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Abstract 
In this paper, we got the best linear unbiased predictor of any linear function 
of the elements of a finite population under coordinate-free models. The op-
timal predictor of these quantities was obtained in an earlier work considering 
models with a known diagonal covariance matrix. We extended this result as-
suming any known covariance matrix. It is shown that in the particular case of 
the coordinatized models, this general predictor coincides with the optimal 
predictor of the total population under a regression super population model 
with correlated observations. 
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1. Introduction 

A coordinate-free approach in finite populations was introduced by [1] as an 
alternative to the Gauss-Markov set up, used with the purpose of predicting li- 
near functions. The Gauss-Markov approach is characterized by a dependence 
on a particular basis matrix, but in the coordinate-free language, we need only to 
describe a parametric subspace of IR N , where N  is the size of the finite po- 
pulation. Coordinate-free models in the linear models context are discussed by 
[2] and [3]. 

In a finite population { }1,2, ,P N=  , where N  is the known population 
size, let ,  1, 2, ,iy i N=   be the value of a random variable y  associated to 
each population unit. Under the superpopulation approach, we will assume that 
Y  is a random vector such that Y Q∈ , where Q  is an N -dimensional real 
vector space with the usual inner product. 

The superpopulation model is expressed by 
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( )
( ) 2Var ,

E Y

Y V

µ

σ

= ∈Ω

=
                        (1.1) 

where Ω  is a p -dimensional subspace of Q , 2σ  is a unknown positive pa- 
rameter and V  is a known positive definite matrix. 

The considered model is coordinate free, in the sense that no basis is defined 
for Ω , the parametric space of µ . 

Our main objective is predicting Y′ , a linear combination of the elements of 
Y . With this purpose, a sample of n  observations is drawn of the population 
and the values of iy  in Y  become known for the sample elements. Let s  and 
r  be the sets of sample and non sample elements, respectively, such that 
P s r= ∪ . 

We will consider, without loss of generality that Y  and V  are reordered as  

and ,s srs

rs rr

V VY
Y V

V VY
  

= =   
   

 

with sY  containing the n  observed sample elements, rY  containing the 
unobserved elements, ( )Vars sV Y= , ( )Varr rV Y=  and ( )Cov ,sr s rV Y Y=  are 
the covariance matrix. 

Under a less general model, with ( ) 2Var Y Dσ= , D  a known diagonal 
matrix, [1] presented the optimal linear predictor of Y′ . In the next section, 
we extended the result, obtaining the best linear unbiased predictor of Y′  in 
the model (1.1) and this was the main contribution of the paper. In Section 3, we 
show that under the coordinatized model, this predictor coincides with that 
given by [4]. Finally, we conclude the paper with some examples in Section 4. 

2. Best Linear Unbiased Predictor of Linear Functions  

The linear function Yθ ′=   to be predicted may be written as  

( ) ,s sY I Y I I Yθ ′ ′ ′= = + −    

where ( )1 2diag , , ,s NI i i i=   is a diagonal matrix with its k -th diagonal 
element ki , where 1ki =  if k s∈  and 0ki =  if k r∈ , { }1,2, ,s n=  , 

{ }1, 2, ,r n n N= + +  . 
We note that with this notation, sI Y′

  corresponds to the linear combina- 
tion of the components of Y  in the sample and ( )sI I Y′ −  is the com- 
bination of the unobserved elements. 

Before stating the predicting results, it is necessary to introduce some de- 
finitions and preliminary results. 

Let  

{ },s s s sIµ µ µ µΩ = = ∈Ω  

( ){ }, ,r r r sI Iµ µ µ µΩ = = − ∈Ω  and 

( ), , 1 matrices.s s r sY I Y Y I I Y N= = − ×  

Since after the sample is observed, sI Y  will be known, we restrict our atten- 
tion to linear predictors of Y′  in the form  
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ˆ ,s sI Y b I Yθ ′ ′= +  

where b  is a N -dimensional vector. 
Definition. A linear predictor θ̂  of θ  is unbiased if and only if  

( )ˆ 0,Eµ θ θ− =  

for every µ ∈Ω . 
The class of all linear unbiased predictors of Y′  will be denoted by U



. 
Finally, next definition states the concept of optimality of the linear predictor 

of θ . 
Definition. The linear predictor 0̂θ  is the best linear unbiased predictor of 

θ  or the optimal linear predictor of θ  if 0̂ Uθ ∈


 and  

( ) ( )2 2

0̂
ˆ ,E Eµ µθ θ θ θ− ≤ −  

for every µ ∈Ω  and every ˆ Uθ ∈


. 
The value of ( )2

0̂Eµ θ θ−  corresponds to the mean-squared error of the 
predictor 0̂θ . 

