BL L
b b C j i bχ χ

⋅ ⋅
− ≤ −  

 

Lemma 3.5. [21] Let ( ) ( ) ( )1, 2n
up u⋅ ∈ = , then there exist constants 

1 20 , 1u uι ι< < , and 0C >  such that for all balls nB ⊂   and all measurable 
subset R B⊂ ,  

( )( )
( )( )

( )( )
( )( )

1 2

, .
u up pn nu u

p pn nu u

R RL L

B BL L

R R
C C

B B

ι ιχ χ

χ χ

′⋅ ⋅

′⋅ ⋅

   
≤ ≤      

   

 

 

       (3.7) 

Lemma 3.6. [11] If ( ) ( )np ⋅ ∈  , there exist a constant 0C >  such that 
for any balls B in n

 , we have  

( )( ) ( )( )
1 .p pn nB BL L C
B

χ χ ′⋅ ⋅ ≤                   (3.8) 

Lemma 3.7. [17] Suppose that ( ) ( ) ( ), np q⋅ ⋅ ∈  . If ( ) ( )p qf L ⋅ ⋅∈ , then  

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )( )min , max , .p q p q p q p q

p

q q q q q
L L L LL

f f f f f+ − + −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅

⋅≤ ≤  (3.9) 

4. The Main Theorems and Their Proofs 

Theorem 4.1. Suppose that ( ) ( ) ( ) ( ) ( )1 1 2, , n np q q⋅ ∈ ⋅ ⋅ ∈    with  

( ) ( )2 1q q
− +
≥ . If 12 11n nι α ι− < <  with 11 12,ι ι  as defined in Lemma 3.5, then the 

operator T  is bounded from ( )
( ) ( )2

1

,q n
pKα ⋅

⋅



 to ( )

( ) ( )1
1

,q n
pKα ⋅

⋅



. 

Proof Let ( ) ( )
( ) ( )1

1

,q n
ph x Kα ⋅

⋅∈ 


. We write  

( ) ( ) ( ).j j
j j

h x h x h xχ
∞ ∞

=−∞ =−∞

= =∑ ∑  
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By Definition 2.3, we have  

( )
( )

( )( )
( ) ( )

( )
( )

2

, 2
11
2

2
inf 0 : 1 .q n

pp
q

qk
k

K
k

L

T h
T h α

α χ
η

η⋅
⋅⋅
⋅

⋅
∞

=−∞

   = > ≤      
∑

 
  (4.1) 

Since  

( ) ( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2
2

1
1

2
2

2

1
2

2

1
2

2

1
2

3
11

2

11

2
2

12

2

13

22

2

2
 

2
 ,

p
p

q
q

p
q

p
q

p
q

q
q kk

j kjk

iiL
L

qkk
j kj

L

qkk
j kj k

L

q
k

j kj k

L

T hT h

T h

T h

T h

αα

α

α

α

χχ
η η

χ

η

χ

η

χ

η

⋅
⋅

⋅
⋅

⋅
⋅

⋅
⋅

⋅
⋅

⋅∞⋅

=−∞

=

⋅−

=−∞

⋅+

= −

⋅∞

= +

    ≤         

 
 ≤   
 

 
 +   
 

 
 +   
 

∑
∑

∑

∑

∑

   (4.2) 

where 

( )
( ) ( )( )2 1

2

11 2 ,
q p

k
k

j k
j k L

T hαη χ
⋅ ⋅

∞
−

=−∞ =−∞

  =  
  

∑


             (4.3) 

( )
( ) ( )( )2 1

2

12
2

2 ,
q p

k
k

j k
j k k L

T hαη χ
⋅ ⋅

∞
+

= − =−∞

  =  
  

∑


            (4.4) 

( )
( ) ( )( )2 1

13
2

2 ,
q p

k
j k

j k k L

T hαη χ
⋅ ⋅

∞
∞

= + =−∞

  =  
  

∑


 

and  
3

1
1

.i
i

η η
=

= ∑  

Thus,  

( ) ( )

( )
( )

2

1
2

2
.

p
q

qk
k

k
L

T h
C

α χ
η ⋅

⋅

⋅
∞

=−∞

 
≤  

 
∑  

We easily see that  

( )
( )

( )( ), 2
1

3

1
1

.q n
p

iK
i

T h C Cα η η⋅
⋅ =

≤ = ∑




                (4.6) 

