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Abstract 
Temporal autocorrelation (also called serial correlation) refers to the relation- 
ship between successive values (i.e. lags) of the same variable. Although it has 
long been a major concern in time series models, however, in-depth treat-
ments of temporal autocorrelation in modeling vehicle crash data are lacking. 
This paper presents several test statistics to detect the amount of temporal 
autocorrelation and its level of significance in crash data. The tests employed 
are: 1) the Durbin-Watson (DW); 2) the Breusch-Godfrey (LM); and 3) the 
Ljung-Box Q (LBQ). When temporal autocorrelation is statistically significant 
in crash data, it could adversely bias the parameter estimates. As such, if 
present, temporal autocorrelation should be removed prior to use the data in 
crash modeling. Two procedures are presented in this paper to remove the 
temporal autocorrelation: 1) Differencing; and 2) the Cochrane-Orcutt me-
thod. 
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1. Introduction 

Temporal autocorrelation (i.e. serial correlation) is a special case of correlation, 
and refers not to the relationship between two or more variables, but to the rela-
tionship between successive values of the same variable. Temporal autocorrela-
tion is closely related to the correlation coefficient between two or more varia- 
bles, except that in this case we do not deal with variables X and Y, but with 
lagged values of the same variable. Most regression methods that are used in 
crash modeling assume that the error terms are independent from one another, 
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and they are uncorrelated. This assumption is formally expressed [1] as: 

( ) 0.0 for all i jE i jε ε = ≠                     (1) 

where,  
E: the expected value of all pair-wise products of error terms, 

i jε ε : error terms of the i and j observations respectively, 
which means that the expected value of all pair-wise products of error terms 

is zero, and when the error terms are uncorrelated, the positive products will 
cancel those that are negative leaving an expected value of 0.0 [1]. If this as-
sumption is violated, the standard errors of the estimates of the regression pa-
rameters are significantly underestimated which leads to erroneously inflated 
coefficients values, and incorrect confidence intervals. The presence of corre-
lated error terms means that these types of inferences cannot be made reliably 
[2]. The violation of this assumption occurs because of some temporal (time) 
component (i.e. heterogeneity due to time) that can affect the observations 
drawn across the time, such as time series data, panel data in the form of serial 
correlation, and any other dataset that might be collected over a period of time. 
In this context, the error in a first time period influences the error in a subse-
quent time period (either the previous period, or the next period or beyond) [3]. 
For example, we might expect the disturbance (i.e. error term) in year t to be 
correlated with the disturbance in year t − 1 and with the disturbance in year t + 
1, t + 2, and so on. If there are factors responsible for inflating the observation at 
some point in time to an extent larger than expected (i.e. a positive error), then it 
is reasonable to expect that the effects of those same factors linger creating an 
upward (positive) bias in the error term of a subsequent period. This phenome-
non is called positive first-order autocorrelation, which is the most common 
manner in which the assumption of independence of errors is violated. For in-
stance, if a dataset influenced by quarterly seasonal factors, then a resulting 
model that ignores the seasonal factors will have correlated error terms with a 
lag of four periods. There are different structure types of temporal autocorrela-
tion: 1st order, 2nd order, and so on. The form of temporal autocorrelation that is 
encountered most often is called the first order temporal autocorrelation in the 
first autoregressive term, which is denoted by AR (1). The AR (1) autocorrela-
tion assumes that the disturbance in time period t (current period) depends 
upon the disturbance in time period t − 1 (previous period) plus some additional 
amount, which is an error, and can be modeled as [3]: 

1t t tε ρε −= +∈                          (2) 

where, 
εt :the disturbance in time period t, 
εt − 1: the disturbance in time period t − 1, 
ρ: the autocorrelation coefficient, 

i∈ : the model error term. 
The parameter ρ can take any value between negative one and positive one. If 

ρ > 0, then the disturbances in period t are positively correlated with the distur-
bances in period t − 1. In this case, positive autocorrelation exists which means 
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that when disturbances in period t − 1 are positive disturbances, then distur-
bances in period t tend to be positive. When disturbances in period t − 1 are 
negative disturbances, then disturbances in period t tend to be negative. Tem-
poral datasets are usually characterized by positive autocorrelation. If ρ < 0, then 
the disturbances in period t are negatively correlated with the disturbances in 
period t − 1. In this case there is negative autocorrelation. This means that when 
disturbances in period t − 1 are positive disturbances, then disturbances in pe-
riod t tend to be negative. When disturbances in period t − 1 are negative dis-
turbances, then disturbances in period t tend to be positive. 

