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Abstract 
A logarithm representation of evolution operators is defined. Generators of 
invertible evolution families are characterized by the logarithm representa-
tion. In this article, using the logarithm representation, a concept of evolution 
operators without satisfying the semigroup property is introduced. In conclu-
sion the existence of alternative infinitesimal generator is clarified. 
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1. Introduction 

For a given evolution operator let its logarithm function be well-defined. A sim-
ple question arises here; “is there any difference between the logarithm of evolu-
tion operator and the infinitesimal generator?” This question is associated with 
the unboundedness of infinitesimal generator. However a role of the unboun-
dedness of the infinitesimal generator has not been understood well so far. In-
deed, in the standard theory of linear evolution equation (for example, see [1]), 
the evolution operator is treated as a bounded operator in a given functional 
space X regardless of whether the infinitesimal generator is bounded or un-
bounded in X. 

This question is considered in a concrete framework of abstract Cauchy prob-
lem. Partial differential equations are regarded as ordinary differential equations 
in functional spaces. The initial value problems of autonomous evolution equa-
tions are written by 

( ) ( ) ( )
( ) 0

d d ,

0

u t t A t u t

u u

 =
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in X, where an initial value 0u  is given in X, and A(t) is generally unbounded in 
X. If there is a solution for this initial value problem, its solution is formally 
represented by 

( ) ( )d
0e ,A t tu t u∫=  

under the well-definedness of the indefinite integral ( )dA t t∫  and its exponen-
tial function. The evolution operators appearing in the following discussion cor-
respond to the above exponential function. Note that, since A(t) is generally 
given as an unbounded operator in X, the exponential of A(t) is not necessarily 
well-defined even if A(t) is independent of t (cf. Hille-Yosida theorem). 

There is a long history of studying logarithm of operators [2]-[8]. The loga-
rithm of ( )de A t t∫  is defined under a certain setting and such a logarithm is clari-
fied to play a role of extracting an essential and bounded part of infinitesimal 
generator [9]. In this article the logarithm representation of evolution operator is 
shown to lead to the concept of evolution operator without satisfying the semi-
group property. 

2. Evolution Operator and Its Infinitesimal Generator 
2.1. Invertible Evolution Operator 

An evolution operator is assumed to be defined on a Banach space X. Although 
evolution operator is not necessarily invertible, here we confine ourselves to in-
vertible evolution operators. The reason for this restriction can be found in Sec. 
3.2. 

For > 0T , let a certain time interval [ ],T T−  satisfy , ,T t r s T− ≤ ≤ . Let a  
family of two-parameter evolution operator on X be ( ){ } ,

,
T t s T

U t s
− ≤ ≤

 satisfying 

( ) ( ) ( )
( )

,  , , ,

, .

U t r U r s U t s

U s s I

=

=
                    (1) 

The property (1) is called the semigroup property. In addition the inverse op-
erator is assumed to exist: 

( ) ( ) ( ),  , , .U t s U s t U t t I= =  

If ( ),U t s  is generated by the operator independent of t (and s), one-para- 
meter group ( )U ⋅  can be defined by 

( ) ( ): , .U t s U t s− =  

utilizing this two-parameter evolution operator. Since t s−  is a real number 
only satisfying ,T t s T− ≤ ≤ , it can be negative. If a solution at certain times t 
and s are represented by ( ) ( ) 0= ,0u t U t u  and ( ) ( ) 0= ,0u s U s u  respectively, 
it is trivially seen from the definition that ( )U t s−  is a mapping from ( )u s  to 
( )u t . ( )U t  is nothing but a 0C -group generated by t-independent infinite-

simal generator, and the following properties are satisfied: 

( ) ( ) ( ) ( ) ( )
( )0

U t U r U r U t U t r

U I

= = +

=
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Indeed the 0C -group property can be confirmed by 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

,  ,0

,0 .

U r U t U r t t U t U r t t U t

U r t U t r

= + − = +

= + = +
 

Furthermore, for r s≠ , application of ( )U t s−  to ( ) ( ) 0= ,0u r U r u  leads 
to 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

0

0

,  ,0

,0 .

U t s u r U t s r r u r U t s r r U r u

U t s r u u t s r

− = − + − = − +

= − + = − +
     (2) 

Consequently the 0C -group ( 0C -semigroup) property of ( )U t  is derived 
from the definition of ( ),U t s . 