The optimal linear predictor of θ  under the model  

( )
( ) 2Var ,

E Y

Y D

µ

σ

= ∈Ω

=
 

where D  is a known diagonal matrix and 2σ  is unknown was obtained by [1]. 
It was shown that if ( ) ( )dim dim sΩ = Ω , where ( )dim Ω  is the dimension of 
the linear space Ω , then the best linear unbiased predictor of Yθ ′=   is given 
by  

* *
ˆ ˆsI Yθ µ′ ′= +   

where *

0
ˆ

ˆr

µ
µ
 

=  
 

, 0 is a null vector of dimension n , *µ̂  is such that  

( ) ( )* *ˆ ˆs sI I P Yµ µΩ= − +                           (1.2) 

and PΩ  is the orthogonal projector onto Ω . 
Returning to the model (1.1), with a non diagonal covariance matrix V , let 

us consider the decomposition V P P′= ⋅ , with P  a lower triangular matrix. 
As shown by [5] (Theorem 7.2.1) there is a unique lower triangular matrix P  
such that V PP′= . In addition, P  is nonsingular. Then, we define the 
random vector 1Z P Y−=  and, as a consequence, by multivariate properties of 
covariance matrix of random vectors and matrix results,  

( ) 1 1 2 1 1 2 1 2 2Var .Z P VP P PP P P P Iσ σ σ σ′ ′− − − − −′ ′ ′= = = =  

Next theorem presents the best linear unbiased predictor of Y′  under 
model (1.1). 

Theorem 1. In the model (1.1)  

( )
( ) 2Var .

E Y

Y V

µ

σ

= ∈Ω

=
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V  a known positive definite matrix, the optimal linear predictor of any linear 
function of Y , h Y′ , is 

ˆs Yh I Y h µ′ ′+                           (2.1) 

where 
0

ˆ ˆY
rY

µ
 

=  
 

, 0 is the null vector of dimension n , r̂Y  is the solution in rY   

of the system of linear equations  

( ) ( )1 1 ,s sI I P Y I I P P Y− −
Ω− = −  

and PΩ  is the orthogonal projection matrix onto Ω . 

Proof. Let 1 s

r

Z
Z P Y

Z
−  

= =  
 

 with P  the lower triangular matrix such that  

V PP′= ,  

{ }* * * 1 , ,Pµ µ µ µ−Ω = = ∈Ω  

ˆ ,s Zh PI Z h Pµ′ ′Γ = +  

where 
0

ˆ ˆZ
rZ

µ
 

=  
 

, 0 is the null vector of dimension n  and ˆ
rZ  the solution in  

rZ  of the system of linear equations  

( ) ( )*ˆ ˆ .Z s s ZI I P I Zµ µ
Ω

= − +  

We note that Γ  does not depend on unknown quantities because, as it will 
be shown in the appendix, sh PI Z′  and ˆZh Pµ′  do not depend on unknown 
quantities. 

Since  

( ) ( )1 1 * *E Z P E Y P µ µ− −= = = ∈Ω  

and  

( ) 2Var ,Z Iσ=  

by [1] results, the optimal linear predictor of Z′  is  
ˆs ZI Z µ′ ′+   

with 
0

ˆ ˆZ
rZ

µ
 

=  
 

, where 0 is the null vector of dimension n  and ˆ
rZ  obtained  

by (1.2) is the solution of the system of linear equations  

( ) ( )*ˆ ˆ .Z s s ZI I P I Zµ µ
Ω

= − +  

Taking h P′ ′= , this predictor reduces to Γ  and 1Z h PP Y h Y−′ ′ ′= = . So, 
by (1.2), we have just proved that Γ  is the optimal linear predictor of h Y′ . 

To finish the proof, it is enough to show that ˆs Yh I Y h µ′ ′Γ = + . For this 
purpose we write some of matrices already defined in the partitioned form as  

1 1

3 4 1 2

1 2
*

1 2

0 0
, ,

0 00
, , ,

00 0
n

s s
N n

P C
P P

P P B B

H H I
P I I I

IA A

−

Ω
−

   
= =   

  
    

= = − =     
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where the submatrix are of dimension n n× , ( )n N n× − , ( )N n n− ×  and 
( ) ( )N n N n− × −  and 0 denotes the null matrix. 