The second order temporal auto correlation is called the second-order auto-
regressive process or AR (2). The AR (2) autocorrelation assumes that the dis-
turbance in period t is related to both the disturbance in period t − 1 and the 
disturbance in period t - 2, and can be modeled as [3]: 

1 1 2 2t t t tε ρ ε ρ ε− −= + +∈                     (3) 

where,  
ρ1: the autocorrelation coefficient in time period t − 1. 
ρ1: the autocorrelation coefficient in time period t - 2. 
The disturbance in period t depends upon the disturbance in period t − 1, the 

disturbance in period t - 2, and some additional amount, which is an error (∈t). 
In a similar manner, the temporal autocorrelation can be extended to the ρth 
order autocorrelation AR (ρ). However, the most often used temporal autocor-
relation is the first-order autoregressive process [3]. If the temporal autocorrela-
tion is found to be significant in crash data, then it must be removed before us-
ing the data in the modeling process [4] [5] [6].  

1.1. Sources of Temporal Autocorrelation 

Temporal autocorrelation can arise from the following sources:  
• Omitted Explanatory Variables: Omitting some important explanatory va-

riables from the modeling process can create temporal autocorrelation that 
can produce biased parameter estimates and incorrect inferences, especially if 
the omitted variable is correlated with variables included in the model [1] [7] 
[8] [9]. 

• Misspecification of the Mathematical Form of the model can create tem-
poral autocorrelation. For example, if a linear form of the model is specified 
when the true form of the model is non-linear, the resulting errors may re-
flect some temporal autocorrelation [10] [11] [12] [13]. 

• Misspecification of The Error Terms of the model due to some purely 
random factors, such as changes in weather conditions, economic factors, 
and other unaccounted for variables, which could have changing effects over 
successive periods. In such instances, the value of the error terms in the model 
could be miss pecified [3]. 

1.2. Detection of Temporal Autocorrelation 

Several methods are available to detect the existence of the temporal autocorrela-
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tion in the crash dataset, including the residuals scatter plots, the Durbin-Watson 
test, the Durbin h test, the Breusch-Godfrey test, the Ljung-Box Q test, and corre-
lograms. These will be described in detail below: 
• Scatter Plot of Residuals 

The error for the ith observation in the dataset is usually unknown and unob-
servable. However, the residual for this observation can be used as an estimate of 
the error, then the residuals can be plotted against the variables that may be re-
lated to time. The residual would be measured on the vertical axis. The temporal 
variables such as, years, months, or days would be measured on the horizontal 
axis. Next, the residual plot can be examined to determine if the residuals appear 
to exhibit a pattern of temporal autocorrelation. If the data are independent, 
then the residuals should be randomly scattered about 0.0. However, if a notice-
able pattern emerges (particularly one that is cyclical or seasonal) then temporal 
autocorrelation is likely an issue. It must be emphasized that this is not a formal 
test of serial correlation. It would only suggest whether temporal autocorrelation 
may exist. We should not substitute a residual plot for a formal test [1] [13].   
• The Durbin-Watson (DW) Test 

The most often used test for first order temporal autocorrelation is the Dur-
bin-Watson DW test [13]. The DW test is a measure of the first order autocor-
relation and it cannot be used to test for higher order temporal autocorrelation. 
The DW test is constructed to test the null and alternative hypotheses regarding 
the temporal autocorrelation coefficient (ρ): 

0 : 0.0,  : 0.0aH Hρ ρ= ≠                    (4) 

The null hypothesis of ρ = 0.0 means that the error term in one period is not 
correlated with the error term in the previous period, while the alternative hy-
pothesis of ρ ≠  0.0 means the error term in one period is either positively or 
negatively correlated with the error term in the previous period. To test the hy-
pothesis, the DW test statistic on a dataset of size n is formulated as [1]: 