According to the standard theory of linear evolution equations [1], the fol-
lowing boundedness is assumed; there exists real numbers M and β  such that 

( ) tU t Meβ≤  

for [ ],t T T∈ − , where ⋅  denotes an operator norm. This assumption restricts 
the time evolution to be linearly bounded. Note that, using the equality 

( ) ( ),0U t U t= , the assumption can be replaced with 

( ), tU t s Meβ≤  

without the essential difference. 

2.2. Pre-Infinitesimal Generator 

The infinitesimal generator is defined using the evolution operator. Let the 
dense subspace Y of X be non-empty space admitting the definition of the fol-
lowing weak limit: 

( ) ( )( )1

0
lim , ,
h

w h U t h s U t s u−

→
+ −  

for u Y X∈ ⊂ . Since there is an arbitrariness of choosing the dense subspace of 
X, Y can be different depending on the detail of ( ),U t s . Under the existence of 
the above weak limit, the infinitesimal generator is defined by 

( ) ( )( )1

0
: lim ,

h
A t u w h U t h t I u−

→
= + −  

Since A(t) is defined under a weaker assumption compared to the standard 
theory of evolution equations, we call this operator the pre-infinitesimal genera-
tor. The definition of weak t-differential, which is denoted as t∂ , follows as 

( ) ( ) ( ), , ,tU t s u A t U t s u∂ =  

where the relation ( ) ( ) ( )( ) ( ), , ,  ,U t h s U t s U t h t I U t s+ − = + −  is used. In this 
article we consider the subspace Y as a natural choice of domain space ( )( )D A t . 
Generally speaking, if A(t) is dependent on t, ( )( )D A t  does depend on t. Here, 
by considering sufficiently small interval [ ], ,t s T T∈ − , ( )( )D A t  is assumed to 
be independent of t and s. Furthermore, by taking ( )u u s= , 

( ) ( ) ( )tu t A t u t∂ =                        (3) 
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follows. This is a linear evolution equation of autonomous type. In this manner 
the pre-infinitesimal generator of ( ),U t s  is obtained as the operator A(t) sa-
tisfying Equation (3). 

3. Logarithmic Representation of Infinitesimal Generator 
3.1. Function of Operator 

It is sufficient to consider the function of bounded operators, since ( ),U t s  is 
bounded on X. As a framework of defining functions of bounded operator, the 
Dunford-Riesz integral [10] 

( )( ) ( ) ( )( )1, = , d
2

f U t s f U t s
i

λ λ λ
π Γ

−∫              (4) 

is utilized. Note that functions of bounded operator on X are not necessarily 
bounded operators on X. For drawing an integral path on the complex plain, 
• the integral path Γ  consists of Jordan curves including all the spectral sets 

of ( ),U t s , 
• the integral path Γ  must not include singular points of ( )f λ . 

That is, for the definition of logarithm of operators, it is necessary to take an 
integral path not to include the origin, since the origin is the singular point of 
logarithm function. 

3.2. Logarithmic Function of Operator 

The logarithm of ( ),U t s  is defined using the Dunford-Riesz integral. Let the 
principal branch of logarithm be denoted by Log . For a certain complex num-
ber 0κ ≠ , the logarithm of ( ),U t s  is defined by 

( )( ) ( ) ( )( )1Log , Log , d ,
2

U t s I U t s I
i

κ λ λ κ λ
π Γ

+ = − −∫  

where Iκ  plays a role of moving the spectral set of ( ),U t s Iκ+  not to in-
clude the origin. In addition, according to the preceding discussion, it is neces-
sary for an integral path Γ  to include the spectral set of ( ),U t s Iκ+ . Since the 
boundedness of ( ),U t s  is assumed, it is necessarily possible to take an appro-
priate integral path Γ  by adjusting the amplitude of κ . If ( )( )Log ,U t s κ+  
is well-defined, then the definition of ( )( )Log ,U t s κ− +  trivially follows. That 
is, for the present definition manner, the sign of the logarithm of operator can 
not be a matter. This fact is essentially arises from limiting the time interval 
[ ],T T−  as finite. This provides the reason why we assume ( ),U t s  as inverti-
ble. 