Since s

r

Z
Z

Z
 

=  
 

,  

( ) ( )*ˆ ˆZ s s ZI I P I Zµ µ
Ω

= − +  

implies that  

( ) 1
1 2 2 1

ˆ ˆ ˆand .r s r r sZ A Z A Z Z I A A Z−= + = −  

Further, 1
*P PP P−

Ω Ω
=  [6], then 1

*P P P P−
ΩΩ

=  and after some calculations  

we have  

( ) 1

1 2

0
s

s r

I I P Y
B Y B Y

−  
− =  + 

 

and  

( ) ( )

( ) ( )

1 1 1

1
*

1 2 1 2 2

0
.

s s

s
s r

I I P P Y I I P P PP Y

I I P P Y
A C A B Y A B Y

− − −
Ω Ω

−

Ω

− = −

 
= − =  + + 

 

Thus, if r̂Y  is the solution in rY  of  

( ) ( )1 1 ,s sI I P Y I I P P Y− −
Ω− = −  

it follows that  

( ) ( )1
2 2 2 1 2 1 1

ˆ .r sY B A B A C A B B Y−= − + −  

Now, with this notation,  

1

1 2

s

s r

CY
Z P Y

B Y B Y
−  

= =  + 
 

which implies that  

.s sZ CY=  

So,  

( ) ( )
( ) ( ){ }

( ) ( ) ( ){ }
( )

1
1 2 1 2 2 2 2 1 2 1 1

11
1 2 2 2 1 2 1 1

1 1
1 2 1 2 2 1

1
2 1

ˆ

ˆ .

s r s s

s

s

s r

B Y B Y B Y B B A B A C A B B Y

B B B I A A C A B B Y

B I A A C I A A I B Y

I A A CY Z

−

−−

− −

−

+ = + − + −

= + − + −

= + − + − −

= − =

 

Hence,  

1

3 4 1 2

1

3 4 1 4 2

0
ˆ ˆ0

0
ˆ

ˆ

s
s Z

r

s

s r

s

s s r

Z
h PI Z h P h P h P

Z

CYP
h

P P B Y B Y

PCY
h

P CY P B Y P B Y

µ
  ′ ′ ′ ′Γ = + = +   

   
  

′=    +   
 
′=  

+ + 
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and because  

11

3 4 1 4 2

0 0
,

0
n

N n

PC I
P P

P C P B P B I
−

−

   
⋅ = =   +   

 

then  

 
0

ˆ .ˆ ˆ0
s s

s Y
r r

Y Y
h h h h I Y h

Y Y
µ

    ′ ′ ′ ′ ′Γ = = + = +    
    

 

 

It is important to observe that PΩ  has 
( )1

2
N N +

 unknown elements and it  

may be difficult to calculate by the above definition. But it can be obtained as 

( ) 11 1P A A V A A V
−− −

Ω ′ ′= , when A  is a basis matrix for Ω . 
Some applications of the result in Theorem 1 will be presented in the 

examples. 

3. Best Linear Unbiased Predictor in the Coordinatized  
Model  

We now consider a coordinatized version of the model (1.1), given by 

( )
( ) 2

, IR

Var .

pE Y X

Y V

β β

σ

= ∈

=
                     (3.1) 

2 0σ > , with V  a known positive definite matrix and X  a basis matrix of 
Ω . 

Under this formulation, X  is a N p×  matrix of full rank p  and there 
exists a unique IR pβ ∈  such that Xµ β= . Regression models are included in 
the class of models defined in (3.1). 

[4] derived the best linear unbiased predictor of the population total 
1

N

i
i

T y
=

= ∑ .  

This predictor, adapted to the notation introduced here and to predict any linear 
combination of Y  is given by 

( ) ( )1

0
ˆ ,ˆ ˆs s

r rs s s s

T h Y h I I
X V V Y Xβ β−

 
′ ′  = + −

+ −  
           (3.2) 

where ( ) 11 1ˆ
s s s s s sX V X X V Yβ

−− −′ ′=  and s

r

X
X

X
 

=  
 

. 

Next theorem shows that in the coordinatized model (3.1), the optimal linear 
predictor obtained in Theorem 1 reduces to the Royall’s predictor defined in 
(3.2). 

Theorem 2. Under model (3.1), the optimal linear predictor ˆs Yh I Y h µ′ ′+  
given in (2.1) is equal to T̂ . 

