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Abstract 
Tilings of p -groups are closely associated with error-correcting codes. In [1], 

M. Dinitz, attempting to generalize full-rank tilings of 2
n  to arbitrary finite 

abelian groups, was able to show that if 5p ≥ , then n
p  admits full-rank 

tiling and left the case 3p = , as an open question. The result proved in this 
paper the settles of the question for the case 3p = . 
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1. Introduction 

A factorization of a finite abelian group G  is a collection of subsets  

1, , , ,i kA A A   of G  such that each element g G∈  can be represented in the 
form 1 i kg a a a=   . In this case, we write 1, , , ,i kG A A A=    and if each 

iA  contains the identity element e  of G , we say we have a normalized factori- 
zation of G . 

The notion of factorization of abelian groups arose when G. Hajós [3] found 
the answer to “Minkowski’s conjecture” about lattice tiling of n

  by unit cubes 
or clusters of unit cubes. The geometric version of “Minkowski’s conjecture” can 
be explained as follows: 

A lattice tiling of n
  is a collection { }:iT i I∈  of subsets of n

  such that
n

ii IT∈
= 



 and ( ) ( )int inti jT T = ∅


, if i j≠ , ,i j I∈ . Two unit cubes are 
called twins if they share a complete ( )1n − -dimensional face. Minkowski was 
wondering if there exists a tiling of n

  by unit cubes such that there are no 
twins! Minkowski’s conjecture is usually expressed as follows:  

Each lattice tiling of n
  by unit cubes contains twins. 

As mentioned above, it was G. Hajós [3] who solved Minkowski’ conjecture. 
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His answer was in the affirmative, after translating the conjecture into an equiv-
alent conjecture about finite abelian groups. Its group—theoretic equivalence 
reads as follows: 

“If G  is a finite abelian group and 1, , , ,i kG A A A=    is a normalized facto-
rization of G , where each of the subsets iA  is of the form { }2, , , , ke a a a , 
where k a< ; here a  denotes order of a , then at least one of the subsets iA  
is a subgroup of G ”. 

Rėdei [4] generalized Hajos’s theorem to read as follows: 
“If G  is a finite abelian group and 1 i kG A A A=    is a normalized factori- 

zation of G , where each of the subsets iA  contains a prime number of ele-
ments, then at least one of the subsets iA  is a subgroup of G ”. 

2. Preliminaries 

A tiling is a special case of normalized factorization in which there are only two 
subsets, say A  and B  of a finite abelian groups G , such that G AB=  is a 
factorization of G . 

A tiling of a finite abelian group G  is called a full-rank tiling if G AB=  
implies that A B G= = , where A  denotes the subgroup generated by 
A . In this case, A  and B  are called full-rank factors of G . Otherwise, it is 

called a non-full-rank tiling of G . As suggested by M. Dinitz [1] and also in that 
of O. Fraser and B. Gordon [2], finding answers to certain questions is some-
times easier in one context than in others. In this connection consider the group, 

n
p  viewed as a vector space of n -tuples ( )1 2, , , nx x x  over p . Then sub-

spaces correspond to subgroups. Moreover, n
p  is equipped with a metric, 

called Hamming distance Hd , which is defined as follows: 
For ( )1 2, , , nx x x x=   and ( )1 2, , , ny y y y=  ,  

( ) { }, :1 ,H i id x y i i n x y= ≤ ≤ ≠ . 

With respect to this metric, the sphere ( ),S x e  with center at x  and radius 
e  is the set ( ) { }, : ( , )HS x e y d x y e= ≤ . 

A perfect error-correcting code is a subset C  of n
p  such that  

( ), n
px CS x e

∈
= 



 and ( ) ( ), ,S x e S y e = ∅


, if x y≠ . 
Observe that in the language of tiling, this says that ( )0,n

p CS e=  is a facto-
rization of n

p  [6]. 
Factorization and Partition 
Let G AB=  be a factorization of a finite Abelian group G . Then the sets  

{ }:aB a A∈  form a partition of G . Also, G A B= , where A  as before 
denotes the number of elements of A . 

Definition 
Let A  and A′  be subsets of G . We say that A  is replaceable by A′ , if 

whenever G AB=  is a factorization of G , then so is G A B′= . 
Redei [4] showed that if G AB=  is a factorization of G , where  

{ }1 2 1, , , , pA e a a a −=  , and p  is a prime, then A  is replaceable by ia , for 
each ,1 1i i p≤ ≤ − . 
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Definition 
A subset A  of G  is periodic, if there exists g G∈ , g e≠  such that  

gA A= . It is easy to see that if A  is periodic, then A HC= , where H  is a 
proper subgroup of G  [5]. 

Before we show the aim of this paper, we mention the following observation. 
If G AB=  is a factorization of G , then for any a A∈ , and b B∈ , then so is 

1 1G a Ab B− −= , so we may assume all factorizations G AB=  are normalized. 
Theorem 
Let 3

nG =   and assume G AB=  is a factorization of G , where 3A = , 
then either A  or B  is a non-full-rank factor of G . 

Proof: 
Note that 3nG = . We induct on n . 
If 1n = , then 1B = . Thus, B  is a non-full-rank factor of G . 
Let 1n >  and assume the result is true for all such groups of order less than 

3n . 
Let { }, ,A e a b= . Then in G AB= , by Rédei [4], A  can be replace by  

{ }2, ,A e a a′ = . 
If 3a e= , then A  is a subgroup of G . Thus, A G≠ , so A  is a non-full- 

rank factor of G . 
If 3a e≠ , then from { }2, ,G e a a B= , we get the following partition of G :  

( )2G eB aB a B= ∗

 

 

from which we get  

( )2 3G aB a B a B= ∗∗

 

. 

Comparing ( )∗  with ( )∗∗ , we obtain 3B a B= . Thus, B  is periodic, from 
which it follows that B HC= , where H  is a a proper subgroup of G . Now, 
from G AB= , we obtain the factorization ( ) ( )G H AB H A H B H= =  of 
the quotient group G H , which is of order less than 3n . So, by inductive as-
sumption, either AH H G H≠  or BH H G H≠  from which it follows 
that either A G≠  or B G≠ . That is either A  or B  is a non-full-rank 
factor of G  QED. 
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