
Journal of Computer and Communications, 2017, 5, 1-31
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2017.56001 April 6, 2017

Survey on Three Components of Mobile
Cloud Computing: Offloading,
Distribution and Privacy

Anirudh Paranjothi, Mohammad S. Khan, Mais Nijim

Department of Electrical Engineering and Computer Science, Texas A&M University, Kingsville, TX, USA

Abstract
Mobile Cloud Computing (MCC) brings rich computational resource to mo-
bile users, network operators, and cloud computing providers. It can be
represented in many ways, and the ultimate goal of MCC is to enable execu-
tion of rich mobile application with rich user experience. Mobility is one of
the main characteristics of MCC environment where user can be able to con-
tinue their work regardless of movement. This literature review paper presents
the state-of-the-art survey of MCC. Also, we provide the communication ar-
chitecture of MCC and taxonomy of mobile cloud in which specifically con-
centrates on offloading, mobile distribution computing, and privacy. Through
an extensive literature review, we found that MCC is a technologically benefi-
cial and expedient paradigm for virtual environments in terms of virtual serv-
ers in a distributed environment, multi-tenant architecture and data storing in
a cloud. We further identified the drawbacks in offloading, mobile distribu-
tion computing, privacy of MCC and how this technology can be used in an
effective way.

Keywords
Cloud Computing, Mobile Cloud Computing, Offloading,
Distribution and Privacy

1. Introduction

Smartphones are becoming popular and its users are increasing rapidly every
year. Features of smart phones include touch screen interface, Wi-Fi, high speed
processors, GPS, etc. Popularity of smartphones allows developers to develop
mobile applications in various domains like sports, games, finance, education,
etc. [1]. Still these devices are suffered from issues like limited storage space, li-

How to cite this paper: Paranjothi, A.,
Khan, M.S. and Nijim, M. (2017) Survey on
Three Components of Mobile Cloud Com-
puting: Offloading, Distribution and Pri-
vacy. Journal of Computer and Communi-
cations, 5, 1-31.
https://doi.org/10.4236/jcc.2017.56001

Received: January 18, 2017
Accepted: April 3, 2017
Published: April 6, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2017.56001
http://www.scirp.org
https://doi.org/10.4236/jcc.2017.56001
http://creativecommons.org/licenses/by/4.0/

A. Paranjothi et al.

2

mited bandwidth and energy due to development of complex mobile applica-
tions. To solve these issues cloud computing techniques were introduced. Some
of the popular cloud service providers are Amazon, Windows, Google, etc.
Heavy Reading [2] and ABI research [3] suggested that revenue of MCC market
$68 billion in 2017.

MCC is the combination of cloud computing, mobile computing and wireless
networks. Advantages of MCC over cloud computing are:

1) Flexibility: Due to flexibility, users can access the data using their devices
from any part of the world. But the user should have proper internet connectivi-
ty.

2) Data availability: Data availability allows the user to access their data at any
time. It also provides the facility of multiple users accessing the same data si-
multaneously.

3) Multiple platforms: MCC also provides support for multiple platforms. It
allows users to access their data in cloud irrespective of any platform.

Current cloud computing provides following facilities to the user: 1) Execut-
ing operations on cloud, 2) Large storage capacity, 3) Backup, 4) Traffic count-
ing, 5) Ability to choose datacenters. Cloud providers mainly concentrate on
areas like throughput, memory, availability of server, storage, etc. Also, they are
providing three basic services for MCC:

1) Platform service: Platform as a Service (PaaS) provides hardware and soft-
ware for the user to create, modify, run their applications. Main advantage of
Paas is that it allows user to execute and complete their tasks without having ap-
propriate software or hardware.

2) Application services: Application services are also known as Software as a
Service (Saas). It provides software application to the user whenever they need it
over the internet. It gained more popularity in software market due to software
on demand. The main advantage of using Saas is: 1) Cost savings, 2) Efficiency.
It also eliminates the issue of individual user license and thereby reduces the ex-
pense of an organization.

3) Context-rich services: Mobile applications are becoming popular and pro-
viding context aware services to its users. To support this, MCC providers are
providing context rich services to the users. It includes congestion detection,
discovering parking space, etc.

Papers [4] [5] [6] [7] have not discussed in detail about various techniques
involved in MCC. This paper gives the overall idea about offloading, mobile dis-
tribution, and privacy in the cloud. Further this paper gives information about
various factors affecting MCC and future of cloud computing environment.

Rest of the paper is organized as follows: Section 2 discusses about current
mobile cloud architecture and programming model; Section 3 discusses about
Offloading mobile applications in cloud; Section 4 focuses on Mobile distribu-
tion computing and cloud; Section 5 discusses about Privacy in cloud and user
authentication. Finally, we presented the conclusion and future work in Section
6.

A. Paranjothi et al.

3

2. Current Mobile Cloud Architecture and
Programming Models

Mobile cloud architecture:
Current mobile cloud computing architecture includes following components:

1) Regional Data center (RDC), 2) Wireless core, 3) Base stations. It is repre-
sented in Figure 1. MCC architecture allows users to offload their operations on
cloud [8]. Example: Global Positioning System [GPS], multiplayer games, etc.
[9]. But, it is most suitable for heterogeneous environments [10].

RDC: It is used in home computer systems and its associated elements like
storage and telecommunication systems. RDC consists of various security devic-
es, power supplies, environment controls, etc. Cloud data centers are distributed
in different locations around the world [11].

Wireless core network: Routing the telephone calls across PST is the main
function of wireless core network. Also, it provides various services to users who
are connected in a network.

Programming models:
Existing programming models in MCC are: 1) Clone cloud, 2) MAUI, 3)

Odessa, 4) Orleans, 5) RESTFUL [9]. These programming models are briefly
discussed below. Table 1 illustrates comparison of programming model based
on blocking state, cloud state and remote execution unit.

Figure 1. Mobile cloud architecture.

Table 1. Programming model comparison.

Models Blocking Cloud state Remote exec. Unit

Clone Cloud Yes Full thread Thread

MAUI Yes Partial Method

Odessa Yes Partial App task

Orleans No Partial Grains

RESTful No No Cloud task

A. Paranjothi et al.

4

1) Clone cloud: Clone cloud allows its users to have own copy of their cloud.
By providing this facility, user will have full control over their clouds. Clone
cloud consists of solver, profiler and analyzer. Solver in clone cloud is responsi-
ble for offloading the data on cloud. It will be based on dynamic profiler and
static analyzer.

2) MAUI: This programming model is based on Microsoft.NET framework.
Profiler in MAUI framework makes remotable decisions. Resource demanding
process can be accessed with the help of Remote Procedure Call (RPC). This
model is platform and language independent.

3) Odessa: It is a parallel processing framework where developers have to ar-
range their applications in the form of data flow graph. In graph, vertices are
called as stages and edges are called as connectors. In Odessa, connectors give
information about data dependency between stages. This programming model is
mostly suitable for media applications. Existing applications cannot be accessed
in Odessa framework.

4) Orleans: It is the reliable framework for establishing scalable, elastic appli-
cations on cloud. Orleans consists of grains, which uses asynchronous messages
for communication. Application developer in Orleans mainly concentrates on
logic since it provides scalability, reliability and availability during its runtime. It
is one of the promising programming models in MCC environment.

5) RESTFUL: This programming model is developed due to media processing
applications often requires components for gesture recognition, face recognition,
etc. In this model, appropriate functions can be invoked whenever they are
needed. It can be done by using http or https protocol.

3. Offloading Mobile Applications in Cloud

In recent days, cloud computing research has been moved towards how to make
offloading decisions rather than concentrating on making offloading feasible.
Analytical model helps in making these decisions [12] [13]. Offloading and par-
allelism are the two main factors that impact the system performance. In this
section we illustrated the existing frameworks suitable for offloading in mobile
application environment.

Offloading: Transferring computations to servers available on the cloud are
called offloading [8]. Offloading decisions can be done in two ways 1) Manually
by the developers [14] 2) Automatically using tools [15].