This implies that we only need to prove 
( )
( )( ), 1

1
11 12 13, , q n

pKC h αη η η ⋅
⋅

≤
  . Denote 

( )
( )( ), 1

1
10 .q n

pKh αη ⋅
⋅

=
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First, we consider 12η . By virtue of Lemma 3.7, we get  

( )
( )

( )
( )

( )
( )

( )

( )
( )

( )

2

1
2

1
2

1

1
2

1

2
2

10

2
2

10

2
2

10

2

2

2
,

p
q

k

p

k

p

qkk
j kj k

k

L

qkk
j kj k

k
L

q
kk

j kj k

k
L

T h

T h

T h

α

α

α

χ

η

χ

η

χ

η

⋅
⋅

⋅

⋅

⋅+
∞ = −

=−∞

+
∞ = −

=−∞

+
∞ = −

=−∞

 
 
  
 

≤

 
 ≤  
 
 

∑
∑

∑
∑

∑
∑

             (4.7) 

where,  

( )

( )
( )

( )

( )
( )

( )
( )

( )

( )
( )

2

1
2

2

1
2

2
2

2
10

1
2

2
2

2
10

2
, 1,

2
, 1.

p
q

p
q

qkk
j kj k

L

k qkk
j kj k

L

T h
q

q
T h

q

α

α

χ

η

χ

η

⋅
⋅

⋅
⋅

⋅+

= −

−

⋅+

= −

+

     ≤     = 
  
   >     

∑

∑
 

In the above, we use the Proposition 3.2 and Remark 2.2. Since  

( ) ( )
( ) ( )1

1

,q n
ph x Kα ⋅

⋅∈ 


, we have 

( )110

2
1

p

k
k

L

hα χ
η ⋅

≤  and  

( )

( )
( )

1

1
1

10

2
1

p
q

qk
k

k

L

hα χ
η ⋅

⋅

⋅
∞

=−∞

 
≤  

 
∑ , we get  

( )
( )

( )
( )

( )

( )

( )

( )

( )
( )

( )
( )

( )

( )
( )

2

1
2

1

1
2

1

1
2

1 1

1
1

1

1
1

2
2

10

1( )2
2

2 10

10

10

10

2

2

2

2

2

p
q

p

k

p

k

p
q

p
q

qkk
j kj k

k

L

q kkk j

k j k
L

qk
k

k L

q

q qk
k

k
L

qk
k

k
L

T h

h
C

h
C

h
C

h
C

α

α

α

α

α

χ

η

η

χ
η

χ
η

χ
η

⋅
⋅

⋅

⋅

+

⋅
⋅

⋅
⋅

⋅+
∞ = −

=−∞

∞ +

=−∞ = −

∞

=−∞

⋅
∞

=−∞

⋅
∞

=−∞

 
 
  
 

 
 ≤
 
 

≤

 
≤   

 

   ≤       

∑
∑

∑ ∑

∑

∑

∑
*

.

q

C



≤
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Here ( ) ( ) ( )1
1 2 2 k

p p q
+ −
≤ ≤  and 

( )
( )

1
2

*
1

min k
k N

q
q

q∈
+

= . That is  

( )
( )( ), 1

1
12 10 .q n

pKC C h αη η ⋅
⋅

≤ ≤




                 (4.8) 

Let us now turn to estimate 11η . Noting that jx A∈  and 2j k≤ − , by the 
generalized Hölder's inequality and the Minkowski’s inequality, we get  

( ) ( ) ( )

( )

( )

( )1

, d

d

2 d

2 .

j

j

j

n

j jA

n
jA

kn
jA

kn
j L

Th x K x y h y y

C h y x y y

C h y y

C h

−

−

≤

≤ −

≤

≤

∫

∫

∫



              (4.9) 

By Lemmas 3.5-3.7 and the fact that 
( )1 110

2
1

p q

j
j

L

hα χ

η
⋅

≤ , we easily see that  

( )
( )

( )
( )

( )

( )

( )
( )

( )

( )( )

( )

( )( )
( )( )

2

1
2

2

1

1
2

2
2

1

1

1
1

2

10

2

10

10

2

10

2

2 2

2 2

2 2

p
q

n

p
q

k

n

p n

p nk j
p n

qkk
j kj

k

L

q
kk kn

j kj L

k

L

q

k kn
j kj L

k

L

k
jk kn

B BL Lk j L

T h

h
C

h
C

h
C

α

α

α

α

χ

η

χ

η

χ

η

χ χ
η

⋅
⋅

⋅
⋅

⋅

⋅
⋅

⋅−
∞ =−∞

=−∞

⋅
− −
=−∞∞

=−∞

∞ −
=∞
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Finally, we estimate 13η . Noting that for each jx A∈  and 2j k≥ + , we 
have  
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, by using the same argument in 11η . 
Thus, we prove Theorem 4.1.                                          
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. Suppose that  

