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Abstract 
We propose a low complexity iterative algorithm for band limited signal 
extrapolation. The extrapolation method is based on the decomposition of fi-
nite segments of the signal via truncated series of real-valued linear prolate 
functions. Our theoretical derivation shows that given a truncated series (up 
to a selectable value) of prolate functions, it is possible to extrapolate the band 
limited function elsewhere if each extrapolated portion of the function is sub-
ject only to moderate truncation errors that we quantify in this paper. The ef-
fects of different sources of errors have been analyzed via extensive simula-
tions. We have investigated a property of the signal decomposition formula 
based on linear prolate functions whereby the integration interval does not 
need to be symmetric with respect to the origin while time-shifted prolate 
functions are used in the series. 
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1. Introduction 

In the early 60’s David Slepian and his colleagues discovered the bandlimited 
function that is maximally concentrated, in the mean-square sense, within a 
given time interval; this function is the prolate spheroidal wave function (PSWF) 
of zero-order. 

The linear prolate functions (LPFs) are the one-dimensional version of the 
prolate spheroidal functions and they form sets of bandlimited functions which 
are orthogonal and complete over a finite interval. Moreover, unlike other 
functions, they are also complete and orthogonal over the infinite interval. An 
additional property is that the finite Fourier transform (FT) of a linear prolate 
function is proportional to the same prolate function. Although there are other 
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functions which are their own infinite Fourier transform, only the prolate 
functions enjoy the property for the finite transform: this property uniquely 
defines the prolate functions [1]. Associated with each function, there is an 
eigenvalue ( )n cλ  and a free parameter c  which is a useful descriptor of sys- 
tem performance [2]. Some of the mentioned mathematical properties make the 
prolate functions easily applicable to optics [3]. In particular, we are interested 
in the problem of determining a bandlimited function from the knowledge of a 
finite segment of the function, since it is relevant in many practical situations 
from application to filters in communication systems [4] to optical systems 
when, for example, due to intrinsic instrumental limits, only limited observation 
data are available. 

Specifically, in the research area of bandlimited signal extrapolation, there 
have been contributions with iterative and non-iterative algorithms for 
extrapolation of signals in the LCT (linear canonical transform) domain that is a 
generalization of the Fourier transform. The challenges of convergence of 
algorithms based on the Gerchberg-Papoulis (GP) algorithm [5] and an applica- 
tion to high frequencies have been extensively investigated [6]. However, appro- 
aches based on the use of the prolate spheroidal wave functions [7] need to 
provide efficient ways to compute the prolate functions. 

In this paper, we benefit from a proprietary algorithm developed theoretically 
and implemented numerically by Cada [8], for accurate generation of linear 
prolate functions with desired high precision to use LPFs for signal extrapolation. 
In what follows, we introduces the basics of signal expansion using the linear 
prolate functions in Section 2; Section 3 presents our approach to signal 
extrapolation based on LPFs. In Section 4 and Section 5 simulation results, error 
analysis and numerical examples are presented and discussed. Finally conclu- 
sions are drawn in Section 6. 

2. Signal Expansion 

As sets of bandlimited functions, orthogonal on the finite interval and 
orthonormal on the infinite interval, the linear prolate functions ( ),n c tψ  can 
be successfully used for the expansion of a generally complex, bandlimited 
function ( )f t :  

( ) ( )
0

,n n
n

f t a c tψ
∞

=

= ∑                      (1) 

the representation is valid for all t , the bandwidth parameter is 0 0c t= Ω  
where 0Ω  represents the finite bandwidth or a cutoff frequency, and 0t  is the 
time interval. The function ( )f t  is supposed to be 0Ω -bandlimited. Adopting 
the criterion of a minimized mean-square error, the expansion coefficients na  
in (1) are given by: 

( ) ( ), dn na f t c t tψ
∞

−∞
= ∫                    (2) 