( )2
12

2
1

 
n

t tt
n

tt

e e

e
DW −=

=

=
−∑

∑
                    (5) 

where, 
DW: the Durbin-Watson statistic, 
et: the residual error term in time period t, 
et –1: the residual error term in the previous time period t − 1. 
The DW statistics ranges from 0.0 to 4.0, and it can be shown that: 

( )2 1DW ρ∧= −                        (6) 

where, 
ρ^: the residual temporal autocorrelation coefficient. 
When ρ^ = 0.0, (i.e. no autocorrelation), then DW = 2.0. 
When ρ^ tends to 1.0, then DW = 0.0. 
When ρ^ tends to −1.0, then DW = 4.0. 
The critical values of DW for a given level of significance, sample size and 

number of independent variables can be obtained from published tables that 
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are tabulated as pairs of values: DL (lower limit of DW) and DU (upper limit of 
DW). To evaluate DW [3]: 

1) Locate values of DL and DU in Durbin-Watson statistic table.  
2) For positive temporal autocorrelation: 
a) If DW < DL then there is positive autocorrelation. 
b) If DW > DU then there is no positive autocorrelation. 
c) If DL < DW < DU then the test is inconclusive. 
3) For negative temporal autocorrelation: 
a) If DW < (4.0 – DU) then there is no negative autocorrelation. 
b) If DW > (4.0 – DL) then there is negative autocorrelation. 
c) If (4.0 – DU) < DW < (4.0 – DL) then the test is inconclusive. 
A rule of thumb that is sometimes used is to conclude that there is no first or-

der temporal autocorrelation if the DW statistic is between 1.5 and 2.5. A DW 
statistic below 1.5 indicates positive first order autocorrelation. A DW statistic of 
greater than 2.5 indicates negative first order autocorrelation [3]. Alternatively, a 
significant p-value for the DW statistic would suggest rejecting the null hypothe-
sis and concluding that there is first order autocorrelation in the residuals, and a 
non-significant p-value would suggest accepting the null hypothesis and con-
cluding that there is no evidence of first order autocorrelation in the residuals. 
• The Durbin h Test  

When one or more lagged dependent variables are present in the data, the 
DW statistic will be biased towards 2.0, this means that even if temporal auto-
correlation is present it may be close to 2.0, and hence it cannot detect it. Durbin 
suggests a test for temporal autocorrelation when there is a lagged dependent 
variable in the dataset, and it is based on the h statistics. The Durbin h statistics 
is defined as: 

( )^1
Th

T VAR
ρ

β
∧=

 −  
                    (7) 

where, 
T: the number of observations in the dataset, 
ρ^: the temporal autocorrelation coefficient of the residuals, 
VAR (β^): the variance of the coefficient on the lagged dependent variable. 
Durbin has shown that the h statistics is approximately normally distributed 

with a unit variance, hence the test for first order autocorrelation can be done 
using the standard normal distribution. If Durbin h statistic is equal to or greater 
than 1.96, it is likely that temporal autocorrelation exists [1].  
• The Breusch-Godfrey Lagrange Multiplier (LM) Test  

The Breusch-Godfrey test is a general test of serial correlation and can be used 
to test for first order temporal autocorrelation or higher order autocorrelation. 
This test is a specific type of Lagrange Multiplier test. The LM test is particularly 
useful because it is not only suitable for testing for temporal autocorrelation of 
any order, but also suitable for models with or without lagged dependent vari-
ables [14]. The null and alternative hypotheses used with this test for a second 
order autocorrelation are: 
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0 1 2 1: 0.0,  : At least one  is not zeroH Hρ ρ ρ= =           (8) 

The LM test statistic is given by:  

( ) 2–LM n i R=                       (9) 

where, 
LM: the Lagrange multiplier test statistic, 
n: the number of observations in the dataset, 
i: the order of the autocorrelation, 
R2: the unadjusted R2 statistic (coefficient of determination) of the model. 
The LM statistic has a chi-square distribution with two degrees of freedom, χ2 