The relation 

( ) ( )( ) ( )( ), Log ,tA t I U s t U t s Iκ κ= + ∂ +                (5) 

between the infinitesimal generator and the logarithm of operator has been 
proved in Ref. [9]. Let us introduce a notation: 

( ) ( )( ), : Log , .a t s U t s Iκ= +                     (6) 
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Since ( ),a t s  is bounded on X, it is possible to define the exponential func-
tion of ( ),a t s  by a convergent power series. Meanwhile ( ),t a t s∂  is obtained 
by applying the resolvent operator of ( ),U t s  to the pre-infinitesimal generator 
A(t). 

3.3. Evolution Operator without Satisfying the Semigroup 
Property 

If ( ),a t s  with different t and s are further assumed to commute, the exponen-
tial function ( ),ea t s  satisfies 

( ) ( )( ) ( ), ,e , e ,a t s a t s
t s t su a t s u∂ = ∂                    (7) 

where ( )( ),t a t s∂  is generally an unbounded operator in X, and it is well-  
defined by considering the previously-defined subspace Y. Although su X∈  
stands for ( )u s , it can be arbitrarily taken from X. Therefore, if we take 

( ),( ) ea t s
sv t u= , 

( ) ( )( ) ( ), ,t tv t a t s v t∂ = ∂                      (8) 

is obtained, where note that s in su  must be common to s in ( ),a t s . On the 
other hand, the exponential function of ( ),a t s  leads to 

( ) ( )

( )

,

0

, e

,
.

!

a t s

n

n

U t s I

a t s
I

n

κ

κ
∞

=

= −

= −∑
                    (9) 

This means that a group ( ),U t s  is generated by possibly unbounded opera-
tors being represented by the convergent power series. Here it is clear that the 
logarithmic representation is not simply a paraphrase of Hille-Yosida theorem. 
Equation (8) is an alternative equation of Equation (3), where the described 
evolutions are not exactly the same but connected by Equation (9). 

It is notable here that exponential function of ( ),a t s  with a certain complex 
number κ : 

( ) ( ),e ,a t s U t s Iκ= +  

does not satisfy the semigroup property: 
( ) ( ) ( )

( )

, , ,

,

e e e

e .

a t r a r s a t s

a s s I

=

=
 

First of all ( ),ea s s I≠  is seen by 

( ) ( )( )

( )( )

( )( )
( )

Log ,,

Log

e e
1 e  1 d

2
1  1 d

2
1

U s s Ia s s

I
i

I
i

I

κ

λ λ κ λ
π

λ λ κ λ
π
κ

+

Γ

Γ

=

= − +

= − +

= +

∫

∫
              (10) 

Next ( ) ( ) ( ), , ,e e ea t r a r s a t s≠  is seen by 
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( ) ( ) ( )( ) ( )( )

( )( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( )( ) ( )
( )( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

Log , Log ,, ,

2

2

2

, , ,

e e e  e

, ,

, , , ,

, , , )

, , ,

e e e 1

U t r I U r s Ia t r a r s

a t s a t r a r s

U t r I U r s I

U t r U r s U t r U r s I

U t s U t r U r s I

U t s I U t r I U r s I I I

I

κ κ

κ κ

κ κ

κ κ

κ κ κ κ κ κ κ

κ κ κ

+ +=

= + +

= + + +

= + + +

= + + + + + − +

= + − +

 (11) 

where ( ),ea t s  and ( ),ea r s  satisfy 
( ) ( )( ) ( ), ,e , e ,a t s a t s

t s t su a t s u∂ = ∂  

while ( ),ea t r  satisfies 
( ) ( )( ) ( ), ,e , e .a t r a t r

t r t ru a t r u∂ = ∂  

That is, the master equations of ( ),ea t s  and ( ),ea t r  are different, and this fact 
is associated with the insufficiency of semigroup property. Consequently the 
evolution operator without satisfying the semigroup property is clarified to be 
generated by ( ){ } [ ], .

,t t s T T
a t s

∈ −
∂ . 

4. Main Result 

Introduction of 0κ ≠  is the key to obtain the logarithmic representation, as well 
as to find the operator ( ),ea t s . Indeed it is always possible to define ( ),ea t s  for a 
certain κ ∈� . As seen in the preceding discussion, the singularity treatment de-
pends on the boundedness property, which results from the finiteness of the in-
terval [ ],T T−  in this article, and assumed in the standard theory of evo-  

lution equations. Here, under the existence of ( ){ }
[ ]

,

, .
ea t s

t s T T∈ −
, we study algebraic  

properties of ( ),ea t s  with focusing on the replacement of the original semigroup 
property. 