There is an alternative way to derive the coefficients na  using only the values 
of ( )f t  within the finite observation interval [ ]0 0,t t−  and introducing the 
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eigenvalues ( )n cλ . After multiplying (1) by ( ),m c tψ , integrating as reported 
in [1] and from the orthogonality properties of the LPFs which are valid on both 
the finite and infinite interval, one can obtain: 

( ) ( ) ( )0

0

1
, d

t
n n nt

a c f t c t tλ ψ
−

−
=    ∫                 (3) 

The latest expression for { }na  together with (1) states that when the 
bandlimited function ( )f t  is known over a finite interval of extend 02t  then 
( )f t  is theoretically known everywhere if one can accurately calculate the 

coefficients na  for   n→∞ , the functions ( ),n c tψ  and the eigenvalues ( )n cλ . 
( )n cλ  can be regarded as the index of energy concentration of each function 

nψ  in [ ]0 0,t t− . Therefore: 

( ) ( ) ( ) ( ) ( )0

0

1

0
, , d

N t
n n nt

n
f t c c t f t c t tλ ψ ψ

−

−
=

′ ′ ′  ∑ ∫          (4) 

Accurate computing of nψ , nλ  and na  for 2 πn c>  (where 2 πcritN c=  
is known as the critical value) turns the orthogonal expansion expression 
presented in (1) into a signal extrapolation problem. Indeed, for any LPFs set 
with a fixed c , the energy concentration of the functions within [ ]0 0,t t−  
decreases as the order n  increases and for critn N= , the signal’s maximum 
concentration reaches the boundary of the observation interval. Hence the 
summation of ( ){ }n cλ  is mostly determined by the first critN  terms whose  
individual value is very close to 1, and the series ( )0 nn cλ∞

=∑  converges to a 

finite value ( )2 πc , as extensively analyzed in [9]. Accurate estimation of the 

overlap integral ( ) ( )0

0
, d

t
nt

f t c t tψ
−∫  for high orders of n  becomes then a  

challenging problem of high-precision numerical integration with an absolute 
necessity of having ( ),n c tψ  with a high precision as well [8]. 

3. Signal Extrapolation 

Our main objective in signal extrapolation using linear prolate functions aims to 
take advantage of a generalized expression stated in [3], never exploited so far, 
for the coefficients in (3) which enables the finite interval 02t  to not be nece- 
ssarily symmetric with respect to the origin. Hence, for a general interval 

0 0T t t T t− ≤ ≤ + , relation (4) becomes:  

( ) ( ) ( ) ( ) ( )0

0

1

0
, , d

N T t
n n nT t

n
f t c c t T f t c t T tλ ψ ψ

+−

−
=

′ ′ ′− −  ∑ ∫        (5) 

Substituting y t T′= − , the following expression for ( )f t  is obtained:  

( ) ( ) ( ) ( ) ( )0

0

1

0
, , d

N t
n n nt

n
f t c c t T f y T c y yλ ψ ψ

−

−
=

− +  ∑ ∫        (6) 

with  

( ) ( ) ( ) ( )0

0

1 , d
t

n nt
n

a T f y T c y y
c

ψ
λ −

= +∫                (7) 

Thanks to the significant generalization for the calculation of coefficients 
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{ }na , one can use (6) to perform the signal extrapolation on ( )f t  beyond the 
observation interval [ ]0 0,t t−  using an iterative approach. 

Specifically, we start from the assumption that the function ( )f t  is perfectly 
known in the interval [ ]0 0,t t− . We use (6) with 0T =  to extrapolate the signal 
by an interval ( )0t∆  using already proposed algorithms to obtain accurate 
calculations of ( )0na  till ( )0 2 πN N c= > . Instead of pursuing the more 
challenging computing for 2 πN c , Formula (6) is re-applied for ( )0T t= ∆  
to extrapolate the signal by an additional interval ( )Tt∆  via accurate calcula- 
tions of ( )na T  to ( ) 2 πTN c> . The procedure is then repeated for the i -th 
iteration and up to the number of iterations that has been set. Specifically, at 
each iteration i , we form the function which becomes the input for iteration 