3.1. Odessa Framework

Odessa is a lightweight framework, designed for mobile applications [17]. Odes-
sa makes offloading more flexible. Mobile application has three main require-
ments: 1) Crisp response, 2) Continuous data processing 3) Algorithms should
be computed intensive. This framework provides three major contributions: 1)
Odessa contributes to offloading and parallelism decisions. 2) Odessa designs a
light weight mobile interactive perception applications. 3) It works well across
variety of execution environments. The authors used three different applications

A. Paranjothi et al.

5

to measure their system performance. The applications are described below in
detail.

Interactive Perception Applications
Face Recognition:
Face recognition application is represented in Figure 2(a). Face detector and

classifier are the main components involved in it. Face detector is used to detect
faces using OpenCV [18], Haar classifier and face classifier will classify the faces
detected by face detector using a dedicated algorithm.

Object and Pose Recognition:
Object and Pose recognition application is represented in Figure 2(b). Four

(a)

(b)

(c)

Figure 2. (a) Face recognition; (b) Object recognition; (c) Gesture recognition.

Source Copy Tiler Detect Graph
Splitter

Feature
merger

ClassifyReco
mergeDisplay

Source Copy Scaler Tiler SIFT Feature
merger

De
scaler

Feature
splitter

Model
matcher

Match
Joiner

Cluster
splitterClusteringCluster

joinerRANSACDisplay

Source Copy Display

Scaler Tiler Face
Detect

Face
Merger CopyDescaler

Pair
Generator Scaler Tiler Motion

SIFT
Feature

manager Descaler Copy Classify

A. Paranjothi et al.

6

main components are involved in it. First, the image will go through a downscale
to extract SIFT features [20]. Second, the extracted SIFT features will be com-
pared with previously constructed 3D models. Object features are clustered by
position to isolate different occurrences. RANdom SAmple Consensus (RANSAC)
algorithm identifies each occurrence of image with estimated 6D posture.

Recognition of Gesture:
Gesture recognition application is represented in Figure 2(c). Face detection

and motion extraction are the major components involved in it. It extracts SIFT
features to encode optical flow. These features are then filtered by positions to
compare with previously generated histograms. The histograms are used as an
input for machine identifies the control gestures.

3.2. Sprout

Sprout is a distributed system used for stream processing [21]. It is used to
create and execute parallel processing applications [17]. The main goal of sprout
is to support processing of high streaming data. Two important features of
sprout are: 1) Automated data transfer, 2) Parallelism support. Also, sprout pro-
vides the mechanism of adjusting applications dynamically at run time, changes
the degree of parallelism, migrating processing stages between machines.

3.3. Odessa Design

Odessa uses the concepts of offloading, pipelining and data parallelism to im-
prove its performance and accuracy. Odessa has three main goals they are

1) To satisfy the need of mobile applications Odessa should accomplish low
make span and high throughput.

2) It should concentrate on input complexity change, device capability and
network conditions.

3) It should have low communication and computation overhead.

3.4. ThinkAir Framework

ThinkAir is one of the simplest frameworks in Mobile Cloud Computing (MCC)
[22], represented in Figure 3. It allows developers to migrate their software to
the cloud. Smart phone virtualization and method-level computation offloading
are two main concepts adopted by ThinkAir. Offloading in ThinkAir removes
the restrictions caused by CloneCloud during the process of offloading [22]. It
also on-demand resource allocation for efficient performance of an application.
Parallelism is attained by dynamically creating, destroying virtual machines in
the cloud.

3.5. ThinkAir Design

ThinkAir framework is designed based on following parameters: 1) Mobile
broad band connectivity and speeds are increasing continuously, 2) Capabilities
of smart phones are increasing, 3) Cloud computing is becoming more popular,
and provide resources to users at low cost. The design goals of ThinkAir are:

A. Paranjothi et al.

7

Figure 3. ThinkAir framework.

1) Adaptation
ThinkAir framework easily adapts according to environment and it also

avoids interference of correct executing software.
2) Ease of Use
ThinkAir framework provides simple interface for developers to avoid the is-

sue of misusing framework [22] and it increased competition among developers.
3) Performance improvement
ThinkAir framework improves performance and efficiency of mobile devices

by binding smartphones to the cloud.
4) Dynamic scaling
ThinkAir provides the feature of calculating computational power dynamical-

ly at server side. It also provides parallel executions to improve the performance.
This framework has three major components: 1) Execution Environment, 2)

Application servers, 3) Profilers.

3.6. Compilation and Execution

Compilation and Execution section of ThinkAir deals with three major areas: 1)
Programmer API, 2) Compiler, 3) Execution controller.

A. Paranjothi et al.

8

1) Programmer API
ThinkAir contains library with compiler since the developer can access execu-

tion environment indirectly. Method considered for offloading is commented
with @Remote. ThinkAir code generator generates necessary remote able me-
thod with utility functions by taking source file as input and execution controller
is used for method invocation and detects the given method is suitable for of-
floading or not.

2) Compiler
ThinkAir Compiler consists of two parts 1) Remoteable Code Generator, 2)

Native Development Kit (NDK). Remoteable code generator used for annotated
code translation and Native Development Kit (NDK) used for native code sup-
port in cloud.

3) Execution Controller
Execution controller executes remotable methods and makes offloading deci-

sions. Offloading decision depends on the data collected during past execution,
the current environment and user’s policies. There are four such policies com-
bine with execution time, energy and cost. The four policies are, 1) Execution
Time, 2) Energy, 3) Execution time and energy, 4) Execution time, energy, and
cost.

4) Execution Flow
Execution Controller starts with profiler to provide data for future invocations

and it decides this invocation is suitable for offloading or not. If it is suitable for
offloading, then it can be migrated to the cloud using java reflection technique.
If it is not suitable for offloading or if connection fails, then execution will back
to local execution environment (i.e., smart phone) by eliminating the data col-
lected by the profiler.

4. Mobile Distribution Computing and Cloud

Mobile distribution computing will provide access to widely distributed re-
sources. Distribution computing has the advantages of scalability, fault toler-
ance, and load balancing. In many situations processing tasks needs to be distri-
buted. However, in distribution computing there is chance of communication
failure because it could fail at any time. This section gives the information about
various distribution techniques used in the cloud.

4.1. Clone 2 Clone (C2C)

Clone 2 Clone (C2C) [23] provides distributed peer to peer platform for smart-
phones. Performance measurement of C2C in private and public clouds shows
that it is possible to implement C2C in distributed environment with 3 times
lesser cellular traffic. In addition, it also saves 99%, 80% and 30% of the battery
respectively.

4.2. C2C: Architecture Design

C2C platform needs a mechanism to enable peer to peer networking, to notify

A. Paranjothi et al.

9

others about the presence of others. In C2C, CloneDS (i.e., Clone Directory Ser-
vices) maps its users to clones and clones to IPs. To establish a connection in
C2C platform, request a clone with public IP and key pair. Key pair can be pub-
lic key or private key. C2C architecture is represented in Figure 4 and it consists
of five basic steps: 1) DS register, 2) DS lookup, 3) C2C Connect, 4) User lookup,
5) User clone connection.

DS register: Clone id, public key, IP address and device id will be send to clone
DS from the clone.

DS lookup: Clone A obtains a list signed by CloneDS. The list contains the
details of signed clones with their IP address and public keys.

C2C connect: Peer to peer connection will be established with other clones
from clone A.

User lookup: User A can always get her clone’s IP through a CloneDS lookup.
User clone connection: It establish a connection with user through Public IP.

4.3. C2C and Security

In C2C, communication between the user and clone is secured by the shared
symmetric key. This architecture provides trust to the users through CloneDS
but some destructive cloud providers use this opportunity by connecting user to
harmful ones.

4.4. CloneDoc Framework

CloneDoc and SPORC [24] provide more complexity to the system, but the main
advantage of using such system is that it will improve the battery performance
by reducing its usage. CloneDoc receives the operations from user’s smart
phones and keeps the device updated. The clone maintains two states 1) pending
queue, 2) committed queue [25]. The clone in C2C delivers operation received
from device to server and again send backs the result to appropriate devices. To
handle these tasks, it maintains a queue. It should be managed in such a way that

Figure 4. C2C architecture and networking.