(2) [15]. 
• The Ljung-Box Q (LBQ) Test 

The Ljung-Box Q test (sometimes called the Portmanteau test) is used to test 
whether or not observations taken over time are random and independent for 
any order of temporal autocorrelation. It is based on asymptotic Chi-Square dis-
tribution χ2. In particular, for a given i lag, it tests the following hypotheses [16]: 

H0: the autocorrelations up to i lags are all zero                      (10) 
Ha: the autocorrelations of one or more lags differ from zero           (11) 
The test statistic is determined as follows [16]: 

( )
2

1 2 i
i

j
j

r
n j

LBQ n n
=

= +
−∑                   (12) 

where, 
LBQi: the Ljung-Box Q statistic, 
n: the number of observations in the data, 
j: the lag being considered, 
i: the autocorrelation order, 
r: the residual error term in lag j. 

• Correlograms 
Correlograms are autocorrelation plots that can show the presence of tempor-

al autocorrelation. The autocorrelation would appear in lag 1.0 and progress for 
n lags then disappear. In these plots the residual autocorrelation coefficient (ρ^) 
is plotted against n lags to develop a correlogram. This will give a visual look at a 
range of autocorrelation coefficients at relevant time lags so that significant val-
ues may be seen [17]. In most software packages, two types of autocorrelation 
functions are presented: the autocorrelation function (ACF), and the partial au-
tocorrelation function (PACF). The ACF is the amount of autocorrelation be-
tween a variable and a lag that is not explained by correlations at all lower-order- 
lags, and the PACF is the difference between the actual correlation at specific lag 
and the expected correlation due to propagation of correlation at the previous 
lag. If the PACF displays a sharp cutoff while the ACF decays more slowly we 
conclude that the data displays an autoregressive model (AR), and the lag at 
which the PACF cuts off is the indicated number of AR terms. If the ACF of the 
data displays a sharp cutoff and/or the lag-1 autocorrelation is negative then we 
have to consider adding a moving average term (MA) to the model, and the lag 
at which the ACF cuts off is the indicated number of MA terms. In general, the 
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diagnostic patterns of ACF and PACF for an AR (1) term [18] are: 
ACF: declines in geometric progression from its highest value at lag 1.0. 
PACF: cuts off abruptly after lag 1.0. 
If the ACF of a specific variable shows a declining geometric progression from 

the highest value at lag 1.0, and the PACF shows an abrupt cut off after lag 1.0., 
this would indicate that this variable has not encountered temporal autocorrela-
tion.  

1.3. Remedies for Temporal Autocorrelation 

When temporal autocorrelation is determined to be present in the dataset, then 
one of the first remedial measures should be to investigate the omission of one 
or more of the key explanatory variables, especially variables that are related to 
time. If such a variable does not aid in reducing or eliminating temporal auto-
correlation of the error terms, then a differencing procedure should be applied 
to all temporal independent variables in the dataset to convert them into their 
differences values, and rerun the regression model by deleting the intercept from 
the model [17]. If this remedy does not help in eliminating temporal autocorre-
lation, then certain transformations on all variables can be performed for the AR 
(1) term. These transformations aim at performing repeated iterative steps to 
minimize the squared sum of errors in the regression model. Examples of such 
transformations are: Cochrane-Orcutt procedure; and Hildreth-Lu procedure. 
More advanced methods can also be used for big datasets such as: Fourier series 
analysis; and the spectral analysis [17] [18].  

2. Data 

Missouri crash data for three years (2013-2015) for the Interstate I-70, MO, USA 
are used in this paper as reported by the Missouri State Highway Patrol (MSHP) 
and recorded in the Missouri Statewide Traffic Accident Records System (STARS). 
The data included a wide range of independent variables (i.e. risk factors) in the 
analysis:  
• Road geometry (grade or level; number of lanes) 
• Road classification (rural or urban; existing of construction zones)  
• Environment (light conditions) 
• Traffic operation (annual average daily traffic, AADT)  
• Driver factors (driver’s age; speeding; aggressive driving; driver intoxicated 

conditions; the use of cell phone or texting)  
• Vehicle type (passenger car; motorcycles; truck) 
• Number of vehicles involved in the crash  
• Time factors (hour of crash occurrence; weekday; month) 
• Accident type (animal; fixed object; overturn; pedestrian; vehicle in trans-

port). 