1i + :  

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

1

1 0 0

0 0

( )

, 1

, 1

i i i i t

i

i

f t f t f t f t p t

f t t i t t t i t

f t t i t t t i t

− ∆

−

 = + − 
− + ∆ ≤ ≤ + − ∆= 
+ − ∆ < ≤ + ∆

 



            (8) 

with ( )if t  being defined in (6). For the sake of simplicity t∆  is chosen to be 
the same at every iteration. Also,  

( ) ( )0 01, 1
0, otherwiset

t i t t t i t
p t∆

− + ∆ ≤ ≤ + − ∆
= 


 

4. Numerical Results  

A LPFs set with bandwidth parameter 20πc =  and 0 1t =  is used as the 
orthogonal basis for the proposed extrapolation method. The functions are 
discretized in time at a sampling rate of 0.001 for numerical implementation and 
each discrete sample has a high numerical precision greater than 100 digits. The 
software Mathematica characterized by high precision computing has been used 
for the simulations. Extrapolation is carried out on the 0Ω -bandlimited test 
function shown in Figure 1.  

( ) π 2π 3πcos 2π cos cos
11 7 2

t tf t t      = − + −      
      

 

4.1. Perfect Knowledge of ( )f t  in the Integration Interval  

In order to test the proposed approach for signal extrapolation as described in 
Section 3, we consider the ideal case first. This assumption means that at each 
iteration of the extrapolation, the function ( )f t T+  in the integral in (6) is 
known in Mathematica user-defined precision. Figure 2 shows reconstruction/ 
extrapolation after the first iteration when the time shift is 0T = , the truncation 
value is 97N =  and the Mathematica built-in interpolation and integration 
functions are used to calculate the overlap integral. In Figure 3, we show results 
for signal reconstruction/extrapolation after the second iteration with an actual 
application of our time shift approach; specifically 0 2 0.5T t= − = −  and 97N = . 
In both cases, the extrapolation succeeds to extrapolate the signal over an addi-  
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Figure 1. ( )f t  in the interval [ ]1,1− . 

 

 

Figure 2. Extrapolated ( )f t , no time shift. 

 

 

Figure 3. Extrapolated ( )f t , shift [ ]0.5,1.5− . 
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tional interval which is up to the 60%  of half of the time range where the 
function is known. The presence of the truncation error is discussed in Section 5. 

4.2. Estimate of ( )f t  in the Integration Interval 

We consider a more realistic case when the function ( )f t T+  in the integral in 
(6) is known in Mathematica user-defined precision only for 0T = . Figure 4(b) 
shows signal reconstruction/extrapolation after 16 iterations with a total time 
shift ( )1 0.3T i t= − ⋅∆ =  and 97N = . 

Figure 4(c) shows results after 36 iterations with a total time shift 0.7T =  
and 97N = . Each progressive shift is equal to 0.02t∆ = . At every iteration 

1i + , we use the function ( )if t  as the new input to (6) to make the integral 
calculation successful. The piecewise polynomial interpolation method present- 
ed in [10] has been applied for the accurate computing of the overlap integral 
and the LPFs set with bandwidth parameter 20πc =  has been used. Indeed, in 
terms of the normalized mean-squared error (NMSE), the method in [10] 
performs superiorly when compared to the iterative approach proposed in [6] 
and the generalized PSWFs (prolate spheroidal wave functions) expansion 
method proposed in [7]. Specifically, for comparison purposes, Figure 4(a) is  

 

 
(a)                                                         (b) 

 
(c)                                                         (d) 

Figure 4. Extrapolation outputs. (a) ( )f t  known in [ ]1,1− , 1i = ; (b) ( )f t  known in [ ]0.7,1.3− , 16i = ; (c) ( )f t  known in 

[ ]0.3,1.7− , 36i = ; (d) Reconstruction cases in (b) and (c) (solid line). 
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obtained by setting 1i =  and hence 0T = , and reproduces results presented in 
[10]. 