A. Paranjothi et al.

10

delay should be minimum. CloneDoc contains a protocol to solve this problem.
It is commonly known as clone user consistency protocol. In CloneDoc, clone is
also responsible for detecting server malfunction. Detecting server malfunction
contains checking of encryption and decryption operation, sequence numbers,
etc.

4.5. Code in the Air

Code In The Air (CITA) [26] is a system which simplifies the rapid development
tasking applications. It can be handled by both expert users, non-expert users. In
CITA non expert users specify their tasks easily over phone and expert users
specify their tasks by writing server side scripts. Current approaches have two
major problems: 1) Poor abstraction, 2) Poor programming support. CITA helps
developers as well as end users.

4.6. CITA Architecture

CITA architecture has following 3 components, 1) Tasking framework, 2) Activ-
ity layer, 3) Push communication and it is represented in Figure 5.

Tasking framework: It allows developers to write and compile scripts. Compi-
lation of scripts can be done in server side. CITA also provides JavaScript inter-
face for its developers to manipulate different devices in single program. Back-
end of CITA deals with device coordination and efficient execution of code on
different devices

Activity layer: Activity layer in CITA provides an extensive abstraction to high
level activities and also it provides facility of energy efficient recognition of an
activity.

Push communication: it improves on the energy and load shortcomings of ex-
isting systems.

Figure 5. Code in the air architecture.

A. Paranjothi et al.

11

4.7. CITA Activity Layer

CITA contains an activity layer. The main purpose of activity layer is to express
conditions.

4.7.1. Place Hierarchies
CITA uses a built-in location hierarchy, it identifies three types of locations: 1)
Room level, Floor level 3) Building level. These hierarchies are having different
implementations.

Room level location hierarchy: It is used to match a named location if Wi-Fi
signal strength is good.

Floor level location hierarchy: It is used during overlapping of Wi-Fi signals.
Building level location hierarchy: It is used to refer the buildings or large

bounding box on a map.
CITA contains two activity detectors: 1) enterPlace, 2) leavePlace. It will be

called when a user enters and leaves a location respectively [26].

4.7.2. Activity Composition
CITA allows developers and users to create high level activities using logical
predicates [26]. This is one of the advantages of CITA because it provides reusa-
bility. Developers and end users can reuse activity modules created by other de-
velopers to write their own activities. CITA supports AND, OR, NOT, WITHIN,
FOR, NEXT primitives.

4.8. Dial to Deliver Push Service

CITA provides an asynchronous message delivery service to mobile devices from
CITA server [26] but it has three major problems.

1) The information to be delivered is very less.
2) TCP connection in mobile devices leads to timeout due to long waiting

time.
3) Current push notifications limits notifications of specific types.
CITA uses standard telephone service. It contains the registered users phone

numbers. To verify the user, CITA server initiates a voice call on the other end
CITA client verify the phone number. If the number matches it wakes up the
client. The main disadvantage of using this service is, load on the network will be
increased.

4.9. WhereStore

WhereStore provides location based storage for mobile devices. It uses the tech-
nique of filtered replication to distribute location history among mobile devices
[27]. WhereStore reduces energy consumption by exchanging data in clouds.
Location specific applications are the one differentiates computer from mobile
phones [28]. The following applications are benefitted from WhereStore frame-
work: 1) Web applications, 2) Media player, 3) Live traffic and sensing applica-
tions.

A. Paranjothi et al.

12

4.10. Where Store Background

WhereStore is designed using two techniques: 1) location prediction, 2 Replica-
tion system [27].

4.10.1. Replication
Replication system uses collection as its major technique. It is used to maintain
data synchronization between peers. Collection in a replication system has user
data and meta data. It will be represented as separate items. In a filtered system,
filter identifies the subset where the data is stored exactly. Consider the example
of separating the JPEG images according to geographical region. It can be done
by identify the images according to the geotag attached in it. There are two ma-
jor goals involved in filtered replication system:

1) Each clone stores exactly matching item in its filter.
2) In each clone version of items should be same.

4.10.2. Predicting Location
GPS in mobile devices provides location based services to the user. Location
based services provides the advantages of tracking the user [29] [30]. The main
idea of using location prediction in WhereStore is to predict the future location
of the user by matching past location history of the user with present location
[31].

4.11. WhereStore System Framework

WhereStore provides dynamic data storage for its user’s. It will be based on two
parameters: 1) past location of the user, 2) present location of the user. The con-
ceptual view of WhereStore is represented in Figure 6. WhereStore provides
complete control to its user. Here, data will be grouped according to the graphi-
cal regions where the is likely to stay. It ensures availability of data in user’s cur-
rent location. WhereStore provides complete transparent mechanism for data
placement when compared to other frameworks.

Figure 6. WhereStore conceptual view.

A. Paranjothi et al.

13

WhereStore will be located top of the replication system and location service.
In which, replication layer consists of various collections. Each application in
WhereStore has separate collections. The replication layer creates clones (i.e.,
replicas) for mobile devices and cloud. Each clone has its own storage capacity
and filter. Storage capacity of each clone specifies the maximum number of
bytes. WhereStore semantics are same as cache (i.e.,) the cloud can be accessed
only when the item is not available in a local environment. The filter located in
each clone will be adjusted according to the current location of user.

4.11.1. Types of Data
WhereStore acts on groups, regions and items. Each item can be identified using
its key and priority associated to it. Data can be divided into several items.
Groups are set of items and regions gives information about different geograph-
ical area. WhereStore has a separate interface to create application, maintain re-
gions and groups. According to the geographical areas regions will be created
and each region will be associated with multiple groups.

4.11.2. Filters
Filters in WhereStore specify the items stored in a given location. It has set of
filters each possible future location. Future locations will be identified using
current location based on the location prediction system. Consider (l1, l2, l3, …
ln) be the future location with probability pi. WhereStore create new filters (fi)
for each possible future location. When the devices location changes new set of
filters which is computed and updated recently will be passed into the replica-
tion. Each replication system has its own probability pi and maximum storage
capacity. The rank of items will be based on occurrences. If a particular item is
located in more filters, rank will be high.

4.11.3. Cloud Synchronization
Data exchange is performed in replication platform using synchronization estab-
lished between cloud and smartphones. It provides the advantage to the smart-
phone by having only items which matches exactly with filter. Smartphones suf-
fers due to limited storage capacity. To utilize the space in a proper manner,
smartphones filter will be evaluated in a cloud. Each filter will be associated with
a cloud calculates the set of items matches with filter and rank will be provided
to each item. Storage capacity of each item calculated according to the rank.

4.12. Implementation of WhereStore

WhereStore implementation is based on clientserver architecture. Here, cloud
act as server and user’s mobile device act as client. The client has two major
components 1) location, 2) Replication. Location specifies the information about
future smartphone location and contains information of local cache memory on
cloud. Architecture of WhereStore is represented in Figure 7. Whenever appli-
cation interacts with WhereStore configuration file needs to be provided. Con-
figuration file specifies replication at a particular location. Filters will be updated

A. Paranjothi et al.

14

Figure 7. Architecture of WhereStore.

based on input given by the configuration file. Later the updated filter will be
used by the replication system.

4.12.1. Mobile Phone Data Access
WhereStore use existing data storage for accessing data. There are numerous ex-
isting applications stores the data in their own way. WhereStores uses the con-
cept of Cimbiosys as replication system [32]. It uses callback mechanism for ac-
cessing the data and implemented whenever needed. Cimbiosys determines the
data to be broadcasted during the synchronization process. Wherestore is re-
sponsible for creating metadata whenever new item added into it.

4.12.2. Synchronization of Cache
In WhereStore, Cimbiosys synchronization exchange messages based on a tech-
nique called pull style exchange. It will be done in one way. Here, target clone
will establish a synchronization with source clone. The connection will be estab-
lished by sending a request message. Once the connection gets established,
source clone starts checking any of its tem is are not admitted by target clone. If
any of such items exist, source clone will return the corresponding item to target
clone. The current Cimbiosys model can be expressed in two ways: 1) modifica-
tion of sync request from mobile device to cloud, 2) modify the filter based on
Cimbiosys.