3. Methodology 

In this paper, three of the most widely used tests to detect the existence of tem-
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poral autocorrelation in the crash data are investigated, namely: The Durbin- 
Watson (DW), the Breusch-Godfrey (LM), and the Ljung-Box Q (LBQ) tests. 
The three temporal independent variables in the dataset (i.e. month, weekday, 
hour) are used in the application of each test.  

The tests can be applied at different levels of temporal aggregation (i.e. over 
one year, over two years, three years, etc.) to help identify any hidden effects of 
the temporal autocorrelation that might exist within a timeframe. In this paper, 
the JMP12 software package is used to compute the DW statistics, the associated 
residual temporal autocorrelation coefficients, and their significance at the 95% 
confidence level (i.e. p-values). JMP requires that the input format of the crash 
data be in either excel spreadsheet (i.e. *.xlsx) or in text (i.e. delimited or *.csv) 
and then the output is produced as excel spreadsheet or delimited text. The 
Eviews 9 software is used to compute the LM statistics, and their significance at 
the 95% confidence level (i.e. p-values). The software requires that the input 
format of the crash data be in either excel spreadsheet (i.e. *.xlsx) or in text (i.e. 
delimited or *.csv) and then the output is produced as excel spreadsheet or deli-
mited text. The Stata 14 software is used to compute the Box-Ljung Q statistic 
(LBQ) at each lag separately with the autocorrelation function (ACF) and the 
partial autocorrelation function (PACF) at each lag as well, and their signific-
ance at the 95% confidence level (i.e. p-values). The software requires that the 
input format of the crash data be in either excel spreadsheet (i.e. *.xlsx) or in text 
(i.e. delimited or *.csv) and then the output is produced as excel spreadsheet or 
delimited text. 

The Durbin Watson (DW) test is applied to the I-70 data at two temporal le-
vels; aggregation by year, and aggregation over all three years. Data for each year 
in aggregate is separately tested using (month, weekday, and hour) as the inde-
pendent temporal variables, and then the aggregate three-year period is tested 
using the same independent variables. 

The Breusch-Godfrey (LM) test is applied to the I-70 data for the first 36 lags 
at two temporal levels; aggregation by year, and aggregation over all three years. 
Data for each year in aggregate is separately tested using (month, weekday, and 
hour) as the independent temporal variables, and then the aggregate three-year 
period is tested. The LM test is applied with degrees of freedom equal to the 
number of lags (i.e. 36 degrees of freedom). The minimum recommended num-
ber of lags that should be considered for the LM and LBQ tests is roughly taken 
as the natural logarithm of the number of observations within the dataset [19], 
and larger values are recommended to detect the existence of temporal autocor-
relation. For the I-70 dataset, the number of observations of the aggregated three 
years (2013-2015) is 5869, and the minimum recommended number of lags = ln 
(5869) = 8.7. This paper uses 36 lags in both the LM and LBQ tests instead of the 
minimum recommended number. 

The Box-LjungQ statistic (LBQ) is applied to the I-70 data for the aggregated 
three-year period (2013-2015) using the time independent variables (month, 
weekday, and hour) and for the first 36 lags. In addition, correlograms of the 
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autocorrelation function (ACF) and partial autocorrelation function (PACF) for 
the I-70 data for the aggregated three-year period (2013-2015) are presented. 

3.1. The Durbin-Watson Test Results 

Table 1 shows the results of the Durbin-Watson (DW) test for the I-70 at the 
one-year aggregate level. It can be seen that the temporal autocorrelation of the 
I-70 dataset for the year 2013 is found to be 3.64% with p value of 0.0512 (which 
is non-significant at alpha of 0.05); for the year 2014 year is found to be 7.19% 
with p-value of 0.0002 (which is significant at alpha of 0.01); and for the year 
2015 is found to be 2.38% with p-value of 0.1371 (non-significant at alpha of 
0.05). So, the only significant temporal autocorrelation is existed within the I-70 
(2014) data, which should be removed before using this dataset in any modeling 
process. 