( ) ( ) ( ) ( ) ( )1 1 2, , n np q q⋅ ∈ ⋅ ⋅ ∈    with ( ) ( )2 1q q
− +
≥ . If 12 11n nι α ι− < <  

with 11 12,ι ι  as defined in lemma 3.5, then the commutator [ ],b T  is bounded 
from ( )

( ) ( )2
1

,q n
pKα ⋅

⋅



 to ( )

( ) ( )1
1

,q n
pKα ⋅

⋅



.  



O. Abdalrhman et al. 
 

438 

Proof Let ( ) ( )
( ) ( ) ( )1

1

, , BMOq n n
ph x K bα ⋅

⋅∈ ∈

 
.We write  

( ) ( ) ( )j j
j j

h x h x h xχ
∞ ∞

=−∞ =−∞

= =∑ ∑  

By virtue of the definition of ( )
( ) ( ),q n

pKα ⋅
⋅




, we have  

[ ]( )
( )

( )( )
[ ]( ) ( )

( )
( )

2

, 2
11
2

2 ,
, inf 0 : 1 .q n

pp
q

qk
k

K
k

L

b T h
b T h α

α χ
η

η⋅
⋅⋅
⋅

⋅
∞

=−∞

   = > ≤      
∑





 (4.14) 

Since  

[ ]( ) ( )

( )
( )

[ ]( )
( )

( )
( )

[ ]( )
( )

( )
( )

[ ]( )
( )

( )
( )

[ ]( )
( )

( )
( )

2
2

1
1

2
2

2 2

1 1
2 2

2

1
2

2

3
21

2
2

21 22

2

23

2 ,2 ,

2 , 2 ,

2 ,
 

p
p

q
q

p p
q q

p
q

qkq kk
j kjk

iiL L

q qkk k
j k j kj j k

L L

q
k

j kj k

L

b T hb T h

b T h b T h

b T h

αα

α α

α

χχ
η η

χ χ

η η

χ

η

⋅
⋅

⋅
⋅

⋅ ⋅
⋅ ⋅

⋅
⋅

⋅−⋅

=−∞

=

⋅ ⋅∞ +

=−∞ = −

⋅∞

= +

      ≤        

   
   ≤ +      
   

 
 +   
 

∑
∑

∑ ∑

∑
.

 (4.15) 

Let  

[ ]( )
( ) ( )( )2 1

2

21 2 , ,
q p

k
k

j k
j k L

b T hαη χ
⋅ ⋅

∞
−

=−∞ =−∞

  =  
  

∑


         (4.16) 

[ ]( )
( ) ( )( )2 1

2

22
2

2 , ,
q p

k
k

j k
j k k L

b T hαη χ
⋅ ⋅

∞
+

= − =−∞

  =  
  

∑


        (4.17) 

[ ]( )
( ) ( )( )2 1

23
2

2 , ,
q p

k
j k

j k k L

b T hαη χ
⋅ ⋅

∞
∞

= + =−∞

  =  
  

∑


        (4.18) 

and  
3

2
1

.i
i

η η
=

= ∑  

Therefore, we can obtain  

[ ]( ) ( )

( )
( )

2

1
2

2 ,
.

p
q

qk
k

k
L

b T h
C

α χ
η ⋅

⋅

⋅
∞

=−∞

 
≤  

 
∑  

Thus it follows that,  

[ ]( )
( )

( )( ), 2
1

3

1
=1

, = .q n
p

iK
i

b T h C Cα η η⋅
⋅

≤ ∑
 

             (4.20) 

Hence ( ) ( )
( )( ), 1

1
21 22 23 BMO, , qn n

pKC b h αη η η ⋅
⋅

≤
  . Denoting 

( )
( )( ), 1

1
10 q n

pKC h αη ⋅
⋅

=




, 
firstly we estimate 22η  as in Theorem 4.1. Applying Lemma 3.3, we imme- di-
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Hence, we arrive at that ( ) ( ) ( )
( )( ), 1

1
23 10 BMO BMO qn n n

pKC b C b h αη η ⋅
⋅

≤ ≤


  

 by the 
similar argument in the proof Theorem 4.1. 

This completes the proof of Theorem 4.2.                              
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