4.12.3. Location Prediction
WhereStore uses location prediction technique to predict its user’s possible fu-
ture location. It can be achieved by using StarTrack framework [33]. In Star-
Track framework, location of a user will be captured periodically using smart-
phones. The captured location will be forwarded to cloud where StarTrack serv-
ers will be located. StarTrack server will convert the location it is received from
smartphones into tracks. It provides a API (Application Program Interface) to
perform operations on tracks. In order to identify where the user will be located
in a future, StarTrack uses a technique called place transition graph. This tech-
nique will be created based on the tracks generated by StarTrack framework. It

A. Paranjothi et al.

15

also has the detail of places that are visited by the users frequently. Latitude and
Longitude pair will be used to create this FrequentPlaces. It will be created based
on the tracks. Place transition graph will be constructed based on FrequentPlac-
es. Usually it will be represented in the form adjacency matrix. First, all the ele-
ment in the matrix will be initialized as zero. Then, set the corresponding value
of each item by combining start and end points. Finally, normalize the value in
each row according to the probability. This normalization can be done by adding
the trip frequencies of each row and divide each frequency with sum of row.

4.13. Virtual Machine Synchronization (VMsync)

The utility of the mobile device will increase if the user wants to switch from one
device to another device. For example, user is able to continue the operation in
the second mobile device absolutely where the user left in first mobile device
without any delay. VMsync [34] used to synchronize virtual machines (VMs).
This synchronization will take place among mobile devices. In device switching,
VMs encapsulates computation state and data for a complete operating system
and applications associated with it. In VMs application state also getting syn-
chronized along with mobile devices. System level VMs are used in now days to
provide improved security and manageability. In order to reduce the delay and
make image consistent, VMsync is used. It will transfer the changes made in ac-
tive VM to other mobile devices. The most important component in VMsync
architecture is known as daemon. The main purpose of daemon is to monitor
the memory and filesystem of VM. If any changes made, it will report the
changes to the server. Server will be located on the cloud, and it will send the
changes to devices.

4.14. Preliminary Design of VMsync

The main function of VMsync is to handle VM images across various mobile
devices and reducing time between switching devices. It uses method called
Switch Penalty to perform device migration. The disadvantage of using this me-
thod is, data transfer cost is high. VMsync architecture is represented in Figure
8. It contains multiple hosts and provides following facilities to the user: 1) Vir-
tualization support, 2) Resource rich server, 3) Synchronization between devices.
Initially, VMsync had only one active device. This device is used to update server
regarding memory, file system changes over a periodic time. It can be done only
when the device is active. This process is known as checkpoint.

VMs other than active VM are known as standby VM. These VMs are getting
updated with the help of synchronization server periodically. But, during the
updating process device should be connected to network. Synchronization dae-
mon used to monitor this process. VMs should be designed in a way that it can
balance data transfer and computational overhead. Modern mobile operating
systems like Windows, Android, iOS, provides support for different hardware
manufactured by various companies. This functionality can provide the facility
adapting changes in hardware during runtime in future.

A. Paranjothi et al.

16

Figure 8. VMsync architecture.

4.15. Wireless Mesh Networks (WMN)

Wireless Mesh Networks (WMN) provides a low cost, next generation wireless
networking, and also it provides a high speed internet access. Wireless Mesh
Network supports wide range of mobile applications. Wireless Mesh Networking
with Mobile Cloud Computing (WM-MCC) is considered to be a best solution
for large scale big data applications [35]. In Wireless Mesh Networks mobile
client is connected to a Base Transceiver Station (BTS) and it access the mesh
network via mesh router. While mesh routers will be connected to each other
and it will communicate with cloud through internet. The cloud service platform
in wireless mesh networks provides data query services.

5. Privacy in Cloud

Privacy is a major component in MCC. The user needs to understand the stan-
dards and procedures provided by the cloud provider to protect their data from
threats. The number of businesses and individuals that are moving their data
and performing computation on cloud is increasing. Although the cloud compu-
ting provides numerous benefits, security remains as one of the major challenge
when data and computation are utilized by untrusted third parties [36]. The fol-
lowing section provides the information about different security approaches
used in the cloud to protect user data.

5.1. Secure Outsourcing of Collective Sensing and Systematic
Applications to the Cloud (p-Cloud)

Two main approaches were proposed to provide security. i) StreamForce, ii)
CloudMine.

Streamforce: It is an access control system for sharing of data over malicious
and untrusted clouds. This approach is designed with three goals:
1. To provide support to specify and impose fine grained access control policies.
2. To outsource data to cloud if access control methods are enforced.

A. Paranjothi et al.

17

3. When handling most expensive computations system will be efficient.
CloudMine: It is an on-demand and cloud-based service with which different

data owners achieve secure analysis over their collective data. This approach
supports three essential functions: 1) sum, 2) set union and intersection, 3) sca-
lar product. CloudMine attains three security promises,
1. It provides data confidentiality in contrast to colluding, semi-honest data

owners and semi-honest clouds.
2. Protection is provided to outputs of joint computation against semi-honest

clouds.
3. Data owners can accurately identify if the cloud has been lazy.

5.2. System Model for p-Cloud Approach

Figure 9 represents our system model for deploying collective applications to
un-trusted clouds. It includes two entities: 1) client, 2) cloud. On the cloud, a
collective task that consists of joint data and computation from different clients
is performed. The attacker cloud consists of the un-trusted cloud and clients.
There are three levels of un-trustworthiness:
1. Curious but Honest
2. Curious and Lazy
3. Fully Malicious

Curious and lazy model allows the attackers to compromise while operating
carrying out outsourced undertakings. Particularly, the cloud attempts to learn
sensitive information and does not effectively corrupts the computation, but ra-
ther it tries to do as limited as possible while charging the customers for the
same. This model is legitimized by the economic incentives to overcharge clients
without being distinguished, however, there are three security properties relating
to this framework.
1. The outsourced data should be protected for input privacy.
2. The outputs should be protected for output privacy.
3. Three parameters are included in integrity. Namely: a) Correctness, b) Com-

pleteness and c) Freshness.
Streamforce approach accomplishes input and output privacy as well as cor-

rectness in the curious but honesty model. CloudMine accomplishes similar
properties yet in the curious and lazy adversary model.

Figure 9. Collaborative applications on the un-trusted cloud.

A. Paranjothi et al.

18

5.3. Streamforce Approach

Streamforce approach utilizes a fine grained access control system to share data
in un-trusted clouds. Implement fine-grained access control in collective appli-
cations that are out-sourced to an un-trusted cloud. There are two roles assigned
to client. Namely a) Data Users, b) Data Owners. An access agreement P is given
to user and the owner is provided with private data x along with related attribute
I. When the data attribute fulfills the strategy, i.e. P(I) = True, then an autho-
rized client can get access to x. First, the owner sends c = f(x;I) to cloud by using
a encoding function f. Later, the cloud changes the encoded data as t = π(c).
Lastly, the client assesses a function g(t). In this setting, input privacy infers that
the cloud cannot learn x from c. From output privacy and correctness, it is im-
plied that the access control methodology is secure, that is the unauthorized
access is not permitted: g(t) = x ↔P(I) = True.

Figure 10 illustrates the design space for access control implementation on a
cloud domain. It is described into three measurement strategy. Namely: a) fine-
graininess, b) cloud reliability and c) cloud/customer work proportion. Trusted
cloud can accomplish best fine-graininess. It supports an extensive variety of
approaches and accomplishes best work proportion. Streamforce is particularly
intended for stream data. It is outlined with three goals:

1) It supports specification and enforcement of fine-grained access control
policies.

2) Access control policies are enforced when data is outsourced to the cloud.
3) System is efficient when handling most expensive computations.
Streamforce security depends on three main encryption strategies. Namely: a)

Deterministic εd, b) proxy attribute-based εp and c) sliding window εw.

Figure 10. State of the art in outsourced access control.