3.2. The Breusch-Godfrey Test Results  

Table 2 shows the results of the LM test for the I-70 crash data at the one-year 
aggregate level. The LM value (using 36 lags or 36 degrees of freedom) of the 
I-70 dataset for the year 2013 is found to be 31.022 with p-value of 0.7042 (non- 
significant at alpha of 0.05); for the year 2014 is found to be 60.129 with p-value 
of 0.0071 (significant at alpha of 0.01); and for the year 2015 is found to be 
50.876 with p-value of 0.0512 (non-significant at alpha of 0.05). The results of 
the LM test confirm the results of the DW test that the I-70 dataset for the year 
2014 contains a significant temporal autocorrelation as shown in Table 2. 

3.3. Removal of the Temporal Autocorrelation from Crash Data 

Since both the DW and the LM tests have shown the existence of temporal au-
tocorrelation in the I-70 (2014) crash data, the next step is to remove it before 
using the data in any modeling process. Two approaches are investigated in this 
paper for the removal of temporal autocorrelation, the differencing procedure, 
and the Cochrane-Orcutt procedure.  
 
Table 1. DW statistic for I-70 crash data. 

Year Durbin-Watson (DW) Temporal Autocorrelation Coefficient P-value Decision 

2013 1.927 0.0364 0.0512 non-sig 

2014 1.843 0.0719 0.0002 sig. 

2015 1.952 0.0238 0.1371 non-sig 

 
Table 2. LM statistic for I-70 crash data. 

Year LM statistic p-value Decision 

2013 31.022 0.7042 non-sig 

2014 60.129 0.0071 Sig. 

2015 50.876 0.0672 non-sig 
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3.4. The Differencing Procedure 

Since a significant temporal autocorrelation is found to be existed within the I- 
70 (2014) data, then this should be removed before using the dataset in any po-
tential modeling process [4] [5] [6]. In order to remove any significant temporal 
autocorrelation that may be existed in a dataset, one of the first remedial meas-
ures should be to investigate the omission of one or more of the explanatory va-
riables, especially variables that are related to time. Assuming that, the three 
time variables in the datasets (month, weekday, hour) have potential influence 
on the dependent variable, then they are unlikely to be removed from the analy-
sis. Hence, the next step is to apply a differencing procedure to all time inde-
pendent variables in the dataset to convert them into their differences values. 
The differencing procedure can be applied by subtracting the previous observa-
tion from the current observation, as shown in Equation (13) [20]: 

( ) 1–t t tD Y Y Y −=                       (13) 

where, 
D (Y): the difference of variable Y at lag t, 
Yt: the value of Y at lag t, 
Y t − 1: the value of Y at lag t − 1. 
The rho (i.e. the residual autocorrelation coefficient) is assumed to be (1.0) in 

the differencing procedure, which could overestimate the true rho value [21]. 
The first order differencing is applied to the I-70 (2014) dataset, and the ordi-
nary least square residuals were obtained, then the Durbin-Watson (DW) test is 
calculated to check for the temporal autocorrelation. The result of the DW statis-
tic showed that the temporal autocorrelation was still existed even after applying 
the first order differencing. Although the first order differencing is enough to 
show whether the differencing procedure can be used to remove the serial 
(temporal) correlation or not [21], however, more differencing orders (up to 7 
orders) are applied to the I-70 (2014) dataset, and the Durbin-Watson test (DW 
statistic) is calculated each time to check for the temporal autocorrelation. The 
results showed that the temporal autocorrelation was not removed by this me-
thod. Table 3 shows seven differencing orders that were applied to the data and 
their DW statistics. 

 
Table 3. Differencing results for 2014 I-70 data.  

Difference order DW statistic 
Auto correlation 

coefficient 
p-value Decision 

D1 1.841 0.0731 0.0002 sig. 

D2 1.833 0.0724 0.0001 sig. 

D3 1.831 0.0722 0.0001 sig. 

D4 1.823 0.0812 0.0001 sig. 