Proof. We must show that r̂Y  in (2.1) is equal to ( )1ˆ ˆ
r rs s s sX V V Y Xβ β−+ − . 

As proved in Theorem 1  

( ) ( )1
2 2 2 1 2 1 1r̂ sY B A B A C A B B Y−= − + −  
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which is equivalent to  

( ) 11
2 2 1 1

ˆ .r sY B I A A C B Y−−  = − −   

Applying (A.3), (A.1) and (A.2) of the appendix, it follows that  

( ) ( )( )

( ) ( )( )
( ) ( )( )

111 1
2 2 1 2 1

111 1 1
2 2 1 2 1

111 1 1 1
2 2 1 2

ˆ

.

r s r s s

s r s s s

rs s s s r s s s

Y B I A B X B X X V X X C C B Y

B I A B X B X X V X X V B Y

V V Y B I A B X B X X V X X V Y

−−− −

−−− − −

−−− − − −

 ′ ′ ′= − + −  
 ′ ′= − + −  

′ ′= + − +

 

Now, it is enough showing that  

( ) ( )( ) ( )1 111 1 1 1
2 2 1 2 .s r r rs s s s s sB I A B X B X X V X X V V X X V X

− −−− − − − ′ ′− + = −   

By (A.6),  

( ) ( )( )
( )( ) ( )

( )( )

111 1
2 2 1 2

11 1
2 1 2 1 2

11
1 2 

s r

s r s s s s r

s r

B I A B X B X X V X

B I B X B X X V X X B X B

B X B X X V X

−−− −

−− −

−−

′− +

 ′ ′ ′ ′ ′= + + +  

′× +

 

and employing (A.2), last expression reduces to  

( ) ( )

( ) ( ) ( )( )

( ) ( ){
( )}( )

11 1 1
2 1 2

1 11 1
1 2 1 2

11 1 1
1 2

11
1 2

  

  .

rs s s s s s s r

r s s s s r s r

rs s s r r rs s s s s s s r

s r

B V V X X V X X B X B

X X V X X B X B B X B X X V X

V V X X X V V X X V X X B X B

B X B X X V X

−− − −

− −− −

−− − −

−−

 ′ ′ ′ ′ ′− +
′ ′ ′ ′ ′ ′+ + +

  ′ ′ ′ ′ ′= − + + − + 

′× +

 

Finally, using (A.5), we get  

( ) ( )( )
( ) ( ) ( ) ( )

( )( )

111 1
2 2 1 2

1 11 1 1 1 1

11 1 .

s r

r rs s s s s s s s s

r rs s s s s s

B I A B X B X X V X

X V V X I X V X X V X X V X X V X

X V V X X V X

−−− −

− −− − − − −

−− −

′− +

 ′ ′ ′ ′= − + −  

′= −

 

4. Examples  

In this section, we present two examples to illustrate the optimal predictors that 
are obtained in the theorems. 

In the first one, we consider a coordinate free model and the predictor is 
derived applying Theorem 1. Second example shows an application of Theorem 
2 in a particular coordinatized model. 

Example 1. Our objective is to predict the population total 
1

N

i
i

T y
=

= ∑  in the  

model  

( )E Y µ=  and 
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( )

2 1

2
2

3
2

1

1
Var ,1

1

1

N

N

NY

ρ ρ ρ

ρ ρ
σ

ρ
ρ

−

−

−

 
 
 
 =  −  
 
  









 

with ρ  a known parameter and 2 0σ > . 
Because of the great quantity of calculations, without loss of generality, we 

restrict the attention to the situation where 4N = , 3n = , such that  

[ ]

1
1

2
2 4

3
3

4

2 3

2

2 2

3 2

, ,    and

1

11 , 1, known.
1 1

1

s r

y
y

y
Y Y y Y y

y
y

y

V

ρ ρ ρ

ρ ρ ρ
ρ ρ

ρ ρ ρ ρ

ρ ρ ρ

 
  
  = = =  
  
   

 
 
 

= ≠ −  
 
 

 

In this case,  

2
1

2

1 0 0
1 0

0 1
0 0 1

V

ρ
ρ ρ ρ

ρ ρ ρ
ρ

−

− − 
 − + − =
 − + −
 

− 

 and 

2

1

1 0 0 0
1 0 0 .