A. Paranjothi et al.

19

Deterministic Encryption technique (DET): It is a private-key strategy that is
semantically secure while encoding multiple plaintexts. εd = (Gen, EncDec),
εd∙Enc(m) = εd. ()Enc m m m′ ′↔ = . The Proxy Attribute Based Encryption
technique (PABE) broadens the idea of Key Policy Attribute Based Encryption
(KP-ABE). εp = (Gen, KeyGen, Enc; Trans, Dec) [37]. Specifically, a master key
MK is generated by Gen(.), a transformation key TK is generated by KeyGen
(MK, P) and a predicate P is given by decryption key SK. By utilizing the
attributes A, Enc (m, A) encrypts m. Trans (TK; CT) partly decodes the cipher-
text, which is later decrypted by Dec(SK,CT’).

Decryptions and transformation are effective if P(A) = True. Streamforce util-
ize the strategy provided in [38]. The Sliding Window Encryption technique
(WE) permits a client to decrypt just the aggregate of window of ciphertexts but
not the individual ciphertexts, εw = (Gen, Enc, Dec). Assume that p(M, ws)[i]
and s(M, ws)[i] are the product and sum of ith window sliding windows upon a
sequence M. The general public parameters and the private keys are created by
Gen(k). M is encrypted by Enc (M = (m0,m1, ….,mn-1),W) by utilizing a set of
window sizes W, whose outcome is CT = (c0, c1, c2,…). CT is decrypted by Dec
(ws,CT, SKws) for the window size ws by utilizing the private key SKws. s(M; ws)
[i] for all I is the outcome, which is the aggregate of the sliding window.

Secure query administrator
Encryption is determined as a strategy that is used to secure data confidential-

ity in contrast to the cloud and unauthorized client access. However, straightly
presenting encryption details to system entities is not considered as a perfect
reflection for access control. Rather, Streamforce models and authorizes access
control strategies by means of an arrangement of secure inquiry administrators
like: 1) secure Map, 2) Filter, 3) Join and 4) Aggregate.

Evaluation
Execute a model of Streamforce over Epser (An open source stream process-

ing engine proficient of handling millions of data items every second). Make a
benchmark dataset similar to stock market data and containing one million
tuples that belong to 100 streams7. Throughput and latency of Streamforce are
examined through the experiments conducted on Amazon EC2 with 6 multiple
policies (T1-T6). The throughputs for various strategies on a single cloud server
are demonstrated in Figure 11. The maximum throughput is observed for sim-
ple strategy using Map operator, which is 250 tuples/sec. This analyzes ineffec-
tively against Esper's execution on plaintext data. In addition, experiment is also
carried with different cloud servers and the outcomes demonstrated scalability
for both latency and throughput. We shared the workload in- two ways when
more cloud servers are added. They are: a) Simple: based on stream, b) Balanced:
based on computation load.

5.4. Practical Confidentiality in Preserving Big Data Analysis

Cloud Computing provides support to Big Data Analysis [39] via data flow lan-
guages known as Pig Latin [40]. It is of great value to manage sensitive data only

A. Paranjothi et al.

20

Figure 11. Throughput on single server.

in an encrypted from in the cloud and to perform reasonable data analysis.
Crypsis, is a runtime system for Pig Latin which allows corresponding scripts to
be executed efficiently by utilizing cloud resources however without exposing
input data in the same form. Crypsis can broaden the scope of encryption em-
powered big data analysis depending on the following point of view:

i) Perspective of Extended Program
Multiple opportunities to operate in encrypted mode are identified by Crypsis

by evaluating entire data flow programs.
ii) Perspective of Extended System
Cloud resources can be performed by Crypsis instead of giving up and driving

users to run the entire data flow programs on their end. This can be done by
considering the chance of performing small computations on user end.

Three main Contributions for preserving big data analysis
1) Without sacrificing confidentiality propose an architecture for executing

Pig Latin scripts
2) Outline a novel-field sensitive program to study and transform to Pig Latin

scripts that can distinguish operation with effects.
3) Current fundamental assessment results for implementing the solution de-

pending on run time Pig Latin scripts obtained from an open source Apache
PigLatin.

5.5. Background: PigLatin

Apache Pig is a data examination platform. It incorporates the Pig runtime
framework for high-level data flow language Pig Latin [40]. Pig permits data ex-
perts to query big data without the complication of writing MapReduce pro-
grams. No fixed schema is required to be operated by Pig. All these properties of
Pig Latin and in addition its wide reception made it to be chosen as the data flow
language for Crypsis.

A. Paranjothi et al.

21

Data types and Statements
Pig Latin includes simple types (e.g., int, long), and complex types (e.g., bag,

tuple, map). In addition, field can be a data item like a tuple, bag, map. Pig
Latin statements also work with relations; relations are simply a bag of tuples.

Expressions and Operators
Relations are established by loading an input file or by applying relational op-

erators to different relations. Examples of relational operators are JOIN,
GROUPBY, FOREACH. etc. Operators in Pig Latin can likewise incorporate
casts, arithmetic operators (e.g., +, −, \, *), comparisons, as well as LOAD and
STORE operators.

Functions
Pig Latin incorporates built-in functions (e.g., ABS, COS AVG) and allows

users to define their own user defined functions (UDFs) if needed.

5.6. Architecture and System Overview

Crypsis is having an adversary capable of fully manipulating the cloud infra-
structure. The adversary can see encrypted data and Pig Latin scripts that oper-
ate on the data and it can control the computation software and control the
cloud infrastructure. Crypsis ensures confidentiality in the presence of adver-
sary. Figure 12 illustrates the architecture of Crypsis prototype.

1. Transformation of program
The client presents a source Pig Latin script that works on unencrypted in-

formation. This is evaluated by Crypsis in order to find the suitable encryption
scheme through which the input data must be encrypted. Calls to Crypsis UDFs
which implement operations on encrypted data are used to replace the operators
in source script. The constants are supplanted using their encrypted values in
order to create an objective script that can be executed on encrypted data.

2. Encryption techniques missing in cloud
The parts of input data that are encrypted previously and stored in cloud are

tracked by an encryption service which contains an input data encryption sche-

Figure 12. Architecture of Crypsis.

A. Paranjothi et al.

22

ma. Depending on the input data encryption schema as well as the recommend-
ed encryption schemes assumed in previous step, the encryption service deter-
mines the encryption schemas lacking in the cloud.

3. Encryption, Sending data to cloud
Various encryption schemes which are enabled through diverse cryptosystems

are used by Crypsis.
1) Randomized encryption (RAN) is the main encryption scheme which does

not support operators and best secure encryption scheme. One way to execute
RAN is by utilizing Blowfish [41] in order to encrypt integer values by exploiting
the benefits of its limited 64-bit block size and also by utilizing AES [42] in order
to encrypt the remaining.

2) Deterministic encryption (DET) let’s fairness comparisons upon encrypted
data. First, develop DET utilizing AES and Blowfish permutation block ciphers
for estimations of 12 bits and 64 bits respectively. Then, pad minute values
properly to coordinate the normal block size. The approach for values greater
than 128 bits, check the approach utilized in CryptDB [43]. Later, implement the
Order Preserving Encryption (OPE) scheme that permits to arrange correlations
utilizing the order preserving symmetric encryption usage from CryptDB. Pail-
lier cryptosystem to implement additive homo-morphic encryption (AHE)
which allows additions over encrypted data and ElGamal [44] cryptosystem to
implement multiplicative homomorphism encryption (MHE).

4. Execution
When all required encrypted data is loaded in the cloud, the execution hand-

ler requests to start executing the job.
5. Crypsis UDFs
Crypsis does not impose any changes to the PigLatin service. Instead, opera-

tions on encrypted data are handled by a set of pre-defined UDFs stored in the
cloud storage along with the encrypted data.

6. Re-encryption
At the time of target script execution, it is possible that intermediate data are

generated after some operations are performed. Encryption scheme of the par-
ticular data relies upon the previous operation executed on that data. This situa-
tion is handled by Crypsisthrough re-encryption of intermediate data. In partic-
ular, this intermediate data is directed to the user where this data can be de-
crypted without any risk. Later, the decrypted data is encrypted using the specif-
ic encryption scheme and then again sent to cloud. After the re-encryption is fi-
nished, execution of target script is continued.