D5 1.821 0.0822 0.0001 sig. 

D6 1.829 0.0781 0.0001 sig. 

D7 1.820 0.0825 0.0001 sig. 
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3.5. The Cochrane-Orcutt Procedure 

When the differencing procedure cannot eliminate the temporal autocorrelation 
in a dataset, then the Cochrane-Orcutt procedure should be applied for the Au-
toregressive AR (1) term of this dataset [20]. The procedure uses the ordinary 
least square residuals to obtain the value of rho which minimizes the sum of 
squared residuals. Rho is then used to transform the observations of the varia- 
bles. The process continues until convergence is reached [20] [22]. Considering 
the general ordinary least squared regression model: 

t t tY Xα β ε= + +                      (14) 

where, 
Yt: the dependent variable at time (lag) t, 
α: the intercept, 
β: the vector of regression coefficients, 
Xt: the vector of explanatory variables at time (lag) t, 
εt: the error term of the model at time (lag) t. 
When applying the DW test, if the (DW) statistic revealed that the temporal 

autocorrelation exists among the model error terms, then the residuals must be 
modeled for the first order autoregressive term AR (1) such that: 

1t t teε ρε −= +                       (15) 

where, 
ρ: the temporal  autocorrelation coefficient (rho) between pairs of observa-

tions, 0 < ρ < 1, 
et: the error term of the residuals at time (lag) t. 
The Cochrane-Orcutt procedure is obtained by taking a quasi-differencing or 

generalized differencing, such that the sum of squared residuals is minimized [20] 
[22]: 

( ) ( )1 1– 1t t t t tY Y X X eρ α ρ β ρ− −= − + − +            (16) 

The Cochrane-Orcutt iterative procedure starts by obtaining parameter esti-
mates by the ordinary least square regression (OLS). Applying Equation (15), the 
OLS residuals are then used to obtain an estimate of rho from the OLS regres-
sion. This estimate of rho is then used to produce transformed observations, and 
parameter estimates are obtained again by applying OLS to the transformed 
model. A new estimate of rho is computed and another round of parameter esti-
mates is obtained. The iterations stop when successive parameter estimates differ 
by less than 0.001 [20]. 

The iterative Cochrane-Orcutt procedure was applied to the I-70 (2014) data-
set, and an optimized rho (i.e. the residual autocorrelation coefficient) value of 
0.07333 was obtained using the Stata 14 software that minimizes the estimated 
sum of squared residuals (ESS), then the DW statistic was calculated for the 
transformed residuals. The results showed that the temporal autocorrelation was 
removed from the I-70 (2014) dataset, as shown in Table 4. The DW statistic for 
the I-70 (2014) dataset is changed after applying the Cochrane-Orcutt procedure 
from 1.843 (with a significant p-value of 0.0002) to 1.992 (with a non-significant 
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p-value of 0.7167). 
After removing the temporal autocorrelation from the I-70 (2014) dataset, the 

DW test and the LM test were applied for the aggregated three years’ period 
(2013-2015) for the I-70 dataset. The DW statistic for the three years’ period 
(2013-2015) is 1.971 with temporal autocorrelation of 1.47% for the I-70 dataset, 
which is non-significant, as shown in Table 5. 

The LM value for the aggregated three years’ period (2013-2015) using 36 lags 
is 41.203 for the I-70 dataset, which is non-significant, as shown in Table 6. The 
results from the DW test and the LM test indicate that there is no significant 
temporal autocorrelation among each of the temporal independent variables (i.e. 
month, weekday, and hour) in the (2013-2015) dataset. 

3.6. The LBQ Test Results 

The Box-Ljung Q statistic (LBQ) is applied to the aggregated three-year period 
(2013-2015). Table 7 shows the Box-Ljung Q statistic, the auto correlation func-
tion (ACF) and the partial autocorrelation function (PACF) with their p-values 
for the I-70 dataset for the first 36 lags. It can be seen that the LBQ statistic, the 
ACF, and the PACF for all 36 lags are non-significant for the I-70 crash data. 
The LBQ statistic increases with the lag progress, indicating no temporal auto-
correlation within the dataset and confirming the results of the DW test and the 
LM test. 