Theorem 1. For the operator ( ),ea t s  on X, the semigroup property is replaced 
with 

( ) ( ) ( ) ( ) ( ) ( )( )
( )

, , , , ,

,

e e e 1 e e ,

e .

a t s a t r a r s a t r a r s

a s s

I

I I

κ κ κ

κ

− = + − +

− =
          (12) 

The inverse relation is replaced with 
( ) ( ) ( ) ( ) ( )( ) ( ), , , , ,e e e e e 1 .a s t a t s a s s a t s a s t Iκ κ κ− = + − +           (13) 

In particular the commutation 
( ) ( ) ( ) ( ), , , ,e e e e 0a s t a t s a t s a s t− =                    (14) 

is necessarily valid. 
Proof. Substitution of ( ) ( ),, ea t sU t s Iκ= −  to ( ) ( ) ( ),  , ,U t r U r s U t s=  leads 

to the following relation (see Equation (11)): 

( ) ( ) ( ),,  , e ,a t sU t r U r s Iκ= −  
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and 
( )( ) ( )( ) ( ), , ,e  e e .a t r a r s a t sI I Iκ κ κ− − = −  

where, by taking κ  with a large κ , κ  is possible to be taken as common to 
( ),U t s  with different t and s. Meanwhile the replacement of ( ),( , ) ea t sU t s Iκ= −  

with ( ),U s s I=  leads to the following relation (see Equation (10)): 
( ) ( ),e 1a s s Iκ= +  

That is, for 1κ ≠ , ( ) ( )1 ,1 ea s sκ −
+  behaves as the unit operator. Modified 

version of semigroup property (i.e., (12)) has been proved. The inverse relation 
(13) follows readily from Equation (12). According to Equation (12), 

( ) ( ) ( ) ( ) ( ) ( )( ), , , , ,e e e 1 e e ,a t t a t s a s t a t s a s tIκ κ κ− = + − +  

is valid. Combination with another relation 
( ) ( ) ( ) ( ) ( ) ( )( ), , , , ,e e e 1 e e ,a s s a s t a t s a s t a t sIκ κ κ− = + − +  

leads to the commutation: 
( ) ( ) ( ) ( ), , , ,e e e e 0a t s a s t a s t a t s− =  

where ( ) ( ) ( ), ,e e 1a t t a s s Iκ= = +  is utilized. 
Equations (12) and (13) show the commutativity and violation of semigroup 

property by ( ),ea t s . The right hand sides of Equations (12) and (13) are equal to 
zero for 0κ = . These situations correspond to the cases when the semigroup 
property is satisfied by ( ),ea t s , and we see that the insufficiency of semigroup 
property is ultimately reduced to the introduction of nonzero κ . 

The decomposition is obtained by the following constitution theorem for the 
evolution operator. Note that the decomposition of ( ),ea t s  also provides a cer-
tain relation between the time-discretization and the violation of semigroup 
property. 

Theorem 2. For a given decomposition 1 2< , , , <ns r r r t�  of the interval 
[ ],s t  with 2n ≥ , the operator ( ),ea t s  on X is represented by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ){ } ( ) ( ) ( )

1 2 1 1 1 1

1 1 2 2 1 1

, ,, , , , ,

, , , , ,

2

e e e e e 1 e e

1 e e  e e e

n n n

k k k k k

a t r a r ra t s a r s a r s a t r a r s

n
a t r a r r a r r a r s a r s

k

Iκ κ κ

κ κ κ

−

− − −

=

= + + − +

 + + − +  ∑

�

�
  (15) 

where 0r  and 1nr +  in the sum are denoted as 0s r=  and 1nt r +=  respectively. 
Note that ( )1,e n na r r −  and ( )1 2,e n na r r− −  are the solutions of Equation (7) with dif-
ferent coefficients. 