7. Results
Results are again sent to user when the job is finished.

5.7. Program and Transformation Analysis

Analysis and process involved in PigLatinCrypsis are represented briefly in List-
ing 1. It has two input files: input1, input2. Input1 has two arguments and input
2 has one argument. Line 3 in script is used to filter all rows less than or equal to
10. The subsequent lines (i.e., Line 4 and Line 5) perform addition operation on

A. Paranjothi et al.

23

second argument of input1 by grouping first argument. Each group sum will be
performed in Line 6 using input 2. Finally, Line 7 displays the result stored in
output file. Figure 13 illustrates outline of the different steps and intermediate
data structures in program transformation.

Input script analysis
First, Crypsis checks the user submitted source (PigLatin) script for syntax

errors and generates a directed, acyclic data flow (DAG) representation of it. The
data flow representation uses relations as vertices and the data flow between re-
lations as the edges. Also generate two additional data structures: 1) MET (Map
of Expression Trees) 2) SAF (Set of Annotated Fields) [40]. Source script expres-
sions will be stored in MET. In data flow graph, each vertex has keys for all ex-
pressions. SAF contains one entry for each field specified for each relation. In
input script analysis, AF (Annotated Field) is used to represent individual en-
tries.

Figure 13. Program Transformation in Crypsis.

Listing 1. Source pig latin script S1.

Listing 2. Transformed pig latin script.

A. Paranjothi et al.

24

Encryption analysis
The program transformation component identifies the encryption scheme

required for each field. It identifies the encryption of each field by observing
MET. In script, all operators are already registered with encryption technique.
But, some relational operators involved in PigLatin require precise encryption
schemes.

Script transformation
After knowing encryption scheme required for each field, decision will be

made for which encrypted file to be loaded. Script checks valid encryption tech-
nique, if it is not available re-encrypt operation will be initialized. It calls encryp-
tion scheme to change the required fields into a specific encryption technique.
The transformed PigLatin script is represented in Listing 2.

5.8. Evaluation of Big Data Analysis

Micro-benchmarks
Construct a micro-benchmark that compares unencrypted data with en-

crypted data based on the size and time requires to execute. It is represented in
Table 2. The evaluation of this micro-benchmark was performed on a single
machine with two 32 bit CPUs and 3 GB of RAM. While running benchmark,
one problem we faced was in PigLatin scripts that projects the value of map
fields using chararrayconstants as keys (map#’key’).

PigMix
Run the Apache PigMix2 [45] benchmark to calculate the Crypsis perfor-

mance. PigMix2 is a set of 17 Pig Latin scripts that tests the latency and scalabil-
ity of the Pig runtime. The experiment was performed using Amazon EC2 [46].

5.9. Information Leakage

Information leakage [47] gives the information about how the privacy is getting
disturbed in mobile environment. Two types of attacks are possible in mobile
environment: 1) External attack, 2) Internal attack. Both attacks are used to ex-
tract the user information. It is possible to perform these attacks without the us-
er using devices of attacker.

Table 2. Comparing size of data and latency of addition and multiplication operations
over plaintext and encrypted data. †^ is the number of operations performed in multiples
of 1000. ‡NE denotes no encryption or plaintext data.

Size (KB) Time (ms)

 Add Multiply

^† NE‡ AHE MHE NE AHE NE MHE

2 269 12,071 12,153 32 477 32 2267

4 538 24,142 24,306 63 895 62 4118

6 807 36,212 36,459 92 1314 90 5978

8 1076 48,283 48,611 121 1730 118 7818

10 1345 60,354 60,764 150 2147 147 9658

A. Paranjothi et al.

25

5.10. Background of Mobile Analytic Service

Background of mobile analytic service concentrates on developers, users, appli-
cations, networks, etc. This section deals with app ecosystem and mobile analyt-
ics.

5.10.1. App Ecosystem
Application developers use a technique called ad networks to increase the profit
of applications. Recent study shows that, top applications available in Android
Market (i.e., 52.1% of applications) are enclosed with at least one ad networks.
App ecosystem is represented in Figure 14. It illustrates the flow of information
among users. Mobile applications are enclosed with analytic library. Main func-
tion of analytic library is to collect attributes related user and send it to the serv-
ers maintained by analytic companies. The information will be processed and
will be given to ad networks like Flurry, Google Ad, etc. to provide appropriate
ad for the user.

5.10.2. Mobile Analytics and Tracking
Mobile analytics are used to measure the performance of the applications based
on prior knowledge about users, applications, etc. Dashboard performance of
flurry is represented in Figure 15. It gives the information about various inter-
ests of a user.

5.11. User Profile Extraction

User profile extraction used to extract various information about users. Different
services are used to collect distinct information about users (i.e., name, age, etc.).
In order to extract information about user, first step is to act on behalf of user.
Next step for google is to extract the user profile illustrated by google. For flurry,
target information should be send to analytics application which in turn extracts
user profile.

Figure 14. App ecosystem.

A. Paranjothi et al.

26

Figure 15. Flurry analytics.

5.11.1. Device id Spoofing
Getting access to device id.

Device id of an android user can be accessed by using two different methods.
1) It can be obtained by grabbing message send by third party.
2) It can be extracted by capturing identifier of a target device.
Device id spoofing
Android users can be easily identified by combining device id with device in-

formation. It is possible to device information using the methods described
above. Once the information about the device is available, device id spoofing will
be done by changing the values in identifying parameters. It is represented in
Table 3.

5.11.2. Extracting User Information
Google:

One main advantage of using android is, it allows users to manage their ap-
plication preferences. This facility extracts user information from Google server.
Using this opportunity, anyone can access user profile.

Flurry:
Unlike Google, Flurry will not allow its users to access their information. Pro-

file extraction of Flurry is represented in Figure 16. Here, spoofing will be done
by identifying target device id. After identifying the id, it will make the Flurry to
generate report message (appIDx). All user information can be accessed using
this technique. Another method of extracting user profile is by extracting au-
dience report. It can be done by capturing report (Pt) at time t. Flurry also pro-
vides an additional feature to distinguish user according to age, name, group, etc.

5.12. Deceiving User Profiles

Second attack targets analytic results. It will attack analytic service and provides
inappropriate ads to the user. It will be done by identifying target device and de-
stroy the user information by supplying irrelevant usage reports. This attack will
reduce the benefits of ad companies.

A. Paranjothi et al.

27

Figure 16. Privacy leakage attack scenario.

Table 3. Android path identifier.

Parameter File path in Android file system

Android ID /data/data/com.android.providers.settings/databases/settings.db

ro.build.id

/system/build.prop

ro.build.version.release

ro.product.brand

ro.product.name

ro.product.device

ro.product.model

Attacking Technique
This attack will be done in two ways: 1) validating user information, 2) imple-
menting ad influence attack. Both way uses following steps.

Training
In this method, attackers create new user profiles and train them according to

different categories. By doing this, ad developers (i.e., Google and Flurry) will be
updating user profile according to the reports they received from various catego-
ries. The response time will be different for both ad developers. Google takes 6
hours to update user profile and Flurry takes one week to update its user profile.

Collecting Ads
HTTP protocol is used to deliver ads to the users who are using Google or

Flurry. Attackers will run tcpdump to extract ads from TCP but it is possible
only in Google. In Flurry, redirection methods will be done to get ads.

5.13. User Authentication in MCC

In MCC user authentication is used to validate the user identity. Authentication
is used to protect the user against privacy and security issues [48]. It is used to
prevent unauthorized access of the user. We have to concentrate security on
three major components in MCC. The three components are cloud, wireless

A. Paranjothi et al.

28

communication and mobile device. The efficient algorithm will have the follow-
ing qualities least possible computing, memory and storage over heads. The
purpose of authentication algorithm is to reduce the security threats in mobile
devices. Some of the threats commonly occurred in mobile devices are denial of
service, loss of device, malfunction of device etc. [48]. The authentication in
MCC varies in following scenarios when compared with cloud computing: 1)
resource limitations, 2) sensors, 3) high mobility, 4) network heterogeneity.

6. Conclusion and Future Work

In this paper, we have reviewed and explained in detail about offloading, mobile
distribution and privacy in MCC. Also, to implement next generation wireless
networking with low cost, we explained Wireless Mesh Networking with MCC
(WM-MCC). After reviewing various aspects, we found that MCC can be used
to provide efficient data storage and processing but the factors affecting MCC
are computation power, bandwidth, security and energy. We also found that use
of encryption method in offloading and remote execution leads to performance
degradation.