0 1 0
0 0 1

P

ρ
ρ

ρ
ρ

−

 −
 

− =  − 
 − 

 

Since  

( ){ }4IR , , , , IR ,v v µ µ µ µ µ′Ω = ∈ = ∈  

a base for Ω  is given by [ ]1 1 1 1A ′= . 
Then, it is easy to see that  

( ) 11 1

2 2

2 2

2 2 2

2 2

1 1 2 1 2 1

1 1 2 1 2 11 .
4 6 2 1 1 2 1 2 1

1 1 2 1 2 1

P A A V A A V

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

−− −
Ω ′ ′=

 − + − + − −
 
− + − + − − 

=  − + − + − + − − 
 − + − + − − 

 

Also  

( ) 1

3 4

0
0
0sI I P Y

y yρ

−

 
 
 − =
 
 
− + 

 

and  
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( )

( )( ) ( )( )

1
2

2 2 3
1 4 2 3

0
01 .04 6 2

1 2 1 3 3

sI I P P Y

y y y y
ρ ρ

ρ ρ ρ ρ ρ

−
Ω

 
 
 − =  − +  

− + + + − + − +  

 

By Theorem 1, the optimal linear predictor of T  is 
3

4
1

ˆ ˆi
i

T y y
=

= +∑ , where 4ŷ   

is the solution in 4y  of the equation  

( ) ( )1 1 .s sI I P Y I I P P Y− −
Ω− = −  

After calculations, we get  

( ) ( ) ( )2 2 3 2 3
1 2 3

4 2

1 2 1 3 3 1 3
ˆ

3 4

y y y
y

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ

− + + − + − + + − +
=

− +
 

and  

1 1 2 2 3 3
ˆ ,T a y a y a y= + +  

where 
2

1 2

4 6 2
3 4

a ρ ρ
ρ ρ

− +
=

− +
, 

2 3

2 2

4 7 4
3 4

a ρ ρ ρ
ρ ρ

− + −
=

− +
 and 

2 3

3 2

4 3 2
3 4

a ρ ρ ρ
ρ ρ

− − +
=

− +
. 

It is interesting to note that, if 0ρ = , such that V I=  and iy  and jy  are 
uncorrelated, i j≠ , then ˆ 4 sT y= , where sy  is the sample mean. In this case, 
T̂  is the expansion predictor which was found by [1] under the model 
( )E Y µ=  and ( ) 2Var Y Iσ= . 
Example 2. Let us consider the superpopulation model  

, 1, 2, , ,i i iy x i Nβ= + =   

with ( ) 0iE = , ( )Var 1i = , ( )Cov ,i j ρ=   for i j≠ , , 1, 2, ,i j N=  , and 
ρ  a known parameter, 1ρ ≠ . 

Our objective is to calculate the best linear unbiased predictor of the popula-  

tion total 
1

N

i
i

T y
=

= ∑ . 

In this situation, the model is coordinatized, and by Theorem 2, it is enough 
to obtain the value  

( )1ˆ ˆˆ .r r rs s s sY X V V Y Xβ β−= + −  

Let sV  and rsV  be written as  

( )
,

1
,

s n n

rs N n n

V I J
V J

ρ ρ
ρ −

= − +

=
 

where nJ  and ,N n nJ −  are respectively the n n×  and ( )N n n− ×  matrix of 
ones. 

Thus, it is easy to see that  

( )

( )

1 1 1
2

2

1 1

1 1ˆ

1 1

n n n

i i i i
i i i

n n

i i
i i

x y x y
n

x x
n

ρ
ρ

β
ρ

ρ

= = =

= =

−
+ −

=
 −  + −  

∑ ∑ ∑

∑ ∑
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and  

1

2

ˆ

ˆˆ ,

ˆ

n

n
r

N

a b

a bY

a b

β

β

β

+

+

 +
 

+ =  
 
 + 



 

where  

( ) 1

ˆ, 1, 2, , ,
1 1

n

n j n j i
i

a x x j N n
n
ρ β

ρ+ +
=

 
= − = −  + − 

∑   

and  

( )
1 .

1 1

n

i
i

y
b

n

ρ

ρ
==

+ −

∑
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Appendix  

First, we show that ˆs Zh PI Z h Pµ′ ′Γ = +  defined in the proof of Theorem 1 does 
not depend on unknown quantities. 