In Figure 5, details are shown for the extrapolation of the portion of the 
function in the time interval [ ]1.65,1.9 . Despite the effect of accumulated 
errors, it verifies that given the same truncation value N , the shift-approach 
( 36i = ) outperforms the reference approach ( 1i = ) when the extrapolation 
capability of the reference approach vanishes. 

The difference quotients in Table 1 calculated between time instant 1.73 and 
time instant 1.78 are indices of the curves slope and show that the shift-approach 
follows better the slope of the exact function. In Figure 6, extrapolation details 
are shown for the portion of the function in the time interval [ ]1.85,2.2 . 
Despite the effect of accumulated errors, the shift-approach for 36i =  outper- 
forms the shift-approach for 16i = . The difference quotients in Table 2 calcu- 
lated between time instants 1.90 and 2.00 show that the shift-approach for 

36i =  follows better the slope of the exact function. 
 
Table 1. Difference quotient. 

( ) ( )0 0f x h f x h+ −    exact 
36 iterations 
( 0.7T = ) 

16 iterations 
( 0.3T = ) 

1 iteration 
(no shift) 

( ) ( )1.74 1.73 0.01f f−    9.40661  6.83248 6.83238 6.36935 

( ) ( )1.75 1.74 0.01f f−    9.46608  6.49618 6.49601 5.82323 

( ) ( )1.76 1.75 0.01f f−    9.4923  6.11953 6.11922 5.18117 

( ) ( )1.77 1.76 0.01f f−    9.48503  5.71649 5.71596 4.45234 

( ) ( )1.78 1.77 0.01f f−    9.44413  5.30341 5.30248 3.651 

 

 
Figure 5. Detailed curves. 
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Figure 6. Detailed curves. 

 
Table 2. Difference quotient. 

( ) ( )0 0f x h f x h+ −    exact 
36 iterations 
( = 0.7T ) 

16 iterations 
( 0.3T = ) 

( ) ( )1.91 1.90 0.01f f−    6.00265  3.8751 3.61211 

( ) ( )1.92 1.91 0.01f f−    
5.54131  3.8203 3.45436 

( ) ( )1.93 1.92 0.01f f−    
5.05783  3.67135 3.16975 

( ) ( )1.94 1.93 0.01f f−    
4.55379  3.41957 2.74234 

( ) ( )2.00 1.99 0.01f f−    
1.19338  0.532228 −2.40967 

5. Error Analysis  

The proposed method is subject to an inherent series truncation error. Its mean 
squared error expression is the following, after an extrapolation interval eT :  

( ) ( ) ( ) ( ) ( ) ( )0 0 0

0 0 0

2 2 2
d d de et T t t T

T N N Nt t t
E f t f t t f t f t t f t f t t

+ + + + +

− − +
= − = − + −∫ ∫ ∫ (9) 

( ) ( ) ( )0

0

22

1
det T

n n Nt
n N

a c f t f t tλ
∞ + +

+
= +

= + −∑ ∫             (10) 

The first term in the summation in (9) represents the error in the fit of ( )Nf t  

(defined in (6)) to ( )f t  within the interval [ ]0 0,t t− . Specifically, as reported 

in [1], the calculation of ( ) ( ) ( )( )0 0

0 0

22

1d , d
t t

N n nn Nt t
f t f t t a c t tψ

+ + ∞

= +− −
− = ∑∫ ∫  into 

the sum form in (10) follows from the fact that ( ),n c tψ  are orthogonal on the 

interval [ ]0 0,t t− . The term ( ) ( )0

0

2
det T

Nt
f t f t t

+ +

+
−∫  is the truncation error in  

the extrapolation interval and then depends on the quantity eT . It is reasonable 
to consider the first term not critical for truncation values N  above 2 πc , 
when the energy factor ( )n cλ  rapidly approaches zero (an example is shown in 
Figure 7 for 20πc = ). The last statement has to satisfy the condition that for a  
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Figure 7. Eigenvalues ( )n cλ  vs. order n  for 20πc =  and 2 π 40critn c= = . 