Proof. According to Equation (12), a decomposition 
( ) ( ) ( ) ( ) ( )( )1 1 1 1, , , , ,e e e ( 1) e ea t s a t r a r s a t r a r sIκ κ κ= + + −  

is true. Another decomposition 
( ) ( ) ( ) ( ) ( )( )1 2 2 1 2 2 1, , , , ,e e e ( 1) e +e ,a t r a t r a r s a t r a r rIκ κ κ= + + −  

is also true, and then 
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( ) ( ) ( ) ( ) ( ) ( )( ){ } ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ){ }

2 2 1 2 2 1 1

1 1

2 2 1 1 1

1 1 2 2 1 1

, , , , , ,

, ,

, , , ,

, , , , ,

e e e 1 e e e

1 e e

e e e 1 e

e e e e e

a t s a t r a r r a t r a r s a r s

a t r a r s

a t r a r r a r s a r s

a t r a r s a t r a r s a r s

I

I

I

κ κ κ

κ κ κ

κ κ

κ

= + + − +

+ + − +

= + + +

− + + +

 

follows by sorting based on κ  and ( )1κ κ +  dependence. Further decomposi-
tion shows 

( ) ( ) ( ) ( ) ( ) ( )( )3 3 2 3 3 22 , , , ,,e e e 1 e e ,a t r a r r a t r a r ra t r Iκ κ κ= + + − +  

and then 
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ){ }
( ) ( ) ( ) ( ) ( )( ){ } ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( )

2 2 1 1 1

1 1 2 2 1 1

3 3 2 3 3 2 2 1 1

1 1 1 2 2 1 1

3 3 2 2 1 1

, , , , ,

, , , , ,

, , , , , ,

, , , , , ,

, , , ,

e e e e 1 e

e e e e e

e e 1 e e e e

1 e e e (e e )e

e e e e

a t s a t r a r s a r s a r s

a t r a r s a t r a r r a r s

a t r a r r a t r a r r a r r a r s

a r s a t r a r s a t r a r r a r s

a t r a r r a r r a r

I

I

I

κ κ

κ

κ κ κ

κ κ κ

= + + +

− + + +

= + + − +

+ + + − + + +

= ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ){ }

( ) ( ) ( ) ( ) ( ) ( )( ) ( ){ }
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

2 1 1

3 3 2 2 1 1 1

1 1 2 2 1 1

3 3 2 2 1 1 2 1 1

3 3 21 1 2 2 1 1

, ,

, , , , ,

, , , , ,

, , , , , ,

, ,, , , , ,

1 e e

e e e e 1 e

e e e e e

e e e e 1 e e

e e e e e e e e

s a r r a r s

a t r a r r a r r a r s a r s

a t r a r s a t r a r r a r s

a t r a r r a r r a r s a r r a r s

a t r a r ra t r a r s a t r a r r a r s a r

I

I I

κ κ

κ κ κ

κ

κ κ

κ

+ +

− + + + +

− + + +

= + + + +

− + + + + + ( ) ( ){ }2 1 1, ,er a r s

 

follows. For a certain 2n ≥ , a constitutional representation is suggested by the 
deduction: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

1 2 1 1

11 2 1 1 2 1 1

1 2 2 1 11

3 3 2 2 1 1

1 1 2 2

, ,, , ,

,, , , , ,

, , , ,( , )

, , , ,

, , , ,

e e e e e

1 e e e e e e

e e (e e )e

e e e e

e e e e

n n n

n n

n n n n n

a t r a r ra t s a r r a r s

a r ra r s a r r a r s a r r a r s

a r s a t r a r r a r sa t r

a t r a r r a r r a r s

a t r a r r a r r a r r

Iκ κ

κ

−

−

− − −

=

 + + + + + +  
− + + +

+ +

+ +

�

� �

�

� ( ) ( )1 1 ,ea r s 


 

Consequently 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )

1 2 1 1

1 2 2 1 1

1 1 21 1 2 1 1

, ,, , ,

, , ,

2

, , ,, , , ,

2

e e e e e

( 1) e e e

e e e e  e e e

n n n

k k

k k k k k

a t r a r ra t s a r s a r s

n
a r r a r s a r s

k

n
a t r a r r a r ra t r a r s a r s a r s

k

Iκ κ

κ

−

− −

− − −

=

=

=

  + + +   
  − + + +    

∑

∑

�

�

�

 

is obtained. The statement is proved by sorting terms. 



Y. Iwata 
 

830 

5. Summary 

Logarithm of invertible evolution families is defined by introducing nonzero κ . 
By comparing the logarithm of evolution operator to the infinitesimal generator, 
the difference has been found in the generated evolution operators (cf. Equation 
(9)). In conclusion, using the logarithmic representation, a concept of the evolu-
tion operator without satisfying the semigroup property is introduced. The vi-
olation of semigroup property has been quantitatively shown. Such an evolution 
operator is the alternative of original evolution operator without any loss of in-
formation. 
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