Since P  is a lower triangular matrix, 1P−  is lower triangular also, then  

11 1

21 1 22 2
11

21 221
1 1 2 2

11 1 12 2 1 1 1
1 2

1 1 2 2

0 0
0

n n nn n

n n n n n
N N NN

N N NN N

y
y y

P Y Y y y y
y y y

y y y

δ
δ δ

δ
δ δ

δ δ δ
δ δ δ

δ δ δ

δ δ δ

−

+ + + + +

 
 +        = = + + +    + + +    
 
 + + + 



















 

and  

11 1

21 1 22 2

1
1 1 2 2

0
.

0 0
0

0

n
s n n nn n

y
y y y

I
I Z P Y y y y

δ
δ

δ δ δ−

 
 + 
 

   = = + + +   
   

 
 
  







 

So, it is shown that sh PI Z′  does not depend on unknown quantities. By the 
proof of Theorem 1, we can see that ( ) 1

2 1
ˆ

r sZ I A A CY−= −  and thus, ˆZh Pµ′  
also does not depend on unknown quantities. Then Γ  is a predictor of h Y′ . 

Now we derive the results (A.1) through (A.6) which are necessary to prove 
Theorem 2. 

Let 1P−  partitioned as in the proof of Theorem 1, 1

1 2

0C
P

B B
−  
=  
 

 which  

implies that  
1

1 1 1
2 1 2

0
.

C
P

B B C B

−

− − −

 
=  

− 
 

Then using the equality V PP′=  and after some algebraic manipulations, it 
follows that  

1 1 ,sC C V′− − =  

and so, 
1.sC C V −′ =                          (A.1) 

Furthermore,  
1 1 1 1

1 2 1 2s srC C B B V B B V′ ′− − − −′ ′− = − =  

and hence 
1 1

2 1 .rs sB B V V− −− =                      (A.2) 

In the coordinatized model with Xµ β=  and covariance matrix V , it is 
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well known [6], that  

( ) 11 1P X X V X X V
−− −

Ω ′ ′=  

and thus  

( ) 11 1 1 1
* .P P P P P X X V X X P

− ′− − − −
ΩΩ

′ ′= =  

In the partitioned form, this matrix can be written as  

( ) [ ]

( )
( )( )

[ ]

( ) ( ) ( )

( )( ) ( )

11 2 11
*

1 2 1 2 2

11

1 211
1 2

1 11 1
1 2

11
1 2 1 2

0
0

s
s r

r

s

s s r

s r

s s s s r

s r s s r

H H C X C B
P X V X X X

A A B B X B

CX X V X
X C X B X B

B X B X X V X

CX X V X X C CX X V X X B X B

B X B X X V X X C B X B X

−−

Ω

−−

−−

− −− −

−−

′ ′       ′ ′ ′= =       ′       
 ′
  ′ ′ ′ ′ ′ ′= + 

′+  

′ ′ ′ ′ ′ ′ ′ ′+
=

′ ′ ′ ′+ + ( ) ( )
11

1 2

,
s rX V X X B X B

−−

 
 
 

′ ′ ′ ′+  

 

then 

( )( ) 11
1 1 2 ,s r sA B X B X X V X X C

−−′ ′ ′= +              (A.3) 

and 

( )( ) ( )
11

2 1 2 1 2 .s r s rA B X B X X V X X B X B
−−′ ′ ′ ′ ′= + +           (A.4) 

Using the fact that 1 1 1V P P′− − −= , it follows that  

1 1 1 1 21

2 1 2 2 1 2 2

0
0
C B C C C B B B B

V
B B B B B B B

− ′ ′ ′ ′ ′+     
= =     ′ ′ ′     

 

and  
1

1 1 2 1 1 2 2 2 .s s s s r s s r r rX V X X C CX X B B X X B B X X B B X X B B X−′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + +  

Applying (A.1), 
1 1

1 1 2 1 1 2 2 2 .s s s s s r s s r r rX V X X V X X B B X X B B X X B B X X B B X− −′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + +   (A.5) 

Application of a result of inverse matrix in conjunction with (A.4) and (A.5) 
yields 

( ) ( )( ) ( )

( ) ( )(

) ( )

( )( ) ( )

111 1
2 1 2 1 2

1 2 2 1 1

11
2 1 2

11
1 2 1 2

 

.

s r s r

s r r s s

r s r

s r s s s s r

I A I B X B X X V X X B X B

I B X B X X B X B B X

B X X V X X B X B

I B X B X X V X X B X B

−−− −

−−

−−

 ′ ′ ′ ′ ′− = − + +  
′ ′ ′= − + +

′ ′ ′ ′ ′+ − +

′ ′ ′ ′ ′= + + +

    (A.6) 
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