4. Conclusion 

Temporal autocorrelation (also called serial correlation) refers to the relationship 
between successive values (i.e. lags) of the same variable. Although it is a major 
concern in time series models, however, it is very important to be checked in 
crash data modeling as well. The results of crash data modeling can be improved  
 
Table 4. Cochrane-Orcutt results for 2014 I-70 crash data. 

Iteration # rho ESS DW p-value Decision 

1 0.07295 568.242 

1.992 0.7167 non-sig 2 0.07333 568.241 

3 0.07333 568.241 

 
Table 5. Overall DW statistic for I-70 crash data. 

Year 
Durbin-Watson DW Autocorrelation Coefficient p-value Decision 

1.971 0.0147 0.1289 non-sig 

 
Table 6. Overall LM statistic for I-70 crash data. 

Year 
LM statistic p-value Decision 

41.203 0.2534 non-sig 
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Table 7. LBQ test results for I-70 crash data. 

Lag # ACF PACF LBQ-statistic p-value 

1 0.015 0.015 1.2720 0.259 

2 −0.009 −0.009 1.7093 0.425 

3 −0.024 −0.024 5.1985 0.158 

4 0.021 0.021 7.7212 0.102 

5 −0.006 −0.007 7.9130 0.161 

6 −0.013 −0.013 8.9711 0.175 

7 0.016 0.018 10.564 0.159 

8 0.018 0.017 12.576 0.127 

9 0.001 0.001 12.588 0.182 

10 −0.002 −0.000 12.608 0.246 

11 −0.001 −0.001 12.612 0.319 

12 −0.013 −0.013 13.555 0.330 

13 0.011 0.012 14.215 0.359 

14 −0.007 −0.007 14.469 0.415 

15 0.008 0.008 14.876 0.460 

16 −0.022 −0.022 17.683 0.343 

17 0.006 0.006 17.875 0.397 

18 0.003 0.003 17.937 0.460 

19 −0.001 −0.002 17.946 0.526 

20 0.002 0.003 17.963 0.590 

21 0.003 0.003 18.011 0.648 

22 0.012 0.011 18.804 0.657 

23 −0.010 −0.010 19.441 0.675 

24 −0.018 −0.017 21.297 0.621 

25 −0.025 −0.024 24.926 0.467 

26 −0.019 −0.020 27.163 0.401 

27 −0.017 −0.017 28.857 0.368 

28 −0.005 −0.006 29.012 0.412 

29 −0.005 −0.005 29.160 0.457 

30 0.011 0.010 29.869 0.472 

31 −0.006 −0.005 30.071 0.514 

32 −0.028 −0.028 34.843 0.334 

33 0.002 0.005 34.877 0.379 

34 0.029 0.030 39.955 0.223 

35 0.018 0.016 41.843 0.198 

36 0.000 0.002 41.843 0.232 

 
when several years of crash data are utilized in the analysis, such as a period of 
three years instead of one year. However, this means that the same roadway will 
generate multiple observations over time, which could be correlated due to some 
temporal (time) component and could adversely affect the precision of parame-
ter estimates. There are several methods that can be used to detect the existence 
of the temporal autocorrelation in the crash dataset, such as: 1) the residuals 
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scatter plots; 2) the Durbin-Watson (DW) test; 3) the Durbin h test; 4) the 
Breusch-Godfrey (LM) test; 5) the Ljung-Box Q (LBQ) test; and 6) correlograms. 
The residuals scatter plots and correlograms are not formal tests, and they would 
only suggest whether temporal autocorrelation may exist within crash data. The 
Durbin h test can only be used when there is a lagged dependent variable in the 
data. This paper used the Durbin-Watson (DW), Breusch-Godfrey (LM), and 
the LBQ tests to detect the temporal autocorrelation among the temporal inde-
pendent variables in the crash data (i.e. hour, weekday, month) for the interstate 
I-70 in Missouri for the years (2013-2015). Although the applications of these 
tests can be found in time series models, they have not been addressed in mod-
eling crash data. As such, this paper thoroughly investigated the applicability of 
these tests to crash data. 
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