New research and expansions programs are required to make offloading deci-
sions more feasible and improve security in the mobile cloud. Furthermore, us-
ers want to migrate their data from smartphone to cloud but this migration pos-
es some technical issues. Hence, we need a concrete effort from academia and
industry to improve these shortcomings.

References
[1] Zhao, W., Sun, Y. and Dai, L. (2010) Improving Computer Basis Teaching through

Mobile Communication and Cloud Computing Technology. Proceedings of the 3rd
International Conference on Advanced Computer Theory and Engineering
(ICACTE’10).

[2] Heavy Reading Real World Research (2013) The Mobile Cloud Market Outlook to
2017

[3] ABI (2009) Mobile Cloud Computing Subscribers to Total Nearly One Billion by
2014, Tech. Rep., ABI Research.

[4] Mobile Cloud Computing: A Survey, State of Art and Future Directions M. Reza
Rahimi · JianRen · Chi Harold Liu · Athanasios V. Vasilakos · NaliniVenkatasubra-
manian.

[5] Fernando, N., Loke, S.W. and Rahayu, W. (2013) Mobile Cloud Computing: A Sur-
vey. Future Generation Computer Systems, 29, 84-106.

[6] Fernando, N., Loke, S.W. and Rahayu, W. (2013) Mobile Cloud Computing: A Sur-
vey. Future Generation Computer Systems, 29, 84-106.

[7] Wilbaut, C., Hanafi, S. and Salhi, S. (2008) A Survey of Effective Heuristics and
Their Application to a Variety of Knapsack Problems. IMA Journal of Management
Mathematics, 19, 227-244. https://doi.org/10.1093/imaman/dpn004

[8] Kchaou, H., Kechaou, Z. and Alimi, A.M. (2015) Towards an Offloading Frame-
work Based on Big Data Analytics in Mobile Cloud Computing Environments.
Procedia Computer Science, 53, 292-297.
https://doi.org/10.1016/j.procs.2015.07.306

https://doi.org/10.1093/imaman/dpn004
https://doi.org/10.1016/j.procs.2015.07.306

A. Paranjothi et al.

29

[9] Bahl, P., et al. (2012) Advancing the State of Mobile Cloud Computing. Proceedings
of the 3rd ACM Workshop on Mobile Cloud Computing and Services, Low Wood
Bay, 25 June 2012, 21-28. https://doi.org/10.1145/2307849.2307856

[10] Verbelen, T., et al. (2012) Cloudlets: Bringing the Cloud to the Mobile User. Pro-
ceedings of the 3rd ACM Workshop on Mobile Cloud Computing and Services,
ACM. https://doi.org/10.1145/2307849.2307858

[11] Chen, M., Jin, H., Wen, Y. and Leung, V.C.M. (2013) Enabling Technologies for
Future Data Center Networking: A Primer. IEEE Network, 27, 8-15.
https://doi.org/10.1109/MNET.2013.6574659

[12] Kumar, K. and Lu, Y.-H. (2010) Cloud Computing for Mobile Users: Can Offload-
ing Computation Save Energy? IEEE Computer, 43, 51-56.
https://doi.org/10.1109/MC.2010.98

[13] Yang, K., Ou, S. and Chen, H.-H. (2008) On Effective Offloading Services for Re-
source-Constrained Mobile Devices Running Heavier Mobile Internet Applications.
IEEE Communications Magazine, 46, 56-63.
https://doi.org/10.1109/MCOM.2008.4427231

[14] Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R. and
Bahl, P. (2010) MAUI: Making Smartphones Last Longer with Code Offload. ACM
MobiSys’10, 49-62. https://doi.org/10.1145/1814433.1814441

[15] Chun, B.-G., Ihm, S., Maniatis, P., Naik, M. and Patti, A. (2011) CloneCloud: Elastic
Execution between Mobile Device and Cloud. ACM EuroSys’11, 301-314.
https://doi.org/10.1145/1966445.1966473

[16] Huang, B.-K., et al. (2015) A Cloud-Based Offloading Service for Computation-In-
tensive Mobile Applications. IEEE 21st International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 19-21 August 2015.
https://doi.org/10.1109/rtcsa.2015.17

[17] Ra, M.R., Sheth, A., Mummert, L., Pillai, P., Wetherall, D. and Govindan, R. (2011)
Odessa: Enabling Interactive Perception Applications on Mobile Devices. Proceed-
ings of the 9th International Conference on Mobile Systems, Applications, and Ser-
vices, Bethesda, 28 June-1 July 2011, 43-56.
https://doi.org/10.1145/1999995.2000000

[18] Bradski, G. and Kaehler, A. (2008) Learning OpenCV: Computer Vision with the
OpenCV Library. O’Reilly Media.

[19] Romea, A.C., Berenson, D., Srinivasa, S. and Ferguson, D. (2009) Object Recogni-
tion and Full Pose Registration from Single Image for Robotic Manipulation. IEEE
International Conference on Robotics and Automation.

[20] Lowe, D. (2004) Distinctive Image Features from Scale-Invariant Keypoints. Inter-
national Journal on Computer Vision (IJCV), 60, 91-110.
https://doi.org/10.1023/B:VISI.0000029664.99615.94

[21] Pillai, P.S., Mummert, L.B., Schlosser, S.W., Sukthankar, R. and Helfrich, C.J. (2009)
"SLIPstream: Scalable Low-Latency Interactive Perception on Streaming Data. ACM
International Workshop on Network and Operating System Support for Digital
Audio and Video.

[22] Kosta, S., Aucinas, A., Hui, P., Mortier, R. and Zhang, X. (2012) Thinkair: Dynamic
Resource Allocation and Parallel Execution in the Cloud for Mobile Code Offload-
ing. In INFOCOM, 2012 Proceedings IEEE, 945-953.

[23] Kosta, S., Perta, V.C., Stefa, J., Hui, P. and Mei, A. (2013) Clone2clone (c2c):
Peer-to-Peer Networking of Smartphones on the Cloud. In 5th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud13).

https://doi.org/10.1145/2307849.2307856
https://doi.org/10.1145/2307849.2307858
https://doi.org/10.1109/MNET.2013.6574659
https://doi.org/10.1109/MC.2010.98
https://doi.org/10.1109/MCOM.2008.4427231
https://doi.org/10.1145/1814433.1814441
https://doi.org/10.1145/1966445.1966473
https://doi.org/10.1109/rtcsa.2015.17
https://doi.org/10.1145/1999995.2000000
https://doi.org/10.1023/B:VISI.0000029664.99615.94

A. Paranjothi et al.

30

[24] Feldman, A.J., Zeller, W.P., Freedman, M.J. and Felten, E.W. Sporc: Group Colla-
boration Using Untrusted Cloud Resources. In Proc. OSDI’10.

[25] Ellis, C.A. and Gibbs, S.J. (1989) Concurrency Control in Groupware Systems.
SIGMOD REC, 18, 399-407. https://doi.org/10.1145/66926.66963

[26] Ravindranath, L., Thiagarajan, A., Balakrishnan, H. and Madden, S. (2012) Code in
the Air: Simplifying Sensing and Coordination Tasks on Smartphones. Proceedings
of the Twelfth Workshop on Mobile Computing Systems & Applications, p. 4,
ACM.

[27] Stuedi, P., Mohomed, I. and Terry, D. (2010) WhereStore: Location-Based Data
Storage for Mobile Devices Interacting with the Cloud. Proceedings of the 1st ACM
Workshop on Mobile Cloud Computing & Services: Social Networks and Beyond,
p. 1, ACM.