 

sufficiently large n , the integral ( ) ( )( )0

0

2
, d

t
nt

f t c t tψ
−∫  tends to zero faster than  

the corresponding ( )n cλ  at the denominator of the products ( )2
n na cλ . This 

consideration motivated our work and indirectly highlights again that 
calculating accurate coefficients na  for large n  is critical since both overlap 
integrals and eigenvalues become very small quantities. This has been a known 
problem since the 60’s of the last century. The critical aspect is an accurate 
calculation of ( ),n c tψ , which is now possible [8]. Under the assumption that 
the function ( )f t  is initially known in [ ]0 0,t t− , the sum of truncation errors, 
computer roundoff and analog to digital conversion errors makes the practical 
implementation of the proposed iterative approach subject to a total error that 
has been measured as normalized mean-square error (NMSE) between the 
original function and the extrapolated signal ef  as:  

( ) ( )

( )

0

0

0

0

22

2 2

d
NMSE

d

e

e

e

e

t T
it Te

t T

t T

f t f t tf f

f f t t

+

− +

+

− +

−−
= =

∫
∫

           (11) 

It is clear from Table 3 that the zero-shift still gives the best results up to the 
point it is capable to extrapolate correctly (e.g., 0.65eT = ); increasing N  will 
extend eT  and it will still be the best extrapolation up to that point. However, if 
N  is a limit, as in practice always is, our shifting method performs better. This 
can be interpreted as a consequence of the multiplication by the quantity 

( ),n c t Tψ −  in (6) which means moving the energy of the LPFs accordingly to 
the shift of the function. Hence results confirm that our approach works in 
principle and, as pointed out in [10], the chosen algorithm for computing the 
overlap integral shows its sensitivity to reduced accuracy and noise when applied 
to an already extrapolated portion of the function. It is also important observing 
that the reported NMSE values have been calculated for ( ) ( )i if t f t=   following  
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Table 3. Normalized mean-square error (NMSE). 

eT  
NMSE-36 iterations 

( 0.7T = ) 
NMSE-16 iterations 

( 0.3T = ) 
NMSE-1 iteration 

(no shift) 

0.65  71.432420  10−×  71.432421  10−×  71.02351  10−×  

0.78  41.99422 10−×  41.99432 10−×  42.28493 10−×  

 
notation in (8). The extrapolation can be optimized by reconstructing the extra- 
polated function ( )if t  as concatenation of the known function with segments 
of optimum estimates. However, we still observe numerical inaccuracies oc- 
curring at the points of concatenations, which is presently under investigation. 

6. Conclusion  

In this paper, we have proposed and implemented a low complexity iterative 
algorithm for bandlimited signal extrapolation based on orthogonal projections 
over real-valued eigenvectors: the linear prolate functions. The method is valid 
for an arbitrary large range of frequencies with immediate applications in signal 
processing. The main contribution of our work is a theoretical derivation such 
that given a truncated series (up to a selectable value) of prolate functions, it is 
possible to extrapolate the bandlimited function (initially known in a limited 
time interval) elsewhere if each extrapolated portion of the function is subject 
only to moderate series truncation errors. These errors are controllable by the 
depth of extrapolation at each iteration. By doing so and with the aim of finding 
an alternative solution to the initial problem of implementing an accurate 
summation of infinite terms, we have investigated a property of the signal de- 
composition formula based on LPFs according to which the integration interval 
does not need to be symmetric with respect to the origin while time-shifted 
prolate functions are used in the summation. Also, we have investigated the 
effects of different sources of errors by implementing and analyzing the iterative 
algorithm as a generalization of the special case presented in [10]. Our method 
has shown to outperform concurrent approaches in terms of the normalized 
mean-square error of the extrapolated signal. 
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