[28] Trestian, I., Ranjan, S., Kuzmanovic, A. and Nucci, A. (2009) Measuring Serendipi-
ty: Connecting People, Locations and Interests in a Mobile 3g Network. Proceedings
of the 9th ACM SIGCOMM Conference on Internet Measurement Conference,
New York, 267-279. https://doi.org/10.1145/1644893.1644926

[29] Ananthanarayanan, G., Haridasan, M., Mohomed, I., Terry, D. and Thekkath, C.A.
(2009) Startrack: A Framework for Enabling Track-Based Applications. Proceedings
of the 7th International Conference on Mobile Systems, Applications, and Services,
New York, 207-220. https://doi.org/10.1145/1555816.1555838

[30] Mun, M., Reddy, S., Shilton, K., Yau, N., Burke, J., Estrin, D., Hansen, M., Howard,
E., West, R. and Peir, P.B. (2009) The Personal Environmental Impact Report, as a
Platform for Participatory Sensing Systems Research. MobiSys’09: Proceedings of
the 7th International Conference on Mobile Systems, Applications, and Services,
New York, 55-68. https://doi.org/10.1145/1555816.1555823

[31] Krumm, J. and Horvitz, E. (2007) Predestination: Where Do You Want to Go To-
day? Computer, 40, 105-107.

[32] Ramasubramanian, V., Rodeheer, T.L., Terry, D.B., Walraed-Sullivan, M., Wobber,
T., Marshall, C.C. and Vahdat, A. (2009) Cimbiosys: A Platform for Content-Based
Partial Replication. NSDI’09: Proceedings of the 6th USENIX Symposium on Net-
worked Systems Design and Implementation, Berkeley, 261-276.

[33] Ananthanarayanan, G., Haridasan, M., Mohomed, I., Terry, D. and Thekkath, C.A.
Startrack: A Framework for Enabling Track-Based Applications. MobiSys’09: Pro-
ceedings of the 7th International Conference on Mobile Systems, Applications, and
Services, New York, 207-220. https://doi.org/10.1145/1555816.1555838

[34] Bickford, J. and Cáceres, R. (2013) Towards Synchronization of Live Virtual Ma-
chines among Mobile Devices. Proceedings of the 14th Workshop on Mobile Com-
puting Systems and Applications, p. 13, ACM.
https://doi.org/10.1145/2444776.2444794

[35] Lin, H., et al. (2015) A Trustworthy Access Control Model for Mobile Cloud Com-
puting Based on Reputation and Mechanism Design. Ad Hoc Networks, 35, 51-64.
https://doi.org/10.1016/j.adhoc.2015.07.007

[36] Dinh, T.T.A. and Datta, A. (2013) Towards Secure Outsourcing of Collaborative
Sensing and Analytic Applications to the Cloud-the pCloud Approach. Proceedings
of the First International Workshop on Middleware for Cloud-Enabled Sensing, p.
2, ACM. https://doi.org/10.1145/2541603.2541606

[37] Goyal, V., Pandey, O., Sahai, A. and Waters, B. (2006) Attribute-Based Encryption
for Fine-Grained Access Control of Encrypted Data. In CCS’06.

[38] Green, M., Hohenberger, S. and Waters, B. (2011) Outsourcing the Decryption of
Abeciphertexts. In USENIX Security.

https://doi.org/10.1145/66926.66963
https://doi.org/10.1145/1644893.1644926
https://doi.org/10.1145/1555816.1555838
https://doi.org/10.1145/1555816.1555823
https://doi.org/10.1145/1555816.1555838
https://doi.org/10.1145/2444776.2444794
https://doi.org/10.1016/j.adhoc.2015.07.007
https://doi.org/10.1145/2541603.2541606

A. Paranjothi et al.

31

[39] Stephen, J.J., Savvides, S., Seidel, R. and Eugster, P. (2014) Practical Confidentiality
Preserving Big Data Analysis. Proceedings of the 6th USENIX Conference on Hot
Topics in Cloud Computing, USENIX Association, 10.

[40] Olston, C., Reed, B., Srivastava, U., Kumar, R. and Tomkins, A. (2008) Pig Latin: A
Not-So-Foreign Language for Data Processing. In SIGMOD.

[41] Schneier, B. (1994) Description of a New Variable-Length Key, 64- Bit Block Cipher
(Blowfish). In Fast Software Encryption. Springer-Verlag, 191-204.

[42] Daemen, J. and Rijmen, V. (2002) The Design of Rijndael: AES—The Advanced
Encryption Standard. Springer-Verlag, Berlin, Heidelberg, New York.

[43] Popa, R.A., Redfield, C.M.S., Zeldovich, N. and Balakrishnan, H. (2011) CryptDB:
Protecting Confidentiality with Encrypted Query Processing. In SOSP.

[44] Elgamal, T. (1985) A Public-Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory, 31, 4.

[45] Ouaknine, K., Carey, M. and Kirkpatrick, S. (2015) The PigMix Benchmark on Pig,
MapReduce, and HPCC Systems. IEEE International Congress on Big Data (Big
Data Congress), 27 June-2 July 2015.
https://doi.org/10.1109/bigdatacongress.2015.99

[46] Marathe, A., et al. (2016) Exploiting Redundancy and Application Scalability for
Cost-Effective, Time-Constrained Execution of HPC Applications on Amazon EC2.
IEEE Transactions on Parallel and Distributed Systems, 27, 2574-2588.
https://doi.org/10.1109/TPDS.2015.2508457

[47] Chen, T., Ullah, I., Kaafar, M.A. and Boreli, R. (2014) Information Leakage through
Mobile Analytics Services. Proceedings of the 15th Workshop on Mobile Compu-
ting Systems and Applications, p. 15, ACM.
https://doi.org/10.1145/2565585.2565593

[48] Alizadeh, M., et al. (2015) Authentication in Mobile Cloud Computing: A Survey.
Journal of Network and Computer Applications.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jcc@scirp.org

https://doi.org/10.1109/bigdatacongress.2015.99
https://doi.org/10.1109/TPDS.2015.2508457
https://doi.org/10.1145/2565585.2565593
http://papersubmission.scirp.org/
mailto:jcc@scirp.org

	Survey on Three Components of Mobile Cloud Computing: Offloading, Distribution and Privacy
	Abstract
	Keywords
	1. Introduction
	2. Current Mobile Cloud Architecture and Programming Models
	3. Offloading Mobile Applications in Cloud
	3.1. Odessa Framework
	Interactive Perception Applications

	3.2. Sprout
	3.3. Odessa Design
	3.4. ThinkAir Framework
	3.5. ThinkAir Design
	3.6. Compilation and Execution

	4. Mobile Distribution Computing and Cloud
	4.1. Clone 2 Clone (C2C)
	4.2. C2C: Architecture Design
	4.3. C2C and Security
	4.4. CloneDoc Framework
	4.5. Code in the Air
	4.6. CITA Architecture
	4.7. CITA Activity Layer
	4.7.1. Place Hierarchies
	4.7.2. Activity Composition

	4.8. Dial to Deliver Push Service
	4.9. WhereStore
	4.10. Where Store Background
	4.10.1. Replication
	4.10.2. Predicting Location

	4.11. WhereStore System Framework
	4.11.1. Types of Data
	4.11.2. Filters
	4.11.3. Cloud Synchronization

	4.12. Implementation of WhereStore
	4.12.1. Mobile Phone Data Access
	4.12.2. Synchronization of Cache
	4.12.3. Location Prediction

	4.13. Virtual Machine Synchronization (VMsync)
	4.14. Preliminary Design of VMsync
	4.15. Wireless Mesh Networks (WMN)

	5. Privacy in Cloud
	5.1. Secure Outsourcing of Collective Sensing and Systematic Applications to the Cloud (p-Cloud)
	5.2. System Model for p-Cloud Approach
	5.3. Streamforce Approach
	5.4. Practical Confidentiality in Preserving Big Data Analysis
	5.5. Background: PigLatin
	5.6. Architecture and System Overview
	5.7. Program and Transformation Analysis
	5.8. Evaluation of Big Data Analysis
	5.9. Information Leakage
	5.10. Background of Mobile Analytic Service
	5.10.1. App Ecosystem
	5.10.2. Mobile Analytics and Tracking

	5.11. User Profile Extraction
	5.11.1. Device id Spoofing
	5.11.2. Extracting User Information

	5.12. Deceiving User Profiles
	Attacking Technique

	5.13. User Authentication in MCC

	6. Conclusion and Future Work
	References

